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 Clustering is one of the most researched areas of data mining applications in 

the contemporary literature. The need for efficient clustering is observed 

across wide sectors including consumer segmentation, categorization, shared 

filtering, document management, and indexing. The research of clustering 

task is to be performed prior to its adaptation in the text environment. 

Conventional approaches typically emphasized on the quantitative 

information where the selected features are numbers. Efforts also have been 

put forward for achieving efficient clustering in the context of categorical 

information where the selected features can assume nominal values. This 

manuscript presents an in-depth analysis of challenges of clustering in the 

text environment. Further, this paper also details prominent models proposed 

for clustering along with the pros and cons of each model. In addition, it also 

focuses on various latest developments in the clustering task in the social 

network and associated environments. 
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1. INTRODUCTION 

Clustering of documents is an essential process and efficient algorithms need to be employed to 

ensure effective document clustering. The process of clustering includes categorization of given documents 

into individual groups. These clusters should be meaningful and provide right description of the documents. 

However, for an efficient clustering, researchers often face the challenge of complexity in terms of large 

number of words. When the clustering is done in the form of matrices, each and every document is 

considered as an instance and all the terms associated will be features. In general, the volume of features is 

almost equal to a dictionary, posing strong challenges for algorithm developers. The clustering algorithm 

efficiency largely fluctuates with increasing number of words. Accordingly, researchers search for non-

context related, redundant words and stop words and attempt to ignore or remove such words to boost 

efficiency of algorithm. 

Document clustering contains particular methods and algorithms built on unsupervised document 

management [1]. In clustering the assets, memberships, and number of the classes not recognized in advance. 

Documents can group together built on an exact type, such as legal, economic, and medical. Machine 

learning algorithms have become prevalent in numerous domains, impacting a wide diversity of applications. 

In the past periods, the machine-learning community has elaborated to decrease the labeling work done by 

the human for supervised machine learning procedures or to develop unsupervised learning with only 

smallest supervision. Nevertheless, there are still several cases that neither semi-supervised learning nor 

transfer learning can help. Providentially, with the propagation of general-determination knowledge bases 
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(or knowledge graphs), e.g., WikiTaxonomy Wikipedia, Freebase, Probase, TextRunner, DBpedia, NELL 

and Knowledge Vault, we have profusion of available world knowledge. We call these knowledge bases 

world knowledge. The concept of representing the given document by the group of words included in the 

document is underlying many text mining studies. Often referred to as bag-of-words, the concept requires 

accurate description of the word position in the given document. Accordingly, researchers opt for vector 

representation of the word position and assign an „importance‟ value to each word. The vector space model is 

versatile because vector representation can use as a feature vector for a large number of clustering 

algorithms. The vector-based document models do not have the information about the order by which the 

words occur in a document. In previous articles, researchers developed a much-advanced document model 

termed „STD model‟. The approach is based on storing complete word sequence data. Overlapping between 

strings in the combined suffix tree is used to represent the document similarity. A novel model relying on 

linear convex mix of documents is studied by researchers in. To enable feature basis as this mixture, 

convex-NMF approach is proposed. The model also attained similar factorization as attained by CF 

factorization approach. 

 

 

2. TAXONOMY 

2.1. Sub section 1 feature extraction 

Feature Extraction (FE) process is categorized into three types including Syntactical, Semantic and 

Morphological Analysis. Of these, MA is primarily engaged in dealing with each and every word (individual 

words) of the given text document. Predominantly, it comprises tokenization, stop word elimination and 

stemming [2]. In tokenization process, the text document is often considered as word strings which are word 

sequences and divides them by eliminating punctuations [3]. The researchers in [4] attempted to understand 

the exact logic represented by a particular sentence. That is, a sentence should have proper grammatical 

connectives. SA caters understanding of the grammatical arrangement of a certain language, often referred to 

as “syntax”. Further, POS Tagging process allows adding of contextual grammar knowledge for a specific 

word in the given sentence. By identifying the open word class, linguistic analysis can be performed 

easily [5]. Numerous approaches were proposed in scientific literature aiming to implement POS Tagging 

process depending on the dictionaries [6].  

 

2.1.1. Feature selection 

A feature refers to an individual measurable property of a process, which is being observed. 

Through the use of a set of features, any machine learning algorithm is capable of performing classification. 

Over the past years in the applications of pattern recognition or machine learning, the domain of features has 

generally extended from tens to hundreds of features or variables which are employed in those applications. 

Numerous techniques have been invented so as to effectively address the problem of reducing irrelevant, as 

well as redundant variables that are a burden on challenging tasks [7]. It is imperative that Feature Selection 

(variable elimination) is highly beneficial in understanding data, minimizing computation requirement, 

minimizing the effect of curse of dimensionality besides enhancing the predictor performance. 

 

2.1.2. Filter methods 

Filter techniques use variable ranking approaches as the main standards for variable selection 

through ordering. Ranking techniques are employed because of their simplicity. At the same time, good 

success is often reported for practical applications. A highly appropriate ranking principle is employed in 

scoring the variables. Again, a threshold is often employed for the removal of variables below the threshold. 

Ranking techniques are filter methods because they are used prior to classification for filtering out the 

variables, which are less relevant. A simple property of a unique feature is to have highly beneficial 

information regarding the diverse classes in the given data.  

 

2.1.3.  Wrapper methods 

Wrapper techniques generally employ the predictor as a black box and the predictor presentation as 

objective function for the evaluation of the variable subset. Because the evaluation of 2N subsets has become 

an NP-hard problem, suboptimal subsets can be got through the use of search algorithms, which find a subset 

heuristically. Numerous search algorithms may be adopted for finding a subset of variables, which 

maximizes the objective function that is the classification presentation [8]. We generally categorize the 

Wrapper techniques into Sequential Selection Algorithms, as well as Heuristic Search Algorithms. Sequential 

selection algorithms commence with an empty set (full set). It thereafter adds features (remove features) up 

to the point of achievement of maximum objective function.  
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2.1.4. Embedded methods 

The embedded methods aim to perform feature selection throughout the training procedure and are 

essential and distinct to the various machine learning algorithms implemented. Embedded techniques [9] 

want to minimize the computation time which is taken up in the reclassification of diverse subsets that is 

done in wrapper techniques. The major approach entails the incorporation of the feature selection as an 

element of the process of training.  

 

2.1.5. Hybrid approaches 

The approach combines filter, as well as the wrapper-based techniques. Filter approach selects a 

cluster of candidate features from high dimensional and efficient original feature set. Then, by utilizing a 

wrapper technique, this candidate feature set will be refined. It generally exploits the various kinds of 

advantages which are brought about by the use of the two methods. Feature selection [5] generally plays huge 

role in the detection of the anomalies of networks. In the anomaly based detection systems, by monitoring the 

performance of the regular data thoroughly in contrast with the ones which are irregular, inconsistency will 

be identified within the network. Thus, this kind of detection system will play a vital role in recognizing 

various intrusions depending on the distinct characteristics of network traffic.  

 

2.2. Similarity measures 

Prior to clustering, there is the need for the determination of a similarity or a distance measure. 

Generally, the measure reflects the proximity of the targeted objects or the degree of vector separation. 

It should relate different characteristics used to separate the clusters. In several circumstances, these 

characteristics vary in accordance with data and can also depend on the problem context. However, as each 

clustering problem differs from other, no such measure is existing to satisfy every kind of clustering problem. 

Further, selecting an appropriate similarity measure will be a key driver in Cluster Analysis, predominantly 

for specified clustering models [10]. Thus, realizing the significance and efficiency of various measures will 

support the selection of the most suitable one. This value in-turn relies on two distinct factors such as the 

properties of both objects and on the measurement metrics. The five measures have been discussed below. 

The different measure brings about different final partition. At the same time, it also imposes diverse 

requirements for similar clustering algorithm. 

 

2.2.1. Euclidean distance 

Euclidean distance refers to a standard metric used for geometrical problems. At the same time, 

it can be defined as the ordinary distance between two points. Measuring it can easily be done through the 

use of a ruler in two- or in three-dimensional space. In addition, it is also observed that Euclidean distance 

will also be selected in clustering problems, which comprises clustering text.  

It is satisfying all the four main conditions which have been given above and as a result, it is a true 

metric. At the same time, it is the default distance measure that is used with k-means algorithm. Resolving 

the distance measure between text documents 
xd  and yd  will be denoted by their respective term vectors 

called 
xt and 

yt  . Hence, the Euclidean metric of these two documents could be defined as: 
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In which the term set is
1{ ,.... }nT t t . As discussed in above section, tfidf  value can be considered as term 

weights, i.e.,
, ( , )t x xw tfidf d t . 

 

2.2.2. Cosine similarity 

As pointed above, the text documents are indicated as term vectors. In this scenario, the similarity 

measure between 2 text documents implies the association in between the selected vectors. In general, this is 

evaluated as the Cosine functions between given term vectors and is called Cosine Similarity. It is worth 

pointing out that cosine similarity forms part of the most popular measure of similarity that is used in order to 

text documents. 

The Cosine Similarity (CS) measure for 
xt  document and 

yt document is depicted: 
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Where 
xt  and 

yt are called multidimensional vectors of the Vector-term set 
1{ ,.... }nT t t . Each dimension 

contains its own weight and corresponds to a term set. The value of these dimensions is always more than 

zero. Hence, the CS holds positive values and will always be bound between [0, 1]. 

A noteworthy property of this kind of similarity is that it is independent of document length. For 

instance, by merging two copies of a particular text document d  to generate a pseudo-document 'd , the CS 

value computed between d  and 'd  will be equal to 1. This refers that, matching should be carried out 

among two documents. When fed with another document m , d and 'd would likely to result in same 

similarity to m  and is    ', ,d m md
sim t t sim t t . On the other hand, it can also be expressed as, for text 

documents with similar content or words, diverse totals will be managed identically. However, this is unable 

to satisfy the metric‟s second condition because with the consolidation of two similar copies, a completely 

dissimilar object will be obtained from original text document. In addition, it is essential to note that, if the 

vectors are normalized to a fixed unit length, this case reflects similar notations for both d and d0.  

 

2.2.3.  Jaccard coefficient 

Jaccard Coefficient or Tanimoto Coefficient is also proposed to calculate similarity. According to this 

computation, similarity is measured as the “intersection to combined specified objects ratio”. For the given 

text document, this coefficient evaluates the total weight of the mutual terms existing in both documents with 

the total weight of all terms existing in at least one of the two documents but unique terms. Based on this 

computation, matching among the documents will be carried out. The general computation formula has been 

depicted: 
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Jaccard coefficient is a similarity measure and it bounds between 0 and 1. The measure will be 1 if 

both the documents are similar and 0 when they are dissimilar. In general, coefficient value of 1 represents 

that both given objects are same, whereas, coefficient value of 0 denotes that the specified objects are 

extremely different. In addition, dissimilarity should also be observed in this similarity measure- the Jaccard 

distance measure [11]. The dissimilarity among the given objects will be computed using distance metrics 

and is 1H HD SIM  . HD  can also be used as an alternative in following experiments. 

 

2.3. All about clustering 

Data mining refers to the process which mainly entails the extraction of implicit, previously 

unknown as well as potentially beneficial information from data. It is imperative that document clustering, 

which is a subgroup of data clustering, refers to a data mining approach that includes various concepts from 

information retrieval, natural language processing, as well as machine learning fields [12]. The high-quality 

and efficient document clustering methods play a vital role in supporting the clients in terms of effective 

navigation, summarizing and organizing diversified set of information effectively. A specified document will 

always have a probability to occur in multiple clusters [13] in the overlapping partition. Further, in disjoint 

partition, the text document will appear in only one cluster. 

As points out, document clustering can be grouped into two main subcategories, which includes: 

Soft (overlapping) and Hard Clustering. Overlapping Clustering is clustered into Hierarchical clustering, 

Partitioning and Itemset-based Clustering.  

a. Disjoint (Hard): It will compute disjoint assignments of a specified text document towards a cluster. 

That is, as mentioned above, hard clustering will always assign a document to single cluster, which then 

caters a set of different clusters. 

b. Overlapping (Soft Clustering): This type of clustering process soft assignments will be carried out. 

That is, every text document is can be presented in distinct clusters. Hence, soft clustering produces 

multiple overlapping clusters.  

c. Partitioning: It is primarily engaged in assigning documents into a specific volume of Non-Empty 

Clusters. In particular, k-means along with its alternatives are highly repudiated partitioning techniques 

as per [1]. 

d. Hierarchical: It involves developing dendrograms, where clusters are organized in hierarchical tree 

patterns. In the tree, the Leaf node represents the sub-set of given document collection. Both HAC 

clustering and UPGMA clustering are grouped in the hierarchical structure [14]. 
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2.3.1. Document clustering 

Document Clustering plays a vital role in clustering the given documents into numerous topics 

without having any information of the structure of the category available in a given document collection. 

Each and every Semantic Information is obtained from within the given documents and is Un-supervised. 

On the other side, document classification is concerned with assigning the text documents to pre-defined 

categories, where labeled instances for learning from the clustering for classification is called supervised 

learning in which a given classifier is learned from the labeled examples. It is then used for predicting classes 

of unseen documents. Document clustering is employed in numerous diverse contexts, like exploring the 

structure in a given document collection for the discovery of knowledge [8], dimensionality contraction for 

all other tasks such as classification [15], grouping search outcomes to ranked list [9] for executing an 

alternative presentation and also employed for pseudo-relevance feedback. 

 

2.4. Cluster evaluation measures 

Evaluation of document clustering is a difficult task. Built-in quality measures like distortion or log 

possibilities imply how a certain algorithm optimizes a given representation. Meanwhile, internal measures 

could not be compared among different representations. In addition, it‟s a noteworthy point that external 

views of truth are human-made. They continue to suffer from the major shift for humans to understand 

different document topics in a distinct manner. Predominantly, whether the certain document belongs to that 

particular topic or not might be subjective. However, as clustering of a document has feasibility to execute in 

a number of ways, above mentioned scenario could even complicate the conditions.  

The major advantage of this measure in compared to evaluation through text classification is that 

there is no need of such conditions which are depicted above. This measure does not include either a test bed 

platform (comprises labeled documents) or consistency factor amid clusters and targeted categories. On the 

other hand, it approximately evaluates the outcome of text clustering [13], only when the labeled documents 

are utilized as test bed. Text classification parameters like accuracy, re-call, F1 and precision measures were 

used for estimating the presentation of text clustering in [14], [16]. Based on properly classified text 

documents and each and every document present in the test bed, the rate of accuracy will be computed. 

Further, the measure is the simplest measuring parameter in associated classification problems. This measure 

is directly applicable to the Multi-Classification Problems. 

 However, significant measures like precision, re-call and F1 can be directly applied to the binary 

classification tasks. Hence, to evaluate the classification performance by making the use of those measures, 

the respective problem is to be split into binary classification problems. Each and every class corresponds to 

a specific binary classification task in Multi-Classification task. Of the classes, positive ones represent 

“Belonging to the class” and the Non-Positive ones represent “Not-Belonging to the class”. The evolution 

measure majorly concentrates on the positive class.  

In the text categorization, re-call measure will be obtained by the ratio of the specific true positive 

document to all documents that are true. Precision measure referred as the rate of classified true positive 

documents to every classified positive document includes both true positives and false positives. Whereas, F1 

is used to determine a value using both Re-call R and Precision P measures by using (4). 

 

2
1

R P
F measure

R P

 
 


 (4) 

 

Various metrics like F1, accuracy, detection costs are employed in text categorization. These are 

primarily employed to calculate the performance metric in text clustering. When these measures are used 

there always exist two conditions. Each and every given document inside the specified test bed should 

contain target categories and must be labeled. It is somewhat critical in real-time in terms of getting labeled 

document when compared to the document which is unlabeled. Meanwhile, the process which is engaged in 

labeling documents follows in practice with clustering documents. In addition, it is also significant to note 

that, vast time will be consumed by the process which is engaged in evaluating the approaches to text 

clustering when preparation of labeled documents is ongoing. Secondly, the cluster number must be constant 

with target categories number. For example, when a sequence of documents having same target category will 

be partitioned into two clusters, then the evolution measures of text characterization will not be applicable in 

such case. 
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3. REVIEW OF LITERATURE 

3.1.  Feature extraction strategies 

These techniques are introduced based on keywords. These keywords are employed to depict 

various emotions which exist inside the text [17]. In contrast, the main disadvantage of this method is that it 

relies on presence of various affective words in the text. To overcome such drawbacks and to achieve 

accurate extractions and outcomes, the authors proposed a novel model called Semantic Networks in [15]. 

These networks represent events, relationships and various concepts among them. Unlike feature extraction, 

these semantic networks are independent on keywords to depict the human emotions in the text. Hence, [18] 

made valuable conclusions about the process of achieving enhanced performance in detecting the human 

emotions through semantic networks. In these networks, human emotions will be identified through 

contextual information. In particular, and presented a range of explanations of this approach. However, they 

failed to explain the respective outcomes of the experiments. Moreover, there is a necessity of huge databases 

like SentiWordNet and WordNet-Affect to improve the accuracy of results. 

 

3.2.  Feature selection strategies 

Multiple feature identification programs, are implemented for classification. However, all projected 

algorithms have common goal, i.e., searching for efficient features set which caters results in terms of best 

classifications. In general, various algorithms involved in feature selection employ distinct evaluation metrics 

like information gain and correlation. In addition, they often use population-based heuristics such as ant 

colony optimization, simulated annealing, particle-swarm optimization, and genetic algorithms. According to 

by using feature similarity, Un-Supervised Feature Sub-Set Selection Technique were proposed [19]. 

This approach is used to avoid the duplications among the selected features. This approach uses new metrics 

called MIC Index for calculating the similarity measure between two different variables for selecting 

a feature. In Fuzzy rough set theory is employed for the selection of feature by considering the natural 

properties of both fuzzy logic t-norms and t-conorms. Additionally, in MIFS-U algorithm is introduced to 

handle restrictions linked with MIFS. The primary objective of this approach is to get improved similar 

information among input characteristics and output classes of the MIFS. Similarly, [12] also proposed feature 

selection technique called Max-Relevance and Min-Redundancy (MRMR) based on mutual information 

concept. In general, this technique minimizes the redundancy between the features as well as maximizes the 

dependency between a class label and sub-set of features.  

 

3.3.  Clustering techniques 

Clustering Algorithms are characterized based on two major properties. The first property primarily 

deals with whether certain membership of cluster is distinct. The hard or disjoint clustering algorithms 

allocate each and every document to justify a single cluster. The other side, the soft or overlapping clustering 

algorithms allocate dissimilar documents to single or multiple clusters in discrete membership degree. On the 

other hand, the second property controls the clusters structure. In general, the structure may be observed in 

either flat or hierarchical. On flat clustering technique front, it generates rigid clusters, without any 

correlation between them. On the contrary, the hierarchical algorithms are engaged in generating clusters in a 

tree structure. It follows bottom-up approach, as it involves executing the procedure from its bottom most 

cluster (at the root) of the tree structure. 

 

3.3.1.  Partitioning and hierarchical document clustering 

The majority of traditional clustering algorithms are categorized into two main groups including 

partitioning algorithms and hierarchical algorithms [18]. The hierarchical clustering algorithms are primarily 

involved in decomposing a specified dataset hierarchically. Hence, it forms a dendrogram tree where given 

dataset is split repeatedly into small sub-sets. Thus, the documents will be represented in Multi-Level 

structure as depicted. These algorithms are often grouped into either divisive algorithms or agglomerative 

algorithms, On the other hand, in agglomerative procedure, each document is allocated to a separate cluster. 

Later, the procedure involves merging similar clusters repeatedly until termination criterion is observed. 

While on the divisive algorithms front, it increases the number of clusters at each iterative stage by splitting 

the whole document into a specified quantity of clusters. In addition, another clustering algorithm based on 

Partitioning is one of the most studied categories [17]. It upholds extreme realistic techniques to cluster big 

datasets as represented, unlike dendrogram tree structure, these techniques cluster data in a single level. 

In general, these approaches are engaged in dividing a given document collection into distinct clusters, which 

in-turn increases the pre-defined objective value. By containing efficient clustering characteristics in terms of 

quality and accuracy, these hierarchical clustering algorithms do not offer re-allocation of documents. This is 

a major drawback of this approach and hence there can be chances of poor performance measures in the early 
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stages of clustering. Accordingly, in various data objects, the time taken to execute a hierarchical algorithm is 

Quadratic. 

In the recent past, it was demonstrated that the partition techniques are best suitable for applications 

which comprise big datasets due to its Minimized Computational Complexity, Time complexity is 

comparatively less as compared to hierarchical techniques and is linear. Thus, partitioning techniques are 

highly adaptable for big scale clustering. In addition, to lessen the limitations brought about by the 

conventional partition clustering techniques discussed earlier, multiple models are introduced in the recent 

few years. These methods focused on implementing optimization techniques over a pre-determined clustering 

through objective function. 

 

3.3.2.  Machine learning based document clustering 

Numerous knowledge bases like Cyc project, Freebase, KnowItAll, Wikipedia, TextRunner, 

WikiTaxonomy, Probase, DBpedia, YAGO, NELL [8] as well as Knowledge Vault generally play a highly 

vital role in the process of document clustering with regards to context, concept and semantic relations. So, as 

to notice all of these relations between the documents, a prior knowledge is vital. This will point out the need 

of highly sophisticated learning techniques to notify the relations. On the contrary, the aforesaid knowledge 

bases have the ability of training the learning approaches so as to cluster the given documents based on a 

single or additional context, concept as well as semantic relations. The argument illustrates the huge role of 

machine learning when it comes to Document Clustering.Usage of multiple existing knowledge bases is 

primarily aimed at enhancing document‟s features of multi-set of words representation. For example, using 

WordNet, a linguistic knowledge base, resolves synonyms while introducing various WordNet concepts. 

Utilization of such innovative knowledge base concepts improves the quality of text document as depicted 

in [4]. By mapping the given content to the semantic space which is offered through Wikipedia pages, it has 

been proved as an efficient knowledge base and is best suitable for Short Text Classification and Document 

Clustering [9], [20]. In addition, in [16], other two knowledge bases including Probase and Taxonomy are 

introduced. These knowledge bases are majorly involved in enhancing the ad keywords features in order to 

build a novel taxonomy of keywords which are domain dependent. Thus, it might be significant to consider 

the knowledge as “Supervision” to direct the other Machine Learning Techniques and distinct tasks. Distant 

Supervision learning scheme employs information entities and respective relations from Freebase knowledge 

bases as supervision to execute entity and relation extraction [15], [13] and [14]. In addition, it also employs 

knowledge supervision for extracting more entities and relationships from the novel content or also used for 

generating an efficient installation of both entities and relations. Thus, exploitation of direct supervision is 

restricted to knowledge entities and relations among them.  

 

 

4. CONCLUSION 

This research paper discusses a detailed survey of different clustering approaches for data mining in 

the text environment. An efficient text clustering approach must choose optimal attributes along with the 

right algorithm for execution. Of various types of algorithms found in literature, distance-based approaches 

are observed to be both efficient and widely implemented across different domains. Over the past few years, 

researchers working on text clustering focused on two types of applications. 

a. Dynamic: Huge voluminous information generated in dynamic environments including social networking 

platforms or online chat resulted in a strong requirement for streaming information. These applications 

should be adaptable to scenarios where the text is often not clear like the social networking platforms. 

b. Heterogeneous: In these applications, the text is often present as links and different multimedia formats. 

For instance, in platforms like Flickr, text clustering should be adapted. Accordingly, it is important to 

efficiently implement text mining approaches in this environment. 

This manuscript observes that the area of clustering in text mining applications is wide and is 

challenging to completely present in one paper. Certain approaches like committee-driven clustering could 

not be clearly categorized into any groups as they incorporate multiple clustering techniques to generate the 

final outcome. The intention of this work is to put forward a complete brief of prominent approaches 

proposed for text mining, to serve as an initial step for other proposed research contributions. 
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