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 Since the discovery of 1D nano-object, they are constantly revealing 

significant physical properties. In this regard, carbon nanotube (CNT) is 

considered as a promising candidate for application in future nanoelectronics 

devices like carbon nanotube field effect transistor (CNTFET). In this work, 

the impact of chirality and gate oxide thikness on the electrical 

characteristics of a CNTFET are studied. The chiralities used are (5, 0), (10, 

0), (19, 0), (26, 0), and the gate oxide thikness varied from 1 to 5 nm. This 

work is based on a numerical simulation program based on surface potential 

model. CNTFET Modeling is useful for semiconductor industries for nano 

scale devices manufacturing. From our results we have observed that the 

output current increases with chirality increasing. We have also highlighted 

the importance of the gate oxide thickness on the drain current that increases 

when gate oxide is thin. 
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1. INTRODUCTION  

The progress in silicon technology continues to outpace the historic pace of Moore's Law, but the 

end of device scaling now seems to be only 10-15 years away [1].  A new alternative appears to overcome all 

these limitations. One of the most promising areas of research in the improvement of transistors performance 

is the use of carbon nanotubes (CNTs) that is considered today as the most important new materials with 

excellent properties [2] beyond the 11-nm technology node due to its superior electrical properties of CNTs 

[3] and the feasibility of using these devices to build FET transistors with geometrically excellent 

electrostatic control. The progress of CNTFET technology and the understanding of its device physics has 

been very active this last decade. 

Carbon nanotubes were first discovered in 1991, and became rapidly the focus of much research 

activity, due to their exceptional electrical, mechanical, and thermal properties [4]. These devices, ideal 

elementary components for the realization of nano-devices, have the possibility of being able to be 

semiconductors or metal. This unique property makes the carbon nanotube an interesting candidate for the 

manufacture of a new electronic component based on nanotubes,such as Carbon NanoTube Field Effect 

Transistor called CNTFET [5]. CNTFET technology can be clubbed with bulk CMOS technology on a single 

chip and uses the same infrastructure allowing to provide improvements in electrostatics over CMOS 

technology. CNTFET transistors allow moore’s Law  sustaining  to ensure further improvement in MOSFET 

performance. It is indispensable  to look for  an alternatives such as  CNTFETs that give assurance  to deliver 

much better performance than existing MOSFETs [6]. 
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It is also important to  recall that each new node has witnessed the integration of new materials and 

process steps that will achieve the objectives of the ITRS roadmap of SC industries. We quote amongo thers 

the integration of high-κ dielectrics that can reduces ignificantly the gate leakage. Mechanical strain applied 

in the channel and substrate orientation also allow carrier mobility improvement, as well as the use of 

alternative device geometries, such as double-gated devices. Of the several  structures studied so far, CNTs 

have shown particular promise due to their size and unique electronic properties. Lately  CNTFETs have 

been fabricated successfully [6]. 

In this paper, we have discussed the various simulation results [7] we have study the influence of 

chirality and gate insulator thikness on  (I-V) characteristics of CNTFET, and observes the parameter 

changing eflect on it. Besides, further analysis has been done through the comparison of' the other group to 

justify  result. 

 

 

2. CARBON NANOTUBE 

Carbon nanotubes (CNTs) have attracted extensive attention because of their unique  properties [8], 

Carbon Nanotubes were discovered in 1991 by Sumio Iijima [9]. CNTs are made from cylindrical carbon 

molecules [10], CNTsowning remarkable physical properties, are large macromolecules that are unique for 

their size and shape. They are allotropes of carbon that are members of the fullerene structural family, which 

includes the spherical bucky balls. These cylinders of carbone atoms arranged on a honey-comb lattice, as a 

single layer of graphite and with almost the same nearest-neighbor C-C spacing  that is ac-c = 1,44  A°. 

CNTs are, in fact  made by rolling up of sheet of graphene into a cylinder. A carbon nanotube  is composed 

of one or more graphene sheets rolled up on itself, describing a tubular geometry as shown in Figure 1. These 

nanostructures are constructed with length-to-diameter  ratio of up to 1.32 × 108,their diameter is in the order 

of few nanometers [11]-[12]. CNTs are considered as very promising candidates in the field of 

nanoelectronics, such as CNT-MOSFETs devices. 

Depending on the number of concentrically rolled-up graphene sheets, carbone nanotubes  are 

classified to single-walled (SWNT), and multiwalled CNTs (MWNT), which consist of a single layer of 

graphene sheet wrapped up to form a seamless tube [13], as presented in Figure 1. 

 

 

 
 

Figure 1. Basic structures of (a) single-walled, and (b) multi-walled CNTs 

 

 

SWNTs, presented here, are more pliable than MWNTs and can be, flattened, twisted and bent into 

small circles or around sharp bends without breaking. SWNTsconsist of a single layer of graphene sheet 

wrapped up to form a seamless tube. The diameter andthehelicity of a SWNT are defined by the roll-up 

vector called chiral vector [14] given by: 

 

  𝐶⃗⃗⃗⃗ ℎ = 𝑛𝑎 1 + 𝑚 𝑎 2 (1) 

 

This roll-up vector connects crystallographically equivalent sites on this sheet, it defines the 

circumference on the surface of the tube connecting two equivalent carbon atoms as shown in Figure 2, a1 

and a2 are the graphene lattice vectors.These unit vectors of the hexagonal latticecan be by [15] : 

 

a1= (3/2ac-c,√3/2ac-c) (2) 

 

a2= (3/2ac-c,√-3/2ac-c) (3) 
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Figure 2.  2D graphene sheet illustrating lattice vectors a1 and a2, and the roll-up vector [14] 

 

 

n and m are integers, they determine if a SWNT will be a metal or a semiconductor. They are also 

called indexes also allow to determinethe chiral angle that is given by : 

 

𝜃 = 𝑡𝑎𝑛−1 (
√3𝑛

2𝑚+𝑛
) (4) 

 

The chiral angle θ is used to separate carbon nanotubes into three classes differentiated by their 

electronic properties: zig-zag (m = 0, n > 0, θ = 0˚), armchair (n = m, θ = 30˚), and chiral (0 < |m| < n,            

0 < θ < 30˚) can see in Figure 3. 

 

 

 
 

Figure 3.  Examples of the three types of SWNTs identified by the integers (n, m) 

 

 

Armchair carbon nanotubes are metallic. Zig-zag and chiral nanotubes can be semi-metals with a 

finite band gap if n – m/3 = integer and m ≠ n or semiconductors in all other cases. The band gap for the 

semi-metallic and semiconductor nanotubes scales in the order of the inverse of the CNT diameter giving 

each nanotube a distinctive electronic behavior. Each nanotube can be uniquely specified by its diameter’d’ 

and its chiral angle 𝜃. the diameter of the nanotube can be expressed as: 

 

d = Ch/π=√3. 𝑎𝑐−𝑐(𝑚
2  +  𝑚𝑛 + 𝑛2 )1/2/𝜋] (5)  

 

 

3. CNTFET STRUCURE 

The first CNFETs where conceived in a very easiest way, as only a proof of concept and a basic 

understand were the goals of these new devices.The first CNTFETs were reported in 1998.The first 

generation of CNTs are given in Figure 4. 

 

 

 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 8, No. 6, December 2018 :  4941 - 4950 

4944 

  
 

Figure 4. First generation of CNFETs [16]-[17] 

 

 

CNFETs are considered as a potential candidate to replace MOSFETS beyond the 11nm technology 

node because of  the good electrical transport properties of carbone nanotubes and also the feasibility of 

using CNTs to conceive CNTFETs with a very good electrostatic control [18]. 

These simple devices were fabricated by depositing single-wall CNTs from solution on to oxidized 

Silicon wafers that  had been prepattemed using gold or platinum electrodes that served as source and drain 

electrodes connected via the nanotube channel ,and the doped Si substrate served as the device gate [19]-[20]. 

The operating principle of the conventional field effect transistor based on carbon nanotube is very similar to 

a MOSFET Transistor considering replacing the channel material to take advantage of ballistic transport in 

the CNTs, where electrons are supplied by source terminal and drain terminal will collect these carriers 

nevertheless, the arrangement keeps changing in order to improve the performance of the device. 

Because of these unique fetures, CNTFETs become devices of special interest. Field effect 

transistors made of carbon nanotubes so far can be classified into two 2 biggest classes: back-gated CNFETs 

and top-gated ones [21]. Lately, a new structure has been introduced known as vertical CNFETs. 

CNTFETs are also three terminals device like MOSFETs, the difference between these two field 

effect devices  is that CNTFETs employ the CNT as a channel between its source and its drain terminals 

where as MOSFETs channel is made of doped Si. According to the number of layers in the channel of the 

CNTFETs, this device can be Single Wall (SW) or Multi Wall (MW). 

 CNTFET devices have two modes of operation, the Schottky-Barrier (SB) or MOSFET-Like 

CNTFETs. The structure between these two CNFET is only slightly different but results in different 

transistor operation [22]. In the SB-CNTFETs the gate voltage modulates the current which flow in the 

channel by changing the width of the barrier. But in MOSFET-Like CNTFETs the gate voltage can be 

controlled in the drain current by changing the height of the barrier. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Cross sectional view of Schottky-barrier 

CNFET [21] 

 

 

 

 

 

 

 

 

 

Figure 6. Cross sectional view of MOSFET like 

CNTFET [21] 

 

 

4. CNTFETS SIMULATION MODEL 

To investigate the chirality effects on our device DC performance, a simple two-dimension 

alanalytical model for ballistic CNTFET isused and shown in Figure 8. Our simulation study is carried out 

based on surface potential model described by Rhaman et al. This is an extension of the earlier work already 

done by K. Natori. This model consists of three capacitors that areattached as terminals of the device. As 

shown in Figure 8, a charge is placed at the top of the barrier.  
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Figure 7. Cross sectional view of the CNTFET type 

 
 

Figure 8. 2D Capacitor model for ballistic transistor 

N type [23] 
 

 

The top of the barrier's local density of states noted LDOS indicates the charge by the self-consistent 

potential. At the top of the barrier, the equilibrium electron density No is given by : 

 

𝑁0 = ∫ 𝐷(𝐸)𝑓(𝐸 − 𝐸𝐹)𝑑𝐸   
+∞

−∞
 (6) 

 

where 𝑫(𝑬) is the local density of state at the top of the barrier and  𝐟(𝐄 − 𝐄𝐅) represents the equilibrium 

Fermi distribution function. The positive velocity states N1 are occupied by the source and the negative 

velocity states N2 are occupied by the drain. N1 and N2 and are given by [24]: 
 

𝑁1 =
𝐷(𝐸)

2
∫ 𝑓(𝐸 + 𝑈𝑠𝑐𝑓 − 𝐸𝐹1)

−∞

+∞
𝑑𝐸 (7) 

 

𝑁2 =
𝐷(𝐸)

2
∫ 𝑓(𝐸 + 𝑈𝑠𝑐𝑓 − 𝐸𝐹2)

−∞

+∞
𝑑𝐸 (8) 

 

EF1 and EF2 are Fermi levels and Uscf. Is the self-consistent potential at the top of the barrier.The Laplace 

potential UL at the top of the barrier ignoring mobile charge in given by [18]: Calculate a Laplace potential 

UL: 
 

𝑈𝐿 = −𝑞(𝛼𝐺𝑉𝐺 + 𝛼𝐷𝑉𝐷 + 𝛼𝑆   𝑉𝑆) (9) 
 

Where: 𝜶𝑮  =
𝑪𝑮

𝑪𝑻
,𝜶𝑫  =

𝑪𝑫

𝑪𝑻
,𝜶𝑺 =

𝑪𝑺

𝑪𝑻
 

CT is the parallel combination of three capacitors CG, CD, CS. The potential due to mobile charge Up can be 

expressed by: 
 

𝑈𝑝 =
𝑞2

𝐶𝑇
(𝑁1 + 𝑁2) − 𝑁0  (10)  

 

The entire self-consistent potentialUscf is given by superposition of UL and UP potentials [18]: 
 

𝑈𝑠𝑐𝑓 = 𝑈𝐿 + 𝑈𝑃     (11) 

 

𝑈𝑠𝑐𝑓 = −𝑞(∝𝐺 𝑉𝐺 + 𝛼𝐷𝑉𝐷 + 𝛼𝑆𝑉𝑆) +
𝑞2

𝐶𝑇
(𝑁1 + 𝑁2) − 𝑁0  (12) 

 

𝐼𝐷 =
4𝑞𝑘𝐵𝑇

ℎ
[𝑙𝑛 (1 + 𝑒𝑥𝑝(𝐸𝐹1 − 𝑈𝑠𝑐𝑓)) − 𝑙𝑛 (1 + 𝑒𝑥𝑝(𝐸𝐹2 − 𝑈𝑠𝑐𝑓))] (13) 

 

kB: is the Boltzmann constant, T: is an operating temperature ,EF: is the Fermi energy,Uscf: surface potential 

and q the charge electric field. 
 

 

5. RESULTS AND DISCUSSION 

To investigate the performance of scaled carbone nanotube MOSFETs, we simulated a planar 

CNTFET with a ballistic channel, at room temperature. The device simulated has a 10 nm SiO2 gate oxide 

thickness.  Different diameters, which results in different bandgap allowing different drain current are 

simulated. We explore various issues by varying two parameters that are the chirality and the oxide thickness. 
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5.1. Effect of chirality on the electrical device characteristics 

In this section, we study the chirality effects on the CNTFETs’ characteristics, knowing that the 

chirality (n, m) of SWNTs determines the diameter of CNT, and the CNT's energy gap. In this work SiO2 

gate insulator (k=3.9) with 10 nm thikness is used, gate and drain control are (0.88 and 0.35) respectively, the 

source fermi level is equal to -0.32 eVand operating temperature is 300°K. To investigate the influence of the 

chirality on CNTFET we have simulated four CNTFETs with different diameters and obviousely different (n, 

m) given in Table 1. 

 

 

Table1. Chirality, diameter and enegy gap 
Chirality (n,m) Diameter (nm) Energy gap 

(5,0) 3.9e-10 2.17 

(10,0) 7.8e-10 1.0 

(19,0) 

(26,0) 

1.5e-09 

2.0e-09 

0.5 

0.4 

 

 

All simulation results allowing observing chirality influence on the drain current of our device are 

given in Figure 10 – 13: 

 

 

 
(a) 

 
(b) 

 

Figure 9.  The I-V characteristics of a (5-0) SWNT : (a) Ids –Vds  (b) Ids-Vgs in logarithmic scale 

 

 

 

 
(a) 

 
(b) 

 

Figure 10.  The I-V characteristics of a (10-0) SWNT: (a) Ids –Vds (b) Ids-Vgs in logarithmic scale 

 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Effect of Chirality and Oxide Thikness on the Performance of a Ballistic CNTFET (Asma Laribi) 

4947 

 
(a) 

 
(b) 

 

Figure 11.  The I-V characteristics of a (19-0) SWNT: (a) Ids –Vds (b) Ids-Vgs in logarithmic scale 

 

 

 
(a) 

 
(b) 

 

Figure 12.  The I-V characteristics of a (26-0) SWNT: (a) Ids –Vds  (b) Ids-Vgsin logarithmic scale 

 

 

 
 

Figure 13. Ids-Vds characteristics of CNTFETs with chiralities of (5, 0), (10, 0), and (19, 0), (26, 0) 

(VG=0.6 V) 

 

 

In this part we will explor the effect of chirality, the Figure 9, 10, 11, 12(a) shows that the chirality 

is directly related to CNTs' diameter, and the diameter variation has a direct effect on the transistor and this is 

indicated in equation 5, and the gap is inversely proportional to the diameter of the carbon nanotube. The 

chirality has an impact on the devivce output current. Indeed, when the chirality increases the drain current 

increases in Figure 10, for (n,m)= (5, 0) at VG=1V , drain current of 5µA has been obtained and  for (n,m)= 

(26, 0) a drain current of  24 µA has been obtained.It can be seen CNTFETs using carbon nanotube with 

larger diameter have a higher drain current, I Figure 9, 10, 11, 12(b) the curves is shown in logarithmic scale 

at gate voltage  of 0.6 V the impact of  chirality on Off current . 

Table 2 gives the value for Ion and Ioff current we remark that when the chirality increase the value 

of Ion current increase also. The diameter on CNT has specially effect on drain current (on –current), 

automatically the ratio Ion/Ioff increase for (26,0) chirality. 
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Table 2. Value of  Ion and Ioff current  corresponding to chirality 
Chirality (n,m) Ion(μA) Ioff(μA) Ion/Ioff 

(5,0) 2 3.8x10-5 0.5 x 105 

(10,0) 3.5 3.8x10-5 0.9 x 105 

(19,0) 

(26,0) 

5.8 

7.8 

3.8x10-5 

3.8x10-5 

1.5 x 105 

2 x 105 

 

 

5.2. Effect of oxide thikness 

In this section the impact of oxide thikness on the output characteristic of CNTFET performance is 

sImulated, the nanotube diameter will be fixed at 2 nm and the t is varied from 1-5 nm. 

The Figure 14, 15, 16(a) show the drain current for differents oxide insulator in linear scale, we 

observe that when the gate oxide thikness is thin the conductivity increase and the leakage current is not 

increasing, from higher value from insulaor thikness the height of potential barrier becomes high is controlled 

by the gate source voltage. 

The Figure 14, 15, 16(b) show the drain current for differents oxide insulator in logarithm scale we 

observe the influence on variance of insulator gate oxide thikness on current Ion, Ids (Ioff) is inchanged, we 

conclude when the insulator thikness is reduced the ratio Ion/Ioff will increase. 

 

 

 
(a) 

 
(b) 

 

Figure 14.  The I-V characteristics of oxide thikness t=3nm : (a) Ids –Vds  (b) Ids-Vgs in logarithmic scale 

 

 

 
(a) 

 
(b) 

 

Figure 15. The I-V characteristics of oxide thikness t= 2 nm: (a) Ids –Vds  (b) Ids-Vgs in logarithmic scale 
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(a) 

 
(b) 

 

Figure 16.  The I-V characteristics of oxide thiknesst=1 nm: (a) Ids –Vds (b) Ids-Vgs in logarithmic scale 

 

 

  

 

Figure 17. Effetct of oxide thikness on I-V 

characteristics in linear scale 

 

Figure 18. Variation of drain-source current (IDS) 

drainsource voltage (VDS) for various gate 

insulator thicknesses of CNTFET by Devi Dass, 

Rakesh Prasher, Rakesh Vaid, This result justifies 

the accuracy of our  result [7] 

 

 

From Table 3 we ramark that the Ion current is inversely propotionnel to the insulator thikness and 

the leakage current is not affected by the gate insulator thiknessbu the ration Ion/Ioffis will increase when the 

value of gate oxide thikness is decrease. Our simulation accuracy can be justified by investigating other 

simulation result, the result is approximately equal compared with result in Figure 18. 

 

 

Table 3. Value of  Ion and Ioff current for oxyde thikness 
Oxyde thikness (nm) Ion(μA) Ioff(μA) Ion/Ioff 

1 36 3.8x10-5 9.4 x 105 

2 18 3.8x10-5 4.7x 105 

3 

5 

13 

9 

3.8x10-5 

3.8x10-5 

3.4 x 105 

2.3 x 105 

 

 

6. CONCLUSION 
In this paper we have investigate the effect of chiraliy and gate oxide thikness on performance of 

CNTFET device, I have analyse in the first part the influence of chirality on the output characteristics for 

carbon nanotube field effect transistor. Through simulation result we have observed that when chirality 

increases the current value increase and the ratio Ion/Ioff is proportionnel to the chirality. 

From second part we have study the impact of gate oxide thikness on drain current we can observe 

that the current is affected by the gate insulator thikness, the oxide thikness affects the Ion current but the Ioff 

current remain stable. The accuracy of our result can be proved by comparing other research group work 

which is identical. Analysis results conclude that the CNTFETs have the potential to be a successful   

replacement of MOSFETs in nanoscale electronics. 
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