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 Load flow studies are one of the most important aspects of power system 

planning and operation. The main information obtained from this study 

comprises the magnitudes and phase angles of load bus voltages, reactive 

powers at generators buses, real and reactive power flow on transmission 

lines, other variables being known. To solve the problem of load flow, we 

use the iterative method, of Newton-Raphson. Analysis of the found results 

using numerical method programmed on the Matlab software and PSS/E 

Simulator lead us to seek means of controlling the reactive powers and the 

bus voltages of the Nouakchott power grid in 2030 year. In our case, we 

projected the demand forecast at 2015 to 2030 years. To solve the growing 

demand we injected the power plants in the system firstly and secondly when 

the production and energy demand are difficult to match due to lack of 

energy infrastructures in 2030.It is proposed to install a FACTS (Flexible 

Alternative Current Transmission Systems) system at these buses to 

compensate or provide reactive power in order to maintain a better voltage 

profile and transmit more power to customers.  
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1. INTRODUCTION  

Electric power load forecasting (EPLF) is a vital process in the planning of electricity industry and 

the operation of electric power systems. The natures of these forecasts are different as well: 

a. Short-term forecasts are usually from one hour to one week. They play an important role in the day-to-

day operations of a utility such as unit commitment, economic dispatch and load management.  

b. Medium-term forecasts are usually from a few weeks to a few months and even up to a few years. They 

are necessary in planning fuel procurement, scheduling unit maintenance and energy trading and revenue 

assessment for the utilities.  

c. Long-term electricity demand forecasting is a crucial part in the electric power system planning, tariff 

regulation and energy trading [12].  

d. A long-term forecast is required to be valid from 5 to 25 years. This type of forecast is used to deciding 

on the system generation and transmission expansion plans.  

In this context, it proposed an analysis for the current and evolving production system to satisfy the 

domestic demand of the 33 kV network. This analysis let use to find, and maintain a voltage profile between 

0.95 and 1.05 pu, for the electrical network through its modeling by its transfer abilities and by analyzing  its 

simulated results programmed in Matlab and PSS/E Simulator. This modeling is carried out to maintain this 

voltage profile within the rated limits for the network manager. Another objective is, to propose a 

methodology for the management and control of power transfer and voltage, in order to make the most 
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efficient use of the system more suitable. The FACTS system is a mean of to achieve this function. Several 

types of FACTS currently exist and the choice of the appropriate device depends largely on the goals to be 

achieved [10], [8], [11].  

For the insertion of FACTS systems, it is sought a stable electrical energy network which is capable 

even during a disturbance to provide the demand power [3]. This is done while keeping the frequency values 

constant and close to nominal ones , the alternators rotational speed and the voltage magnitude at the various 

network buses are kept near the rated values as well. 

 

 

2. STRUCTURE OF THE 33 KV  LOOP OF NOUAKCHOTT SYSTEM  

The single –line diagram (Figure1.) only represents the 33 KV part of network .The data lines 

(cables),the generators powers and loads are shown in tables 1 and 2 . The electrical network consist of 9 

transmissions lines, 5 generators and 5 loads at bus 2,4,5,6 and 7 of (Figure1.).The active and reactive powers 

generated are given in MW and MVAr respectively. The voltage of each bus (i) is given in per unit. The load 

bus is characterized by its active power P and reactive power Q. Therefore, (P, Q) are specified, while (V) is 

to be calculated. In this context, it is proposed for the North bus (1), to be slack bus .Finally, it should also be 

noted that a bus is numbered (i) and it is connected to n other buses such as those shown in Figure 1. 

 

 

 
Figure 1. Simplified line diagram; of Nouakchott supply network [12] 

 

 

It also proposed in Table 1, the active resistances, the line reactances as well as corresponding 

lengths of each line 

 

2.1. Cable data 

 

 

Table 1. Cable Data of Figure 1 
 

Cable i k R (Ω) X (Ω) U(KV) l(km) 

1 1 2 0.122 0.167 33 6.27 

2 1 3 0.067 0.092 33 3.47 

3 2 4 0.027 0.037 33 13.98 

4 2 6 0.032 0.044 33 16.8 

5 3 7 0.141 0.193 33 7.25 

6 4 5 0.17 0.232 33 8.72 

7 4 6 0.127 0.173 33 4.51 

8 5 6 0.101 0.15 33 5.66 
9 6 7 0.232 0.31 33 11.87 
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2.2. Generators and electrical loads data 

It is also proposed in Table 2, the initials voltages and their phases. In the analysis of power flow, 

the generators are modeled as current injectors. In the steady state, a generator is generally controlled so that 

the active power P (MW) injected to the bus and the voltage across the generator terminals are kept constant. 

 

 

Table 2. Data System in 2015 year of Figure 1 
 

N Voltage Generators Loads 

Voltage 

(pu) 

Angl. 

(deg) 

P 

(MW) 

Q 

(MVAr) 

P 

(MW) 

P (MVAr) 

1 1.06 0 180 85.54 0 0 

2 1.045 0 0 0 5.306 2.557 

3 1 0 15 7.226 0 0 

4 1 0 36 17.43 2.245 1.088 

5 1 0 30 14.52 0.41 0.208 

6 1 0 93.95 45.5 1.908 0.924 

7 1 0 0 0 2.548 1.235 

 

 

Table 3 shows the generation data at 2015 to 2030 years [12]. 

Figure 2 shows the injected powers between 2015-2030. 

Table 4 shows the 2015-2030 demand forecast data [12]. 

 

Table 3. Generation Data at 2015 to 2030 years [12] 
 

Years 
Bus 2015-2020 2020-2025 2025-2030 

PG(MW) QG(MVAr) PG(MW) QG(MVAr) PG(MW) QG(MVAr) 

1 180 87.17 270 130.68 360 174.24 
2 - - - - - - 

3 15 7.26 15 7.26 15 7.26 

4 - - - - - - 
5 30 14.52 70 33.88 60 29.4 

6 137 66.346 199.75 96.679 217.25 105.149 

7 - - 50 24.2 50 24.2 

 

 

             
 

(a)                                                                    (b) 
 

Figure 2. Injected powers between 2015-2030, (a) active, (b) reactive 

 

 

Table 4. 2015-2030 Demand Forecast Data [12] 
Years 

Bus 2015-2020 2020-2025 2025-2030 
PD(MW) QD(MVAr) PD(MW) QD(MVAr) PD(MW) QD(MVAr) 

1 - - - - - - 

2 27.68 15.8 142.55 81.37 734.142 419.05 

3 - - - - - - 
4 11.71 6.36 60.3 32.3 310.05 166.345 

5 1.34 1.138 6.9 5.86 35.53 30.179 

6 9.4 1.17 48.41 6.02 249.31 36.82 
7 13.49 7.18 69.48 7.18 357.86 190.39 
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Figure 3 shows the demand forecast between 2015 and 2030 years. 

Table 5 shows the admittance matrix of buses in per unit (YBUS). 

Table 6 shows the results of NR without STATCOM [3]. 

 

 

 
 

(a)                                                              (b) 
 

Figure 3. Demand forecast between 2015 and 2030 years (a) active power, (b) reactive power 

 

 

Table 5. Admittance Matrix of Buses in Per Unit (YBUS) 

 

N 1 2 3 4 5 6 7 

1 89.2-118i -32.6+40.1i -56.6+77.9i 0 0 0 0 

2 -32.6-40.1i 165.8-223.8i 0 -14.4+19.8i 0 -118.8+47.1i 0 

2 -56.6-77.9i 0 87.3-115.8i 0 0 0 -
30.7+37.9i 

3 0 -14.4+19.8i 0 39.9-55.4i -22.5+31.5i -2.9+4.1i 0 

3 0 0 0 -22.5+31.5i 57.3-78.8i -34.8+47.2i 0 
4 0 -118.8+163.8i 0 -02.9+04.1i -34.8+47.2i 173.5+22.5i -

16.9+22.5i 

5 0 0 -30.7+37.9i 0 0 -16.9+22.5i 47.6-60.4i 

 

 

Table 6. Results of NR without STATCOM [3] 
 

Bus Type Vpu Angle (°) 

1 Slack 1.05 0 
2 PQ 0.9 -3.88 

3 PV 1.01 -0.97 

4 PQ 0.87 -4.86 
5 PV 0.88 -4.54 

6 PV 0.89 -4.26 

7 PQ 0.94 -2.8 

 

 

3. NUMERICAL MODEL OF STATCOM  

3.1. Description of STATCOM: 

The static synchronous compensator STATCOM is one of FACTS derivates family, it us the forcing 

electronic power commutation (GTO, IGBT or IGCT). A STATCOM is a controlled reactive power source 

and improve the transient stability of systems. It provides voltage support by generating or absorbing reactive 

power at the point of common coupling without the need of large external or capacitor banks. The basic 

voltage source converter scheme is shown in Figure 4 [11]. 

 

3.2. System of equations to determine bus voltages: 

3.2.1. Gauss-Seidel iterative method (GS) [1], [5], [6] and [2] 
 

 sietniVY
V

jQP

Y
V k

n

ikk

ik

i

ii

ii

i 



 
 



,........,2,1
)(1

,1
*

     (1) 

 

 

 

 

 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Optimization for Electric Power Load Forecast (I. A. Ethmane) 

3457 

Where the active and reactive power each bus with indice i take the following form: 
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Since the voltage at the buses must be maintained within certain specified statutory limit, the voltage 

bound constraint limit at bus i is then defined by Equation (3): 

(max)(min) iii VVV           (3) 

 

Where Vi (min) and Vi (max) are minimum and maximum values of voltage at bus i. 

The reactive power supply constraint at bus i is specified by Equation (4): 

 

   maxmin gigigi QQQ 
        

(4) 

 

Where Qgi (min) and Qgi (max) are minimum and maximum values of reactive power supply at bus i 

If the constraint defined by Equation (4) is not satisfied, Qgi is set to Qgi (max) if Qgi is greater 

than Qgi (max) ,and it is set to Qgi (min) if Qgi is less Qgi (max) and the constraint that voltage at  bus i is 

fixed must be released [8]. When STATCOM is shunt-connected at bus i in Figure 1 and it is treated as VAr 

source, the power equations writing as following: 

 

liSTCigii PPPP          (5) 

 

liSTCigii QQQQ           (6) 

 

Where PSTCi STATCOM real power at bus i, QSTCi STATCOM reactive power at bus i. 

Equations (5) and (6) represent a case where STATCOM injects VAr into the system at bus i and for 

VAr absorption, the signs of PSTCi and QSTCi become reversed. 

Due to the non-linearity of algebraic Equations (5) and (6) describing the power flow, their solution 

is usually based on an iterative technique. Hence, the method of solution adopted in this work for power flow 

Equations (5) and (6) with a shunt-connected STATCOM at bus i is Newton-Raphson iterative method and it 

was adopted because of its faster rate of convergence and accuracy when compared with other methods of 

solution for non-linear power flow equations such as Gauss-Seidel method [1], [7]. 

 

3.3. Mathematical model of power flow with STATCOM  

The Thevenin‟s equivalent circuit of the fundamental frequency operation of the switched mode 

voltage source inverter STATCOM and its transformer is shown in Figure 4 [8] and [9]. 

 

 

 
 

Figure 4. (a) Basic schematic diagram; (b) equivalent circuit [2] 
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From Figure 4, we obtain Equation (8): 

 

STCSCiSTC IZVV          (8) 

 

Where VSTC - Statcom voltage, ISTC - Statcom current, ZSC - Transformers impedance. 

The voltage injection bound constraint of STATCOM is given by Equation (9) [12]. 

 

   maxmin STCSTCSTC VVV 
        

(9) 

 

Where VSTC (min) and VSTC (max) - are the Statcom‟s minimum and maximum voltages. 

Equation (8) is transformed into a power expression for STATCOM and power injected into bus i by 

Equations (10) and (11) respectively: 

 

iSCSTCSCSTCSTCSTCSTCSTC VYVYVVIVS ****        (10) 

 
*****

STCSCiSCiiSTCii VYVYVVIVS         (11) 

 

Where SSTC – STATCOM injected apparent power, I
*

STC - complex conjugate of STATCOM current,  

V
*
STC - complex conjugate of STATCOM voltage, Y

*
SC - complex conjugate of short-circuit admittance 

The bus i and STATCOM voltages in rectangular coordinates system are expressed as Equations (12) and 

(13) respectively: 

 

  iii jfeV           (12) 

 

STCSTCSTC jfeV           (13) 

 

Where ei  - real component of bus i voltage, fi  - imaginary component of bus i voltage, eSTC – real component 

of STATCOM voltage, fSTC - imaginary component of STATCOM voltage. 

The STATCOM‟s voltage magnitude and angle are expressed as Equations (14) and (15) respectively: 

 

 2
1

22

STCSTCSTC feV          (14) 
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The active and reactive power components for the STATCOM and bus i on the basis of Equations (10) to 

(15) are respectively expressed by Equations (16) to (19): 

 

     iSTCiSTCSCiSTCiSTCSTCSTCSCSTC fefeBffeefeGP  22      (16) 

 

     22

STCSTCiSTCiSTCSCiSTCiSTCSCSTC feffeeBeffeGQ      (17) 

 

     STCiSTCiSCSTCiSTCiiiSCi fefeBffeefeGP  22     (18) 

 

     22

iiSTCiSTCiSCSTCiSTCiSCi feffeeBeffeGQ      (19) 

 

Where PSTC - STATCOM real power, QSTC - STATCOM reactive power, GSC - short-circuit conductance,  

BSC – short-circuit susceptance 

The Newton-Raphson set of linearized equations for power flow Equations (10), (11), (16) and (17) 

obtained taken into consideration the modeling of shunt-connected STATCOM at bus i is given by  

Equation (20) [6], [2]. 
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Where the partial derivatives of the Jacobian matrix are defined on the basis of expression (21). 
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3.4. Results of simulation and discussion 

In the Table 7 below is given the possible STATCOM location in buses and shown their impact on 

the system 

 

 

Table 7. Results of STATCOM Connected to the Bus 2  
Bus Type V pu Angle (°) 

1 1 1.05 0 

2 2 1 -7.07 
3 3 1.03 -1.81 

4 3 0.97 -7.8 

5 2 0.97 -7.53 
6 2 0.98 -7.29 

7 3 1.01 -5.23 

 

 

The voltage profile before and after STATCOM connected are shown in the Figure 5, it 

demonstrates the voltage magnitude increased for the bus 2 at 0.90 (value out limit [0, 95; 1, 05 pu]) to 1 pu, 

bus 4 at 0.87 to 0.97pu, the bus 5 at 0.88 to 0.97pu, the bus 6 at 0.89 to 0.98pu, the bus 7 at 0.94 to 1.01pu 

and the bus 3 improved at 1.01 to 1.03pu. 

The voltage angle before and after STATCOM connected are shown in the Figure 6, it demonstrates 

the voltage angle increased for the bus 2 at -3.88 to -7.07 degree, bus 3 at-0.97 to-1.81 degree, the bus 4 at  

-4.86 to -7.8 degree, the bus 5 at -4.54 to -7.53 degree, the bus 6 at -4.26 to -7.29 degree and the bus 7 at  

-4.03 to -5.23 degree 

Table 8 shows the total active power loss. 
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Figure 5. Curve of Voltage magnitude in pu Figure 6. Curve of Voltage Angle in degree 

 

 

Table 8. Total Active Power Loss 
 

Total active power loss 

Without STATCOM 119 

With STATCOM 88.2 

 

 

 
 

Figure 7. Curve of active power loss without with STATCOM  

 

 

From the above Figure 7, there was a reduction in total active power loss from 119 MW to  

88.2 MW, thereby improving the active power transmission lines. These results show that the STATCOM 

has the capability to improve the voltage at buses and reduce active power loss on the power system.  

Table 9 shows the total reactive power loss. 

 

 

Table 9. Total reactive power loss 
 

Total reactive power loss 

Without STATCOM 158 

With STATCOM 117.2 

 

 

 
 

Figure 8. Curve of reactive power loss without and with STATCOM 

 

 

From the above Figure 8, there was a reduction in total reactive power loss from 158 MVAr to  

117.2 MVAr, thereby improving the active power transmission lines. These results show that the STATCOM 

has the capability to improve the voltage at buses and reduce reactive power loss on the power system [4]. 
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4. CONCLUSION  

The simulation of the STATCOM on the Matlab and PSS/E Simulator using the NR method enabled 

us to see the voltage profile and the lines power mismatches. It should be noted that the STATCOM is in 

suitable to our predetermined goals, since it responds to all the problems related to the variation of loads and 

frequencies.  

The power losses compared to the NR method without STATCOM are greater than with the 

STATCOM. The voltage of weakest buses is improved after insertion of the smart device (STATCOM) to  

1 pu and greater in stability limit [12]. 

In the end the expected disturbances of the network in the horizon 2030 were attenuated by 

installation of a FACTS system that is able to supply or absorb reactive power and to maintain the voltage to 

1pu.The completion of one research project opens the way to work in many other related areas. The 

following areas are identified for future work: 

The load flow study can be done on larger interconnected power system like IEEE 14, IEE 30, and 

IEE 118 bus and even larger. 

UPFC, IPFC and other FACTS controller can also be incorporated along the STATCOM and their 

effect on the system can be studied [11], [10] and [5]. 

Optimal location of STATCOM can be found out using Genetic Algorithm and fuzzy logic. 

Economic Assessment of FACTS devices against other methods can be studied. 
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