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ABSTRACT

Leap Motion controller is an input device that can track hands and fingers position quickly
and precisely. In some gaming environment, a need may arise to capture letters written in
the air by Leap Motion, which cannot be directly done right now. In this paper, we propose
an approach to capture and recognize which letter has been drawn by the user with Leap
Motion. This approach is based on Deep Belief Networks (DBN) with Resilient Backprop-
agation (Rprop) fine-tuning. To assess the performance of our proposed approach, we con-
duct experiments involving 30,000 samples of handwritten capital letters, 8,000 of which
are to be recognized. Our experiments indicate that DBN with Rprop achieves an accu-
racy of 99.71%, which is better than DBN with Backpropagation or Multi-Layer Perceptron
(MLP), either with Backpropagation or with Rprop. Our experiments also show that Rprop
makes the process of fine-tuning significantly faster and results in a much more accurate
recognition compared to ordinary Backpropagation. The time needed to recognize a letter is
in the order of 5,000 microseconds, which is excellent even for online gaming experience.

Copyright c© 2018 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:
Reza Pulungan
Department of Computer Science and Electronics, Universitas Gadjah Mada, Indonesia
Gedung KPTU FMIPA UGM, Sekip Utara, Bulaksumur, Sleman, Yogyakarta, 55281, Indonesia
+6282136261216
Email: pulungan@ugm.ac.id

1. INTRODUCTION
Computer aided handwriting recognition can be performed either on-line or off-line. Typically, on-line hand-

writing recognition is based on specific input devices, such as real-time capturing digital pen, finger-touch screen, or
mouse movement. In the recent decade, such input devices have already been equipped with computer vision tech-
nology that enables recognition of natural hand or body gestures as seen in Kinect-based handwriting recognition [1].
Huang et al. [2] introduce digit recognition on Kinect by using Multiple Segment and Scaled Coding with 94.6%
accuracy. Other methods are proposed by using Depth-Skin Background Mixture Model for hand segmentation [3]
and Dynamic Time Warping combined with Support Vector Machines (SVM) for digit recognition [1].

Kinect has the ability to recognize body shape or hand movements, but it faces difficulties in obtaining
precise finger position compared to Leap Motion controller. Leap Motion controller (or simply Leap Motion) is a new
computer vision device that can track the position of fingers more precisely. The 3D finger data can be obtained at over
100 frames per second [4], making it possible to efficiently track the position of each finger in detail. However, Leap
Motion still faces some limitations: it cannot directly recognize a specific sequence of fingers’ strokes (movements)
performed when drawing a letter or a digit in air.

Several algorithms have been proposed to recognize these sequences of strokes to obtain a better accuracy.
Vikram et al. develop handwriting recognition based on Leap Motion by using Dynamic Time Warping algorithm [4].
Agarwal et al. [5] present segmentation and recognition of 3D handwritten text captured by Leap Motion. Hidden
Markov Model (HMM) is used to train segmented words and achieves an accuracy of 77.6%. Another algorithm for
rapid recognition of hand graphical gestures is SVM. SVM is used to recognize 100 testing samples with an average
recognition rate of 82.4% [6].
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Researches show that algorithms with shallow architectures (i.e., Decision Tree [7], Gaussian Mixture Models
(GMM), HMM, Conditional Random Fields (CRF), Multi-Layer Perceptron (MLP) [8], and SVM [9]) are effective
in solving many simple or well-constrained problems. However, these algorithms may face difficulties in complicated
real-world applications involving natural signals, such as human speech, natural sound and language, natural images,
and visual scenes [10] because of their modelling limitation. Instead, a deep architecture algorithm able to recognize
handwritten digits captured by Leap Motion is available, namely Convolutional Neural Networks (CNN). However, it
is hard to train deep MLP (and hence also CNN) without GPU parallelization [11].

CNN has been used to simulate 3D digit recognition model that can be projected as 2D in a 3D environment
on Leap Motion tracking data [12]. This method achieves an accuracy of 92.4%. In this paper, we propose to use
Deep Belief Networks (DBN) to solve this recognition problem. DBN is one of deep architecture algorithms and
consists of two phases: greedy layer-wise unsupervised pre-training and discriminative fine-tuning [13, 14, 15]. Pre-
training, initialized by a stacked Restricted Boltzmann Machines, can generate a better result compared to purely
random configuration of the MLP. After the pre-training phase in the DBN, the network can be treated simply as an
MLP and then trained with Backpropagation to enhance its weights [14, 15]. Alternatively, Resilient Backpropagation
can be used to train the networks instead of ordinary Backpropagation.

2. PRELIMINARIES
2.1. Leap Motion controller

Leap Motion is an input device that allows users to recognize and track hands, fingers, and finger-like tools.
Leap Motion is developed by Michael Buckwald and David Holz at Leap Motion, Inc. Leap Motion is able to track
3D finger data precisely and obtains them at over 100 frames per second [4]. Besides, Leap Motion device is also
cheaper compared to other similar computer-vision devices. The dimension of the device is 1.2×3×7.6 cm3 and it
uses optical sensors and infrared light, as shown in Figure 1 [16]. Leap Motion’s sensors can detect hands or fingers
across the upward y-axis and possess a 150◦-vision with effective range of 25 to 600 millimeters [17].

Figure 1. Detail of the Leap Motion’s sensors [16]

To develop applications that use Leap Motion as input device, we can make use of an available API that can
be accessed via various programming languages. Leap Motion API version 2.0 [17] introduces New Skeletal Tracking
Model that provides additional information for arms, fingers, and overall tracking enhancement. In order to use Leap
Motion, first, it must be connected with an existing USB port and positioned beside the monitor at a distance of the
cable’s range. Leap Motion device will detect gestures and the position as well as the movement of hands or fingers
as the user positions her hands on its range. To retrieve the desired hand tracking data, Leap Motion API provides an
update set or a frame of data. Every single frame object from the API represents a frame that contains a list of tracking
entities called motion tracking data. Motion tracking data, such as hands, fingers, and tools, can also be accessed
through the API.

2.2. Restricted Boltzmann machines

A Boltzmann machine is a stochastic recurrent neural network with binary stochastic units. There are two
types of layers in Boltzmann machines: visible layer and hidden layer. Visible units or neurons on the visible layer
are connected to other units and receive information from the environment. Visible units also bring the input signal
from the environment and send it to other units during training. Hidden units, on the other hand, operate freely
and extract features from the input signal. Interconnections of units in Boltzmann machines can be done even in a
single layer itself. Unfortunately, learning in Boltzmann machines is often impractical and furthermore they also face
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scalability issues. In order to make learning in Boltzmann machines easier, advanced restrictions of connectivity must
be enforced. This restriction is called Restricted Boltzmann Machines (RBM) [18].

In RBM, there is no connection between units of the same layer. RBM is composed of a visible layer and a
hidden layer of stochastic neurons that are connected by symmetrical weights (i.e., there is no weight toward itself).
Hidden units in RBM are considered as feature detector.

2.3. Deep belief networks

A deep belief network is a generative model, consisting of multiple stochastic layers. A stochastic layer has
several latent variables. Latent variables typically have binary values and are called hidden units or feature detec-
tors [13]. Each DBN layer is an RBM and in order to create many layers, several RBMs are stacked on top of each
other to construct a DBN construction. Hinton et al. in [13] propose an idea to learn one layer at a time and restrict
the connectivity of binary stochastic units in order to make learning more efficient and simpler [18].

DBN training begins with RBM training: starting from input samples and then sequentially progressing
toward the next RBM training. Generated patterns formed by the top RBM can deliver a reversed propagation to the
input layer by using conditional probability as in belief network or sigmoid belief network. This training procedure
is called DBN’s greedy layer-wise training [13]. DBN can work with or without supervision. Although DBN can be
used in supervised or discriminative mode, basically, greedy layer-wise training is an unsupervised training for each
layer of stacked RBMs. It is called a pre-training procedure [19, 20, 21]. The purpose of pre-training procedure on
each layer’s training is to put the parameters of all layers in a region of certain parameter ranges that contain a good
generalization of local optimum that can be obtained by local gradient descent [20, 21].

In an RBM, the joint distribution p(v, h;w) of visible units v and hidden units h with parameters w is defined
by the energy function E(v, h;w). For Bernoulli-visible units that lead to Bernoulli-hidden units, the energy function
is defined by:

E(v, h;w) = −
I∑

i=1

J∑
j=1

wijvihj −
I∑

i=1

bivi −
J∑

j=1

ajhj ,

where wij represents the symmetrical interaction between visible unit vi and hidden unit hj , bi and aj are the bias
terms of, and I and J are the numbers of visible and hidden units, respectively. Therefore, the conditional probabilities
can be calculated by:

p(hj = 1 | v;w) = ϕ

(
I∑

i=1

viwij + aj

)
, and (1)

p(vi = 1 | h;w) = ϕ

 J∑
j=1

hjwij + bi

 , (2)

where ϕ(x) = 1/(1 + exp(−x)).
Greedy procedure on stacked RBMs is used to raise the maximum likelihood learning. Equation (3) is a

learning rule for updated weights at each RBM to collect the gradient log-likelihood:

∆wij = Edata(vi, hj)− Emodel(vi, hj), (3)

where Edata(vi, hj) is the expectation of observation on the training data and Emodel(vi, hj) is the expectation under
the distribution defined by the model. Calculating Emodel(vi, hj) is intractable, so Contrastive Divergence (CD)
algorithm is used to solve this problem [13].

CD algorithm performs Gibbs sampling to replace Emodel(vi, hj) in one or more steps. CD-1, namely CD
algorithm that only performs one step of Gibbs sampling on the data, is used to train the model. The following are the
steps of CD-1. First, input sample x and updated hidden units are used to compute p(hj = 1, v;w). Second, units
are activated by comparing the sample result from the previous step with random values to obtain the binary state for
each unit. Third, those binary units are reconstructed by calculating p(vi = 1, h;w). Fourth, the output probability of
the reconstruction is calculated, and the reconstruction result becomes an input. Fifth, after all collections of statistics
from the previous step are obtained, the weights on the RBM are updated.

After completing pre-training procedure in DBN, the next phase is to perform discriminative fine-tuning with
Backpropagation [13, 14]. Fine-tuning with Backpropagation is carried out by adding a final output layer, which is a
labeled class excluded from the pre-training procedure.
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3. PROPOSED APPROACH
Figure 2 depicts the architecture of our proposed approach for in-air handwriting recognition using Leap

Motion. The proposed approach is developed based on the idea laid out in [22]. Data acquisition is a process of
collecting every letter sample by using Leap Motion. This captured letter sample can be used for recognition, or else,
it can be stored in a dataset. The letter dataset is split into two parts, namely: training and testing datasets. The training
dataset will be incorporated into a learning system by using several proposed algorithms; and this basically constitutes
the training process. After training process has been completed, several model algorithms will be constructed. These
model algorithms are then used for testing (by using the testing dataset) in order to obtain and compare their accuracy.
The best model algorithm is then selected for further recognition of letter input data captured by Leap Motion.

Data Acquisition 

using Leap 

Motion

A Single 

Data

Letter 

Dataset

Saved or 

Recognized?

Learning System

Saved

Model

Recognized

Recognition

Figure 2. Our proposed approach

3.1. Data acquisition

Data acquisition is a mechanism to obtain handwritten sample data by using Leap Motion. A sample data
is a sequence of information about the movement of hand (inputs only use one hand and one finger) in the air as
captured by Leap Motion. The motion of finger-hand draws a letter stroke, which is then displayed on the screen of
the simulation application integrated with Leap Motion API. Figure 3 depicts the flow for creating one sample data
using the existing API.
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Figure 3. Data acquisition workflow

Leap Motion initialization Initialization is performed to connect the simulation application to the API. In the sim-
ulation application, the user is given information about what letter should be drawn with the Leap Motion. As the user
starts drawing the letter in the air, we can access the captured Frame object of the Leap Motion through the API.

2D mapping Through the Frame we can access the Finger object, and hence the tip positions of all fingers can
be obtained through the API. However, we do not need the positions of all fingers, but only the dominant finger as
when pointing with the forefinger. The dominant finger can be obtained via a property of the Finger object, namely
Frontmost. In addition, in order to obtain the position of the dominant finger’s tip with minimal jitter, a property
named StabilizedTipPosition can be used. Because of 2D mapping, the z-position of the forefinger produced by
StabilizedTipPosition is ignored, and the x and y-position are then denoted by xpos and ypos, respectively.

Normalizing stabilized position InteractionBox property of Frame is an object on the API to ensure the user’s
finger-hand always stays on the device’s visibility range. While finger-hand is inside InteractionBox, movements of
the fingers will be detected on 3D coordinates, as shown in Figure 4(left). When the application is mapped to 2D
coordinates, the InteractionBox is as shown in Figure 4(right).
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Figure 4. Field-of-view of the (left) 3D and the (right) 2D Interactionbox [17]

InteractionBox simplifies the mapping of every point of finger’s tip position by normalizing the range of
captured hands from left to right or top to bottom to values between 0 to 1, relatively to the application screen. If wapp

and happ are the width and height, respectively, of the 2D field in the application screen, InteractionBox provides the
normalized position of the final stroke relative to the application’s coordinate (xapp, yapp), which is given by:

xapp = NP (xpos)wapp and yapp = (1−NP (ypos))happ,

where NP is a normalization function in InteractionBox called normalizePoint.

Touch emulation From the positions of all strokes representing a single letter, a sequence of strokes ~S = (S1, S2, S3,
S4, . . . , Sm) is formed, where each Si = (xapp, yapp) for 1 ≤ i ≤ m, andm is the number of strokes required to draw
the letter. Strokes can be in two states: hovering and touching. Not all strokes are used; those that are in hovering state
can simply be ignored, as illustrated in Figure 5(left).
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Figure 5. Touch emulation: the difference between hovering and touching [17]

The state is determined by a normalized distance in the range of +1 to−1. First, the finger enters the hovering
state from normalized distance of +1 and the distance decreases toward 0 where the finger is near the touching surface.
When the finger penetrates the surface, the normalized distance decreases to the maximum −1, which indicates that it
is right now in the touching state. Stroke points are only recorded when the finger’s tip is in the touching state.

Image matrix creation The tracing in the previous process is related to the tile-based editor of the simulation
application. Tile-based editors are often developed in game technology, specifically to create the game environ-
ment [23, 24]. In this research, all tiles are of the same width and height, namely 12 pixels, and the tile-map is a
28×28 tile matrix.

If the tile-map is considered as a representation of an image, each tile will have an intensity value and an
index position on the tile-map. Each tile indicates a pixel image drawn by the user in the air. Therefore, in order to
select a tile that corresponds to the user’s creation, a fixed stroke point position with the hovering or touching state is
used. Figure 6 provides an illustration on how the selection of tile-based position for each stroke captured by Leap
Motion is done.

In Figure 6, mt is map-top distance, ml is map-left distance, Ts is the size of a tile, and (xt, yt) is the
selected index of a tile. The sequence of strokes ~S will be converted into an indexed (vector) sequence of strokes
~V = (V1, V2, V3, V4, . . . , Vn) with Vi = (xi, yi) for 1 ≤ i ≤ n and n is the vector size of the 28×28 image matrix,
namely 784. Each Vi has an intensity value of 0 or 1 determined by:

Vi =

{
1, if d > 0,

0, otherwise,

where d is the touch distance, which defines whether the finger is in hovering or touching state. A coordinate (xt, yt)
of each stroke point is then defined by:

xt =
xapp −ml

Ts
and yt =

yapp −mt

Ts
.
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Figure 6. Selecting an indexed tile on the tile-map

In the end, this phase basically converts an image (tile) matrix obtained by the Leap Motion into a vector with binary
elements representing the image.

Image matrix dilation Sometimes when the user writes a letter in the air by using Leap Motion too quickly, the
handwritten letter becomes unclear. To clarify the handwritten letter, dilation operation can be applied to the image
matrix. Dilation simply takes several specific neighboring points of a point and gives them an intensity value of 1, as
depicted in Figure 7.

x - 1 , y - 1t t x , y - 1t t x + 1 , y - 1t t

x - 1 , yt t x , yt t x + 1 , yt t

x , y + 1t t x + 1 , y + 1t tx - 1 , y + 1t t

1 1 1     
1 1 1
1 1 1

Figure 7. Image matrix dilation for letter “D”

3.2. Data, dataset, and data preparation

Each instance of data acquisition creates a single sample data. A single sample data is represented by a 784-
size vector, which encodes the 28×28 matrix produced in image matrix creation. The data is used for two purposes: as
an addition to dataset collection used as training or testing dataset with labeled data, and to be used in the recognition
process, where the label will be searched out based on the learning algorithm trained before.

In this research, 22,000 samples of training and 8,000 samples of testing datasets are collected from 10
respondents. The respondents are undergraduate students in Universitas Dian Nuswantoro, Semarang, Indonesia, aged
20-21 years old. Each of them produces around 3,000 handwritings with Leap Motion, captured within 1 month. The
training and testing datasets are restricted for upper-case letters from A to Z. Because the learning task is supervised,
the dataset used for the DBN is in the form of [(~V1, L1), (~V2, L2), . . . , (~Vk, Lk)]. For each letter sample, input data is
a vector representing the sequence of strokes ~Vi for 1 ≤ i ≤ k whose label is Li, and k is the number of samples in
the dataset. All elements of input vector ~Vi are of binary value.

Encoding the label Li, which has value from “A” to “Z”, such that Li ∈ {0, 1, 2, . . . , 25} cannot be included
directly into a DBN. In order to map Li as an element of a vector, one-hot encoding mechanism is used. In one-hot
encoding, label Li containing the value “A” is encoded by [1, 0, 0, . . . , 0], “B” is encoded by [0, 1, 0, . . . , 0], etc.

3.3. Learning system

This research makes use of Deep Belief Networks (DBN) in supervised fashion. DBN basically learns the
model of Fw : {~V } → {L}, which maps an input vector ~V into a labeled vector L with parameter weights w.
Figure 8(a) shows the architecture of a DBN with two hidden layers, h1 and h2. Two main processes exist on learning
this DBN model. Firstly, the process of greedy layer-by-layer training for each stacked RBM by using Contrastive
Divergence algorithm, which is called pre-training. Secondly, the process of fine-tuning the entire network using
Resilient Backpropagation or Rprop.

3.3.1. RBM initialization and construction

As described earlier, a DBN consists of stacked RBMs [13], therefore, each RBM layer first needs to be
initialized. Figure 8(b) shows a DBN constructed by two layers of RBMs. The following is the pre-training process,

Int J Elec & Comp Eng, Vol. 8, No. 6, December 2018: 4693 – 4704



Int J Elec & Comp Eng ISSN: 2088-8708 4699

RBM1

V

h1

h2

v1

Pre-training

L

y

Fine-tuning

(Rprop)

RBM 1

h1

 w1

v1

HIDDEN LAYER

VISIBLE LAYER

Input Data x

RBM 2

h2

w2

v2

HIDDEN LAYER

VISIBLE LAYER

HIDDEN LAYER

INPUT LAYER

wij

h1

Input Data x

fine-tuning

HIDDEN LAYER

wjk

h2

fine-tuning

OUTPUT LAYER yl

y

(a) (b) (c)

Figure 8. (a) A DBN model with Rprop, (b) Constructing two RBMs in a DBN (c) Fine-tuning DBN with Rprop

which uses unsupervised learning algorithm on DBN to construct the stacked RBMs:
Step 0: In the first RBM, visible layer v1 gets direct input from sample ~V .
Step 1: Train the RBM’s visible v1 and hidden h1 layers to adjust weights w1.
Step 2: After the training is completed, use the pattern activity of the first RBM’s hidden layer h1 as input to visible
layer v2 to train the second RBM.
Step 3: By copying h1 as v2 in the second RBM, train visible layer v2 and hidden layer h2 to adjust weights w2.
Note that in this process, class labels of data are not involved.

3.3.2. Training each RBM layer

Every RBM is trained by using Contrastive Divergence with one step of Gibbs sampling algorithm (or CD-1).
CD-1 follows the gradient difference function called Kullback-Leibler divergence. Here are the steps of CD-1:
Step 1: While maximum epoch is not reached, do step 2 to 7 repeatedly.
Step 2: Use data sample ~V as visible layer v.
Step 3: Update hidden layer by calculating p(hj = 1, v;w) (cf. Equation (1)), then activate stochastic binary
neurons hj on the hidden layer by taking the probability p(hj = 1, v;w).
Step 4: Reconstruct visible neurons v1i by calculating p(vi = 1, h;w) (cf. Equation (2)) using the value of stochas-
tic binary neurons calculated before as input.
Step 5: Calculate the output probability of h1j from previous reconstruction step, namely p(h1j = 1, v1;w).
Step 6: Calculate weights (cf. Equation (3)) by using the learning rate α as follows:

∆wij = α(〈vihj〉0 − 〈vihj〉1),

where 〈vihj〉0 = Edata(vihj) and 〈vihj〉1 = Emodel(vihj).
Step 7: Update the new weights by adding momentum µ and weight decay wd as follows:

wgrad = 〈vihj〉0 − 〈vihj〉1, and wij = wij(t− 1) + (µ∆wij + α(wgrad)− wdwij(t− 1)).

Learning rate is a parameter that influences the learning speed of the algorithm in reaching convergence.
Momentum is a parameter used to prevent the system from being trapped in local minima. Weight decay works by
adding “additional terms” to the normal gradient. The additional term is a derivative of a function that penalizes an
excessive weight [25].

The process of updating weights of RBM refers to the update rules of the gradient descent. In the case of
large-scale datasets, using batch gradient descent requires quite an expensive computation when it only needs one
step for the entire data training. Therefore, we use a more efficient learning mode that learns the dataset for each
predetermined batch. This mode is called mini-batch gradient descent [25].

3.3.3. Fine-tuning Rprop

Because DBN is to be used as supervised (after pre-training process is completed), which involves label
classes, weights have to be fine-tuned. Fine-tuning is conducted by training the network with Backpropagation algo-
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rithm [13, 14]. In this research, besides using fine-tuning with Backpropagation, we also perform Resilient Backprop-
agation (Rprop) algorithm as shown in Figure 8(c).

Theoretically, Rprop algorithm is more efficient in terms of learning speed compared to ordinary Backprop-
agation. The difference between Rprop and Backpropagation is located on the weight update, where Rprop makes use
of the sign that identifies the value of the last gradient update [26]. In the Rprop algorithm, we use weights and biases
obtained from pre-training process, namely wij = w1 (from input to the first hidden layer) and wjk = w2 (from the
first hidden layer to the second hidden layer). The weights and bias connection between the second hidden layer to
output layer uses random initialization in the interval (−1, 1). We initialize the maximum epoch and set the values of
∆0 = 0.0125, ∆max = 50.0, ∆min = 10−6, η+ = 1.2, and η− = 0.5.

4. RESULT AND ANALYSIS
A learning algorithm naturally minimizes the cost function in order to obtain optimal result. When the

algorithm is being trained using some training dataset, we are basically creating a model algorithm that closely reflects
the available data. Afterwards, the obtained model algorithm can then be applied to testing dataset to assess the
performance of the algorithm.

4.1. Experimental setup

All methods and algorithms in our proposed approach are implemented in C#. All experiments are conducted
using this implementation on a computer with a Core(TM) i7-2600 CPU @ 3.40GHz (8 CPUs), 3.7 GHz. Learning
is performed with a parallel computation on a logical core for each CPU. For our experiments, we perform data
acquisition that produces 30,000 samples of capital letters, partitioned into two groups: 22,000 samples as training
and 8,000 samples as testing datasets. There are about 843 samples for each letter from A to Z in training dataset,
whereas in testing dataset, each letter has about 307 samples. Every single data in the training dataset will be used as
an input for the learning algorithm.

In order to assess the performance of our proposed approach, we not only conduct experiments on DBN
with Rprop fine-tuning, but also on three other approaches for the purpose of comparison. The three approaches are
MLP with Backpropagation (Bp), MLP with Rprop, and DBN with Backpropagation. Table 1 shows the experimental
configuration we use for each of those approaches.

Table 1. Experimental configurations

Dataset Architecture Pre-training Fine-tuning

L
et

te
r

784-400-100-26 (MLP) - Bp (Ep.: 300)
784-400-100-26 (MLP) - Rprop (Ep.: 300)
784-400-100-26 (DBN) CD-1 (Ep.: 300) Bp (Ep.: 300)
784-400-100-26 (DBN) CD-1 (Ep.: 300) Rprop (Ep.: 300)

D
ig

it
(M

N
IS

T
) 400-400-100-10 (MLP) - Bp (Ep.: 500)

400-400-100-10 (MLP) - Rprop (Ep.: 500)
400-400-100-10 (DBN) CD-1 (Ep.: 300) Bp (Ep.: 500)
400-400-100-10 (DBN) CD-1 (Ep.: 300) Rprop (Ep.: 500)

Table 1 shows that the neural network architecture we use when dealing with the letter dataset is 784-400-
100-26. In this architecture, the input is a 784-sized vector, which is a flattening of the 28×28 tile-map matrix for
each letter sample. Both MLP and DBN use 400 and 100 neurons in the first and second hidden layers, respectively.
The size of the output vector is adjusted to the number of letter labels, namely 26 classes with one-hot-encoding
mechanism.

Beside using the letter dataset captured by our own data acquisition mechanism, we also make use of the
digit dataset from MNIST database [27]. The MNIST digit dataset consists of 60,000 samples in training dataset and
10,000 samples in testing dataset. Each sample in the MNIST digit dataset is formed by a grayscale image. To use
them, it is necessary first to perform preprocessing by transforming the grayscale into binary images. Afterwards,
width normalization is carried out by changing the original size of 28×28 pixels to 20×20 pixels. The 20×20 tile-
map matrix is then flattened into an input vector of size 400 as shown in the last four rows of Table 1. Similar to the
letter configuration, in this digit configuration, both MLP and DBN use 400 neurons and 100 neurons in the first and
second hidden layers, respectively. Because the digit labels range from 0 to 9, the size of the output vector is 10 with
one-hot-coding mechanism.
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Both for the letter and MNIST digit datasets, we use the same configuration on the pre-training phase of the
DBN. There are two RBM architectures in letter configuration: the first RBM is 784-400 and the second RBM is
400-100. In MNIST digit configuration, the first RBM architecture is 400-400 and the second is 400-100. There is no
pre-training phase in the MLP. Each RBM in the letter or MNIST digit configurations is trained with CD-1 algorithm.
Based on our experiments, we select the same initialization throughout, namely learning-rate = 0.5, momentum = 0.5,
and weight-decay = 0.001. The maximum epoch for each RBM is set to 300. The batch size parameter for each RBM
is set to 100, which means that if there are 22,000 training samples in the dataset, they will be processed 100 at a time.

The Backpropagation for fine-tuning on DBN or training on MLP uses learning rate = 0.05, momentum =
0.5, and batch size = 100. Unlike Backpropagation, Rprop does not need learning rate and momentum, but instead
needs constant values ∆0, ∆max, ∆min, η+, and η− (cf. Section 3.3.3.). The initial epoch for Rprop is set to 300 for
letter and 500 for MNIST digit configurations.

4.2. Testing and recognition

Table 2 shows accuracy and the computational times required in recognizing each letter (from testing dataset)
by the four different methods. Recall that there are about 307 samples for each letter in testing dataset.

Table 2. Accuracy and computational times for the letter (testing) dataset

Lab MLP-Bp MLP-Rprop DBN-Bp DBN-Rprop
Acc. t (µs) stdev Acc. t (µs) stdev Acc. t (µs) stdev Acc. t (µs) stdev

A 99.35 4,572.2 1,081.2 100 5,305.1 1,718.6 100 5,117.5 1,392.5 100 3,278.2 811.7
B 92.86 5,740.0 1,534.4 99.68 4,622.1 918.5 99.03 5,369.4 1,416.5 100 5,235.6 2,074.0
C 94.81 3,727.2 912.2 100 5,337.8 1,117.6 99.35 5,126.9 1,684.3 100 3,922.0 2,140.9
D 92.88 2,972.8 628.1 100 4,991.5 1,229.1 98.71 4,124.2 996.1 100 5,668.1 1,935.6
E 92.51 3,151.1 751.4 100 4,428.3 968.1 99.35 3,718.4 941.1 100 5,212.0 1,156.5
F 97.73 3,265.4 724.0 99.68 5,219.6 1,224.0 99.03 4,776.6 1,213.6 99.35 4,602.7 1,556.9
G 77.67 4,862.7 1,100.5 100 5,068.3 1,262.4 98.38 3,558.6 958.8 99.68 5,459.3 1,452.2
H 90.29 4,893.7 1,163.0 99.68 4,205.8 935.3 99.68 3,139.1 819.7 99.68 4,549.9 1,634.3
I 90.58 5,055.4 1,231.4 97.40 3,573.4 1,095.7 95.45 3,714.9 1,205.8 98.38 5,856.4 3,309.5
J 96.74 5,439.8 1,390.0 100 4,720.8 1,233.2 100 5,064.3 1,357.8 100 4,439.5 1,304.9
K 94.48 4,619.5 1,006.0 99.03 4,766.1 1,270.2 98.70 5,416.3 1,433.2 100 5,325.4 1,096.8
L 99.68 3,705.6 913.6 100 4,446.1 1,392.5 100 5,260.5 1,268.8 100 5,545.3 1,287.1
M 91.53 3,833.7 907.5 99.67 5,013.1 1,151.6 99.02 4,462.5 1,136.8 99.67 3,833.9 896.3
N 98.38 4,287.0 1,097.0 99.35 4,819.3 1,019.2 99.35 3,699.3 914.0 99.35 4,909.1 863.1
O 95.45 3,338.1 816.7 99.03 5,237.3 1,000.0 98.38 4,846.7 1,167.2 99.35 4,849.6 1,563.8
P 95.44 5,606.4 1,390.2 99.67 5,486.6 1,502.8 99.67 3,633.0 880.7 100 5,707.3 2,559.3
Q 91.53 4,486.3 903.3 99.67 5,036.0 1,219.2 99.35 3,387.2 788.2 99.67 4,680.0 1,310.3
R 91.86 4,513.4 1,194.6 99.67 5,515.9 1,335.5 95.44 5,289.7 1,185.9 99.67 4,567.4 1,063.3
S 93.16 4,300.1 1,176.0 99.35 3,967.6 890.0 99.35 5,619.3 1,385.8 100 3,560.6 970.2
T 93.18 5,536.6 1,321.9 100 4,180.4 1,104.3 99.03 4,618.1 1,199.2 100 5,156.8 1,118.2
U 94.16 4,861.5 1,147.3 100 3,639.5 864.8 100 5,545.0 1,445.5 100 4,873.8 1,197.9
V 99.03 4,755.6 1,467.6 100 5,169.7 1,482.1 100 4,198.5 1,255.0 100 3,876.2 1,317.2
W 95.44 4,117.0 1,094.3 99.35 4,782.4 1,781.9 100 4,723.2 1,347.3 100 4,161.0 773.4
X 95.11 4,788.1 1,129.6 99.35 4,025.6 1,605.4 100 3,967.8 893.0 100 4,158.1 1,044.3
Y 98.05 3,699.5 986.6 99.35 5,022.5 1,330.0 99.67 3,239.5 777.4 99.67 5,238.1 1,067.9
Z 77.20 4,996.6 1,105.0 99.35 4,571.7 1,473.3 98.37 4,002.9 973.7 98.05 5,230.8 1,210.8

All 93.43 4,427.9 1,083.6 99.59 4,736.6 1,235.6 99.05 4,446.9 1,155.3 99.71 4,765.3 1,412.2

The first four columns of the first row of Table 2 indicate that out of 307 samples of the letter A, 99.35%
(Acc.) of them are recognized and the computational time spent until the point when the letters are successfully or
unsuccessfully recognized is on average 4,572.2 microseconds (t), with a standard deviation of 1,081.2 (stdev). The
last row of the table provides the overall statistics of accuracy and computational times for the whole letter training
dataset produced by the four different methods. Table 3 shows similar results for the recognition of the MNIST digit
testing dataset.
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Table 3. Accuracy and computational times for the MNIST digit (testing) dataset

Lab MLP-Bp MLP-Rprop DBN-Bp DBN-Rprop
Acc. t (µs) stdev Acc. t (µs) stdev Acc. t (µs) stdev Acc. t (µs) stdev

1 97.62 3,012.4 575.6 98.15 3,062.5 688.6 97.71 2,747.4 595.3 98.59 2,844.7 1019.6
2 86.92 3,028.2 890.5 94.67 2,268.8 562.4 88.76 2,703.7 482.7 95.83 3,017.7 721.4
3 75.54 2,294.3 673.0 95.84 2,783.3 354.4 91.98 2,623.2 802.8 96.14 2,425.2 589.1
4 88.70 3,059.5 699.7 95.52 2,400.4 621.4 88.90 2,616.5 307.7 96.74 2,525.1 819.4
5 90.92 3,041.4 763.8 96.08 2,795.0 377.6 85.76 2,720.6 295.3 95.52 2,452.3 742.4
6 89.56 3,211.7 795.0 96.45 2,774.5 331.8 95.51 2,656.7 834.6 95.93 2,408.7 556.1
7 88.62 2,811.0 736.3 94.94 2,732.5 661.6 90.66 2,759.4 589.3 95.04 3,069.1 777.3
8 85.01 2,920.0 710.8 94.25 2,002.9 506.3 88.19 2,327.9 594.7 95.69 2,429.5 567.5
9 88.01 1,740.0 556.3 93.56 2,835.8 629.6 87.22 2,804.7 790.1 95.44 3,017.0 665.7
0 95.61 3,031.5 561.9 98.06 2,404.7 641.0 95.41 2,773.7 819.0 98.06 2,805.1 379.9

All 88.65 2,815.0 696.3 95.75 2,606.0 537.5 91.01 2,673.4 611.1 96.30 2,699.4 683.9

Table 4 summarizes the results for recognizing both letter and MNIST digit testing datasets. The best accu-
racy (column Acc.) for both testing datasets is DBN with Rprop fine-tuning with accuracy of 99.71% and 96.30%,
respectively. This is better than the accuracy of MLP with Rprop fine-tuning, which achieves 99.59% and 95.75%,
respectively. These two approaches evidently are much more superior than both DBN and MLP with Backpropagation
training. It seems that fine-tuning with Rprop contributes significantly to the accuracy of both MLP and DBN.

Table 4. Summary of accuracy and computational times

Algorithm Acc. Epoch Training Recognition
(Dataset) t (hours) t (µs) stdev

MLP-Bp (Letter) 93.43% 300 > 5 4,427.9 1,083.6
MLP-Rprop (Letter) 99.59% 35 > 1 4,736.6 1,235.6
DBN-Bp (Letter) 99.05% 300 > 10 4,446.9 1,155.3
DBN-Rprop (Letter) 99.71% 35 > 6 4,765.3 1,412.2
MLP-Bp (MNIST) 88.65% 500 > 12 2,815.0 696.3
MLP-Rporp (MNIST) 95.75% 70 > 2 2,606.0 537.5
DBN-Bp (MNIST) 91.01% 500 > 24 2,673.4 611.1
DBN-Rprop (MNIST) 96.30% 70 > 12 2,699.4 683.9

The last two columns of Table 4 (t and stdev) show that the recognition times of the four approaches are
comparable. It seems that using Rprop results in longer recognition times both for MLP and DBN. Out of the four
approaches, the recognition time of DBN fine-tuned with Rprop is the longest, namely on average 4,765.3 microsec-
onds with a standard deviation of 1,412.2 for the letter dataset. For the MNIST digit dataset, the recognition times of
the four approaches are much more similar to each other, and are a bit more than a half of those for the letter dataset.
This is because the resulting neural network for the digit dataset has smaller input as well as output vectors, and thus
is quicker to process. The time needed to recognize a letter or a digit is below ten milliseconds, which is excellent
even for online gaming experience [28].

4.3. Training and fine-tuning

Prior to recognition, the neural networks, both DBN and MLP, must first be trained or fine-tuned using
training dataset. The fourth column of Table 4 provides the computational times spent by the four different methods to
complete training and pre-training (if any). Because MLP does not have pre-training phase, its training time is much
shorter than DBN. The time spent by DBN to complete pre-training is around 5 hours for the letter dataset and 10
hours for the MNIST digit dataset. It is evident that this pre-training phase takes most of the training computational
time of DBN and Rprop is really helpful in reducing the training (but outside of pre-training) time.

In Figure 9 and Figure 10, we show how the accuracy of each method changes as the number of epochs
increases in the training process. In order to produce these figures, right after each epoch in the training process (with
training datasets), each method is paused, and the resulting neural network is then used to recognize letters or digits in
the testing datasets. We observe these changes until 300 and 500 epochs for the letter and digit datasets, respectively.
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Figure 9. Accuracy vs. epoch for the letter (testing) dataset
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Figure 10. Accuracy vs. epoch for the MNIST digit (testing) dataset

In Figure 9(right), both MLP and DBN fine-tuned with Rprop require 35 epochs (cf. Table 4 column 3) to
reach the highest accuracy (cf. Table 4 column 2) in the letter dataset. Out of 8,000 letter samples in the testing
dataset, DBN fine-tuned with Rprop misrecognizes only 23 samples at epoch 35. In Figure 10(right), MLP and DBN
fine-tuned with Rprop require 70 epochs to reach the best accuracy in the MNIST digit dataset. From 10,000-digit
samples, DBN with Rprop misrecognizes 367 samples at epoch 70.

5. CONCLUSION
We have proposed an approach to capture and recognize which letter has been drawn in the air by the user

with Leap Motion controller; an approach based on DBN fine-tuned with Rprop. We have also conducted experiments
to find out the performance of our proposed approach. Our experiments indicated that, compared to MLP or DBN
with Backpropagation, DBN fine-tuned with Rprop achieves the best accuracy of 99.71% for the letter dataset and of
96.30% for the digit dataset. This accuracy can be reached in only 35 and 70 epochs, respectively. The recognition time
for letter is in the order of 5,000 microseconds, which is responsive enough even for online gaming experience. Rprop
has been shown to be significant in making fine-tuning process faster and in producing a more accurate recognition.

We have selected neural network architectures 784-400-100-26 and 400-400-100-10 because they are still
computationally feasible in a multi-core (typical gaming) computer and still manage to achieve an excellent accuracy.
We are now working on lowering the computational requirements while still maintaining the overall accuracy.
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