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 The paper aims at designing of two stage cascaded ultra-wideband (UWB) 
low noise amplifier (LNA) by using negative image amplifier technique. The 
objective of this article is to show the performance improvement using 
negative image amplifier technique and realization of negative valued 
lumped elements into microstrip line geometry. The innovative technique to 
realize the negative lumped elements are carried out by using Richard’s 
Transformation and transmission line calculation. The AWR microwave 
office tool is used to obtain characteristics of UWB LNA design with hybrid 
microwave integrated circuit (HMIC) technology. The 2-stage cascaded LNA 
design using negative image amplifier technique achieves average gain of 
23dB gain and low noise figure of less than 2dB with return loss less than -
8dB for UWB 3-10GHz. The Proper bias circuit is extracted using DC 
characteristics of transistor at biasing point 2V, 20mA and discussed in detail 
with LNA layout. The negative image matching technique is applied for both 
input and output matching network. This work will be useful for all low 
power UWB wireless receiver applications. 
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1. INTRODUCTION 

In today’s world LNA design innovation is developing rapidly in the field of electronics and 
telecommunication services. Since, the interest for fast advancing in multimedia communication has moved 
towards research a greater demand in the field of RF and Microwave engineering. In most of the LNA design 
techniques pHEMT and HEMT transistors provides promising results at microwave frequencies. A LNA 
plays the vital role in overall performance of RF receiver. It is the first component in any RF receiver. The 
general topology of LNA consists of three stages: input matching network, the amplifier itself and output 
matching network [1-6].  

Recently InGaAs ba sed pHEMT have exhibited better linearity, high survivability, less noisy  and 
better performance than GaAs FET’s [7], [8].  InGaAs based pHEMTs offering less microwave noise figure 
with a very less Power Consumption and high transducer gain at low voltage and current. The Two critical 
factors in this regard are high gain and minimize gate current. Since gate current is a component contributing 
to shot noise, decreased leakage gate current improves the noise performance of the HEMTs [9]. Several 
amplifier architectures are considered which includes distributed amplifier, lumped feedback amplifier, 
cascode and cascade topology [10-15]. For UWB, the distributed amplifier requires more number of 
transistors than the lumped feedback which consume more power. The distributed amplifier likewise 
languishes low efficiency when designed for high gain and normally higher noise performance. In this paper 
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two stage cascaded UWB LNA is designed without compromising noise figure, gain and return loss. By 
using the ideal negative lumped elements for input and output matching of LNA design has achieved gain 
more than 21dB, Noise Figure (NF) less than 2dB and return losses less than -10dB throughout band of 3-
10GHz. The efficient technique is proposed in this article to convert negative valued lumped elements in to 
practically realizable microstrip line structure.   

This paper is organised into several sections. Section 2 discusses design, simulation and analysis of 
UWB LNA. The section 3 describes significant measurements and simulated results of the presented LNA. 
The section 4 emphasizes novelty and innovation of the article and section 5 comprises the conclusive remark 
of  the designed work. 
 
 
2. UWB LNA DESIGN SIMULATION AND ANALYSIS 

This section explains the design of the UWB LNA design with the necessary steps involved in the 
design and simulation process. Moreover, it consists of following subsections as Complete Schematic, 
Layout, biasing topology, input and output negative value element matching circuit with realisation. Finally, 
it presents results which includes stability, noise figure, gain, input and output return. 

Figure 1 shows the complete architecture of the design UWB LNA. The Avago technologies ATF-
36163 is a low-noise Psuedomorphic High Electron Mobility Transistor (PHEMT) has low noise-resistance, 
which reduces the sensitivity of noise performance. In Figure 1 netlist (ID=S1 and ID=S2) are s-parameters 
based model of ATF-36163 which is used for small signal analysis of the complete LNA design. Figure 1 
includes many sub circuits namely “Input Dis Block”, “Output dis network”, “Drain Bias” and “Gate Bias” 
which will be discussed in further subsections with schematic and layout.  

 
 

 
 

Figure 1. Circuit schematics of two stage UWB LNA 
 
 

The sources are connected to ground through microstrip lines because the source degeneration is 
useful to insure stability and help the noise match [16]. The capacitor (ID=C1) is used for intermediate 
matching between two transistors and also to provide decoupling effects. The microstrip lines are used 
between every element throughout the design with dielectric constant Ɛr=9.8, height H=381 µm, conductor 
thickness T=17µm, Metal bulk resistivity normalized to gold Rho=0.7 and Loss tangent of dielectric 
Tand=0.002. The initial design is carried out using negative lumped elements at both input and output 
matching of the design shows good LNA performance than the positive lumped elements in the circuit. 
So, the realization of the negative elements is discussed in the following sub sections. 
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2.1.  Biasing network 
In this design, the drain and gate bias circuit are designed by using pair of inductor and bypass 

capacitors for pHEMT. The proper optimization of the lumped elements, microstrip lines with layout 
formation have ensured the LNA shows very low noise figure. This biasing network provides sufficient gain 
low noise figure and stable operation. Several experimentations are carried for the wideband LNA biasing 
circuits in the earlier published work [17-20]. 
 
2.2.  Realization of negative valued lumped elements 

This section explains the methodology to convert negative valued elements into practically 
realizable distributed elements. There are many methods to convert negative elements in to practically 
realizable circuit. Here, by using Richard’s transform negative lumped elements are expressed in term of 
equivalent electrical length (βl). For the lossless transmission line telegrapher's equation, the propagation 
constant is purely imaginary 𝛾 = 𝑗𝛽 is as follow: 

 

𝑍(l) = 𝑍

𝑍 + j 𝑍 tan(βl)

𝑍 + j 𝑍 tan(βl)
 (1) 

 

where, wavenumber 𝛽 =
ଶగ

ఒ
 

While calculating β, the wavelength inside the transmission line with respect to microstrip line, 
dielectric material plays the vital role. In this realization method microstrip line geometry shown in Figure 2 
is prepared by using series short stub (MLIN) and open stub (MLEF and MLSC). In case of shorted load  
(𝑍 = 0), the input impedance will be purely imaginary and depends upon periodic variation of the wave 
number as shown in (2). 

 
𝑍(l) = j 𝑍 tan(βl) (2) 

  
In case of open load (𝑍 = ∞), the input impedance will be again purely imaginary and depends 

upon periodic variation of the wave number as shown in (3). 
 
𝑍(l) = −j 𝑍 cot(βl) (3) 
 
By the making use of above concepts, for the known value of the lumped elements L and C, the 

electrical length can be calculated by the equations (4), (5) using Richard’s transformation. From the basic 
equation, denoting the L and C as negative values, solving using by trigonometric techniques: By the making 
use of above concepts, For the known value of the lumped elements L and C, the electrical length can be 
calculated by the equations (4), (5) using Richard’s transformation. From the basic equation, denoting the L 
and C as negative values, solving using by trigonometric techniques: 

 
−𝑗

𝜔 (−𝐶)
=  −𝑗 𝑍 cot 𝛽𝑙  (4) 

  
𝑗𝜔(−𝐿) = 𝑗𝑍 tan 𝛽𝑙 (5) 
 
Mathematical calculations are carried out for three different frequencies in order to find physical 

lengths of the distributed elements to the input matching network as shown in Figure 2. Figure 2 shows the 
schematic of the negative valued lumped elements for input matching of the LNA. The circuit is simulated 
initially by this network which ended with good performance of the LNA. To convert negative elements into 
distributed microstrip line calculation are made and depicted in Table 1. 

 
 

 
 

Figure 2. Negative valued lumped elements for input matching network 

PORT
P=2
Z=50 Ohm

PORT
P=1
Z=19 Ohm

IND
ID=L1
L=-11.44 nH

CAP
ID=C2
C=-0.9 pF
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Table 1 shows the calculated values of physical length and width of the microstrip lines whose 
Ɛr=9.8, loss tangent Tand=0.002, conductivity 5.88 x1007 s/m, characteristics impedance Z0=50 Ω, height 
(H)=381 µm and conductor thickness (T)=17 µm. Since microstrip transmission line structure has 
metallization placed on top of a substrate and exposed to air, “effective” permittivity is a complex 
relationship between the substrate properties and air properties. To derive the frequency dependent (Keff) is 
done by using procedure suggested by Eikichi Yamashita, Mahmoud El Sabbagh and H.A. Atwater [17]. 

 
 
Table 1. Tabulated Frequency versus Physical Characteristics of Negative Valued Elements 

 Negative valued lumped elements 
L = - 11.44nH C= - 0.9 pF 

Frequency in GHz Physical Length (µm) Physical Width (µm) Physical Length (µm) Physical Width (µm) 
3 8425 354 4412 354 

6.5 4221 354 3092 354 
10 2796 355 2292 355 

5.79 * 4632 354 3150 354 
Optimized 4736 300 3784 300 

*geometric mean, the numerical values which are presented here is based on theoretical concepts, which will have some degree 
deviate from the practical values with the various parasitic effects. 

 
 
Microstrip line has excellent performance in the wideband characteristics and their size restricts for 

the utilization up to 10GHz. The combination of the lumped and microstrip line will give optimistic 
performance of the LNA. Figure 3 shows the microstrip geometry with ‘Short standard’ (MLIN), ‘open 
standard’ (MLEF) and ‘Shorted standard without end effect’ (MLSC). The offset length of MLIN is arranged 
to build nearly for ideal reflection coefficients till 10GHz with polynomial coefficients of the negative 
capacitor. The length of the MLEF exhibits capacitances fringes and characterized by capacitance 
coefficients. The length of the MLSC exhibits the performance like negative inductor whose offset is 
analyzed without end effects. 

Figure 3 shows the schematic of the distributed microstrip line prepared based on the values from 
the Table 1. Analysis is done with different frequencies for input matching circuit to calculate physical 
characteristics of the microstrip lines. The geometry structure is design to fulfill negative capacitor as linear 
series microstrip line and negative inductance as open microstrip line with end effect or shorted without end 
effects. All distributed elements like microstrip line exhibits frequency dependency and their characteristics 
introduce parasitic ripple effects in the wideband frequencies. It needs to construct geometric microstrip line 
structures in a such way that their frequency variation with S-parameters (especially S11(ω)) conforms to a 
desirable function of ω. The design of the microstrip line geometry to fulfill desired S-parameter 
performances is similar to filter realization. The determination of the filter pass band throughout the 
wideband characteristics is depend on the order of the filter. So, in this realization it is considered up to third 
order whose effective length is equal to 4736µm and average shunt open stubs length (with and without end 
effect) is 3784µm. 

 
 

 
 

Figure 3. Schematic of the distributed elements of the input matching network 
 
 

Figure 4 shows the 2D layout of the schematic shown in Figure 3. i.e. input matching network. For 
the consideration of the layout point of view all width of the microstrip line is kept constant of 300µm and 
corresponding lengths are optimized for required s-parameter characteristics. 
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Figure 4. 2D layout of the distributed elements of the input matching network 
with to reference earlier figure 

 
 
For ultra-wideband matching, a higher Q is needed or a higher order filter must be employed. Note 

that for higher Q, the bandwidth gets narrower, requiring the filter to be tuned to compensate for mismatch 
and process variation. So, in this design experimentation is carried out up to 3rd order Low pass filter 
microstrip line geometry for optimum bandwidth requirement. For the closed form expressions Z0 and Ɛre 

when conductor thickness t=0 is given by:  
 

𝑍 =
𝜂

2𝜋ඥ𝜀

ln(
8ℎ

𝑊
+ 0.25

𝑊

ℎ
)          ൬

𝑊

ℎ
< 1൰ (6) 

 
where 𝜂 = 120𝜋 Ω and 𝜀 =  

ఌೝାଵ

ଶ
+  

ఌೝିଵ

ଶ
 𝐹(𝑊/ℎ) 

 

  

𝐹 ൬
𝑊

ℎ
൰ = (1 + 12ℎ/𝑊)ି

ଵ
ଶ  + 0.041(1 − W/h)ଶ (7) 

  
The microstrip line negative capacitance (-C) and negative inductor (-L) is given per unit length with respect 
to c (speed of light). 
 

(−C) =
Zඥ𝜀

𝑐
 

(8) 

  

(−L) =
ඥ𝜀

Z𝑐
 

(9) 

 
The bandwidth can be enhanced by using multiple sections of impedance transformed microstrip lines. It is 
important to consider the product of quality factor (Q) and Bandwidth (BW). 
 

Q ∗ BW =
2Γ

1 − Γଶ
   𝑓𝑜𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 (10) 

  

Q ∗ BW =
2√Γ

1 − Γ
   𝑓𝑜𝑟 𝑑𝑜𝑢𝑏𝑙𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

(11) 

  
Q ∗ BW =

𝜋

ln(1 Γ⁄ )
   𝑓𝑜𝑟 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 (12) 

 
For the ultrawide band matching, the reflection coefficient of the microstrip line geometry is given 

the series of sum of the partial reflection coefficient arising at the each discontinuous ‘L’ sections of the 
layout shown in the Figure 4. Where 𝜃 is electrical length separtion between multiple sections. 

 
Γ =  |Γଵ| + |Γଶ|𝑒ିଶఏ + |Γଷ|𝑒ିସఏ (13) 
 

2.3.  S-parameter comparison of input matching 
Figure 5 shows the S11 characteristics of negative value lumped elements and microstrip line 

realization done using Richard’s transform. The left axis represents the S11 characteristics of the negative 
lumped elements whose curve is linearly decreasing with respect to frequency. The right axis represents S11 
characteristics microstrip line structure which is having minor variations with respect to frequency. 
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Variations can be minimized by increasing the order of the microstrip line geometry.  Similar technique is 
adopted to realize the microstrip line geometry from the negative valued elements of output matching 
network. Figure 6 shows the negative valued lumped elements used initially for output matching in the UWB 
LNA design. 

 
 

 
 

 
Figures 5. S11 parameter comparison between negative value 

elements and distributed elements structure 
of the input matching block 

Figure 6. Negative valued lumped 
elements for output matching network 

 
 

To compress the circuit and to avoid the complexity of the circuit, drain bias sub circuit is added 
inside the distributed element block of the output matching circuit which is clearly shown in the Figure 7. 
Same technique is applied here which were used in analysis of input matching block. 

 
 

 
 

Figure 7. 2D layout of the distributed elements of the input matching network with reference earlier figure 
 
 

2.4.  S-parameter comparison of output matching 
Figure 8 shows the S11 characteristics of negative value lumped elements and microstrip line 

realization done of the output network using Richard’s transform. The left axis represents the S11 
characteristics of the negative lumped elements whose curve is linearly decreasing with respect to frequency. 
The right axis represents S11 characteristics microstrip line structure which is having minor variations with 
respect to frequency. Variations can be minimized by increasing the order of the microstrip line geometry. 
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Figure 8. S11 parameter comparison between negative value elements and distributed elements 
structure of the input matching block 

 
 
3. RESULTS AND ANALYSIS 

The presented UWB LNA is designed by using ATF 36163 pHEMT transistors with negative image 
amplifier technique is measured with parameters like return loss, gain, noise figure and stability check. The 
following graphs with rectangular display type simulated results using AWR microwave tool are discussed in 
detail.  

Figure 9 shows the simulated input return loss (S11) and output return loss (S22) of the complete 
UWB LNA by adopting the negative image amplifier technique. As experimented, the LNA is well-matched 
over the frequency range of interest. The circuit using negative lumped elements has achieved return losses 
less than -10dB without comprising other parameters of the LNA which was not achieved by using positive 
value lumped elements in the circuit. After the realization with microtrip line the input and output return loss 
values are less than -8 dB throughout band. The return losses are deteriorating because of actual microstrip 
line technology cannot reach the same effects of negative valued lumped elements. To overcome this 
limitation, several experimentations are required to be carried out in conversion of negative elements into 
practically realizable circuits. 

Figure 10 shows that the noise figure (NF) is below 2 dB from 3 to 10 GHz and NFmin is less than 
1.6 dB from 3 to 10 GHz. Another advantageous property of the negative image amplifier technique is that 
the gain, NF and return loss is obtained simultaneously. Indeed, the simulated NF almost equals the 
simulated NFmin of the complete LNA over a bandwidth from 4 to 10GHz. The deviation between NF and 
NFmin is at lower frequencies occurred because of minor impedance mismatch at the input port. At low 
frequencies increase of NF is because flicker noise, whereas the reason for increase of NF at higher 
frequencies is drop in gain. 
 
 

  
  

Figure 9. Return loss characteristics 
of the UWB LNA 

Figure 10. Noise figure and NFmin characteristics of 
the complete UWB LNA 
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The noise sources and thermal noise voltages due to Rg and Rs respectively, 
 

𝐹𝑚𝑖𝑛 = 1 +
2ωCgsට𝑅𝑠 +

𝑅𝑔
𝑅𝑖

Gm
 

(14) 

 
Here, ω: angular frequency; Cgs: gate to source capacitance; Gm: transconductance;  
Rs: ohmic contact; Rg: metalization resistor and Ri: instrinsic resisance. 

 
Figure 11 shows the gain characteristics of the designed UWB LNA. As for gain is concern, a 

sufficient high gain is required over complete UWB to withstand the effects noise figure of the upcoming 
stages in the receiver system. The transducer gain (S21) of this LNA is the resultant of two stage cascaded 
transistors is having variation in performance. If the gain flatness is required over UWB, an additional multi-
band gain peak in the following stages can be added to compensate gain drop in few sag. This case can be 
applied to this work 3–10 GHz UWB LNA. In order to make sure that designed UWB LNA is 
unconditionally stable, a rollet’s factor (K) test and the auxiliary factor (B) are being plotted [18, 19]. 
The K-factor is depicted in left sided Y-axis and secondary stability factor in right sided Y axis in the 
Figure 12, and the values of the K-factor are greater than 1, B greater than zero over the entire 3-10GHz 
bandwidth all calculation are based on the s-parameters. In this consequence, the designed UWB LNA is 
made as unconditional stability with the help of microstrip line at the sources of the pHEMT. 

 
 

 
 

  
Figure 11. Gain performance of the UBW LNA Figure 12. Stability test using K and B 

 
 
Figure 13 displays the complete layout of UBW LNA on HMIC technology with all sub circuits i.e. 

Input and output matching blocks, drain and gate bias circuits, intermediate capacitors and transistors. 
Among the PCB layout, the red color rectangle component is the transistor, blue color lines all are microstrip 
lines and the rest drain and gate bias circuit compose of inductors and capacitors which shown soldier pads. 
 
 

 
 

Figure 13. Two-dimensional layout of the complete UWB LNA which be fabricable 
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The presented UBW LNA for 3-10GHz is summarized in the Table 2. The measured performances 
of the presented LNA in comparison with those of recently published LNAs. It is noted that the gain, 
bandwidth, noise figure and input return loss is compared clearly which shows the importance of this work. 

 
 

Table 2. Performance Comparison with Recently Published Articles on LNAs 
Reference Frequency(GHz) Gain in dB Noise Figure in dB S11 in dB 

[1] Zhengyu Sun 0.7 - 5.2 26-29 2.6-4.4 <-10 
[2] Zulfa Hasan-Abrar 1.5-6 16-18 1.5 <-5 
[3]  Khanhtran Phan 1-12 11-17 2 <-10 

[4] Chan-Sei Yoo 2-11 10 2 <-10 
[5] sawarkar 1.2-2.8 25 0.5 <-8 
This Work 3-10 >20 <2 <-8 
This Work 3-8.5 22-23 <1.5 <-8 

 
 
4. INNOVATION IN THE PROPOSED WORK 

Though the negative image amplifier technique results in the performance improvement, yet it 
imposes the use of negative valued components which are not realizable. This technique presents a novel 
method of tackling the issue of the negative valued components. The conversion of negative reactance into 
realizable component is done using microstrip line structure. The complete strategy leads to realizable design 
of LNA circuitry.  This approach provides following remarkable achievements of negative image amplifier 
technique over conventional matching circuit: 
a. Compressed and squeezed down to a smaller size, total board outline is 17mm x 10.5mm 
b. Sufficient gain is achieved with unconditional stability. 
c. Good noise figure less than 2 dB over complete 3-10GHz band 
d. Good bandwidth 3-10 GHz, which is ultra-wideband with return loss of -8dB. 
 
 
5. CONCLUSION 

This paper proposes novel procedure of acknowledgment of the negative valued lumped elements 
by utilization of the microstrip line parasitic effects. Whose effects is clearly explained with supporting 
mathematical analysis and simulation results. Bandwidth characterizing for the LNA is very complex, this 
work has met with several conflicting measurements like return loss, NF, Gain and stability based on the 
S-parameter analysis. This work presented the two-stage cascaded LNA which exhibits average gain of 23dB 
gain and low noise figure of less than 2dB with return loss less -8dB for UWB 3-10GHz. The designed LNA 
furnished least NF alongside with good gain when contrasted with recent works. Consequently, the coveted 
focus of the design was achieved with a specific end goal to be incorporated as a first stage of the receiver’s 
circuitry. 
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