
International Journal of Electrical and Computer Engineering (IJECE)
Vol. 6, No. 1, February 2016, pp. 249~256
ISSN: 2088-8708, DOI: 10.11591/ijece.v6i1.9012  249

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

Network Activity Monitoring Against Malware in Android
Operating System

Luis M. Acosta-Guzmán*, Gualberto Aguilar-Torres**, Gina Gallegos-Garcia*
* Department of Research and Graduate Studies, Electrical and Mechanical Engineering School

Instituto Politécnico Nacional, Mexico
** Comision Nacional de Seguridad. Secretaria de Gobernacion, Mexico

Article Info ABSTRACT

Article history:

Received Sep 12, 2015
Revised Nov 15, 2015
Accepted Nov 30, 2015

 Google’s Android is the most used Operating System in mobile devices but
as its popularity has increased hackers have taken advantage of the
momentum to plague Google Play (Android’s Application Store) with
multipurpose Malware that is capable of stealing private information and
give the hacker remote control of smartphone’s features in the worst cases.
This work presents an innovative methodology that helps in the process of
malware detection for Android Operating System, which addresses
aforementioned problem from a different perspective that even popular Anti-
Malware software has left aside. It is based on the analysis of a common
characteristic to all different kinds of malware: the need of network
communications, so the victim device can interact with the attacker. It is
important to highlight that in order to improve the security level in Android;
our methodology should be considered in the process of malware detection.
As main characteristic, it does not need to install additional kernel modules
or to root the Android device. And finally as additional characteristic, it is as
simple as can be considered for non-experienced users.

Keyword:

Android
Malware
Methodology
Network Activity Monitor
Security

Copyright © 2016 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Gualberto Aguilar Torres,
Comision Nacional de Seguridad. Secretaria de Gobernacion,
Av. Constituyentes #947 Col. Belén de las Flores,
Del. Álvaro Obregón. Distrito Federal CP. 01110, Mexico
Email: gualberto.aguilar@cns.gob.mx

1. INTRODUCTION

Nowadays, personal computing is making a turn into mobile devices. While a few years ago
cellphones were intended to provide people a way to make phone calls and communicate regardless the
location; today, we talk about smartphones as a result of adding more and more functions as well as
computational power with the passage of time.

Thanks to the smartphones people is now able to perform calls, video calls, use messaging services
over the Internet, send and receive emails, use banking services and even use social networks wherever they
are. Practically, everything done on a PC or Laptop can be accomplished now on a Smartphone; in most
cases, thanks to the appearance of little pieces of software with a specific purpose commonly known as
applications (Apps).Today’s Smartphones can be classified depending on the Operating System running on
the device into Google’s Android, Apple’s iOS, RIM’s Blackberry OS, Windows Phone, and Symbian [1].
Each one of them with its own Application Store where the user can download paid and free Apps developed
for people and enterprises around the globe.

According to Nielsen, leader Company in market research, 51.8% of smartphones were using
Android by the end of June 2012 [2]. In other words, it has become the most used mobile operating system.
Considering that and due to Android is the simplest option for developers of Apps (since it is free licensed).
In addition to its Apps can be developed using Java and developers can publish their Apps making them

  ISSN: 2088-8708

IJECE Vol. 6, No. 1, February 2016 : 249 – 256

250

available immediately, this work focuses strictly on Google’s Android as an operation system for
smartphones and Tablets.An example of Android’s growth is that until March 15th 2012 there were 450,000
Apps available in Google Play (Android’s Application Store) while at the middle of 2010 there were only
100,000 [3]. Today, we are talking about more than 700,000 Apps according to Bloomberg’s BusinessWeek
[4, 5].

Unfortunately, not everything is good for Google’s Android. As a result of its popularity and the
lack of code validation and testing of the uploaded Apps, Android has become the weapon of choice for
hackers to introduce malicious code into Smartphones. Malicious code, also commonly known as malware,
could allow a remote attacker (hacker) to accomplish different things from stealing personal private
information to taking full control of the device e.g. send text messages or perform phone calls [6]. In fact,
this is the most important reason this work focuses on Android.

Although, Google has added many security features to its operating system such as application
isolation, the permissions model, read-only access to the Android’s kernel, no root permissions by default,
among others, there is plenty of malware disguised as good Apps available for the user to be downloaded in
Google Play.

The principal effort from Google to avoid the presence of malware in Google Play is called
“Bouncer” and it was presented in February 2nd 2012. At its presentation, Google claimed that it had been
already running for a while with the purpose of filtering malicious Apps even before they showed up into
Google Play. At this point, Google said that between the first and second haves of 2011 they saw a decrease
from about 40% in the number of potentially malicious downloads from Google Play (or Android Market as
it was called then) [6].Even though, this was supposed to be the solution to make Android safer, some
failures and weak points were found in Bouncer. John Oberheide and Charlie Miller, two white hat hackers,
presented their analysis about Bouncer at the SummerCon 2012 with a work titled “Dissecting the Android
Bouncer” [7].

Oberheide and Miller found out that Bouncer is nothing more than an Android Virtual Machine
running in Google’s Infrastructure analyzing each App before it is published. Nevertheless, the most
important thing they were able to find out and demonstrate is a way to bypass Google Bouncer’s validation.

Similarly, the malware problem has opened a window for Antivirus software to become mobile.
Nowadays there is a wide variety of Apps intended to give protection against malware and other kinds of
Information Security risks available in Google Play, in which is important to consider that whatever purpose
malwareis, it will always need a network connection to accomplish its goal, this connection is required
mainly so the victim sends back to the attacker what in general terms can be referred as stolen data and also
the victim can receive instructions from the attacker.

AV-TEST Institute, an independent laboratory for Information Security and Antivirus research,
published a test report in March 15th 2012 called “Anti-Malware Solutions for Android” where they put to
test 41 different Anti-Malware solutions. As a result, they grouped the solutions in five sets according to its
average capacity of detection [8].

As a part of the research performed in the development of this work, three solutions were tested
from the set with an average detection rate of more than 90% (Avast, Mobile Security, Kaspersky Mobile
Security and Lookout Security & Antivirus). That was done in order to see if they could identify a threat
based on the presence of abnormal network activity. The three solutions were evaluated with a simple App
coded to generate multiple connections in a loop to a remote server and also to open multiple ports in a loop
receiving connections from a remote client. Unfortunately, none of the solutions were able to identify the
custom App as a malicious or suspicious one. Moreover, none of them was even able to report the abnormal
network activity generated by the custom App.

By analyzing the chosen Anti-Malware solutions was identified a Firewall feature, this function
basically allows the user to choose which Apps can access the Internet over 3G or a Wireless connection and
which cannot; it does not work strictly as a Firewall since it does not give an option to block or permit certain
ports. Firewall feature could help but it becomes complicated to use since this particular component requires
root permissions on the device as well as the support of netfilter/iptables (packet filtering framework) in the
Kernel.

It is important to remember that Android’s kernel has root permissions disabled by default but the
user can gain this kind of permission by running a special crafted piece of code directly to the shell. From the
standpoint of Information Security, enabling root permission on an Android device is not recommendable for
two important reasons: the user cannot be sure if the rooting software contains any kind of malware such as a
backdoor and a rooted device becomes more vulnerable if it gets compromised because any installed
malware will get root permissions as well [9].

The present work shows the development and implementation of a methodology to analyze the
network activity generated by an Android device in a way that a “complete” security solution or “Anti-

IJECE ISSN: 2088-8708 

Network Activity Monitoring Against Malware in Android Operating System (Gualberto Aguilar Torres)

251

Malware” solution can take advantage of such analysis. That is because the analysis of the network activity
by itself can allow the detection of a suspicious behavior in a device but it will never be able to indicate with
a hundred percent certainty of malware presence. In other words, tracking the network activity can help to
identify suspicious behavior. As in example, when an App intended to be used as a calculator starts to open
communication ports in the device allowing any remote client to connect in. In addition to that, it will help to
keep a dynamic continuous monitoring of the device searching for malware while actual Anti-Malware
solutions principally focus on the detection of signatures at the moment a new App is installed. All of this is
done by considering malware will always need a network connection to accomplish its goal, which states the
basis to this work by the thought of considering the network activity analysis output as extremely valuable
information to be used in the process to determine whether an App is malicious or not.

2. RELATED WORK
Actually, there are no works describing a methodology to gather the network activity in Android,

how to take advantage of this information and its importance to determine the malignity of an App. Similarly,
there are no Apps in Google play that could achieve our goal. However, application called “Connection
Tracker Pro” [10] is the work that could be considered as related with the focus of this present work. Such
App is designed to display the network activity of each App in an instant. After we ran some tests, we found
that such App is actually a graphic representation of running a “netstat” command in a loop from the device’s
shell.

This App could be very helpful from the networking perspective point of view, but for people
experienced in information security topics it may be considered as suspicious once, it is due to installation
requires the “PHONE CALL PERMISSION”, as can be seen in Figure 1. Such permission is not necessary
and will allow the App to obtain IMEI and IMSI numbers, which in fact can reveal the device’s location. It is
also noticeable that the App demands a lot of CPU when running making the device really slow. As example
we can mention a Sony Tablet S (where we made test) with a single CPU NVIDIA Tegra2 and 1 GB in
RAM, which took from 5% to 60% average of its CPU capacity just by running the App.

Figure 1. Description and permissions of "Connection Tracker" shown in Google Play

It is also important to mention that “Connection Tracker” was not able to identify a port opened by a

custom App (listening on the device). Furthermore, this App does not have any documentation or even a web
site where information about the development could be found, even tough, according to Google Play its
website should be www.borgshell.com which leads to a non-existing webpage. Even though the goal, use and
context of “Connection Tracker” is different and away from the one of the present work, it is mentioned as
related work because in the description of the App showed by Google Play, it can be read that this application
will help the user to keep the device secured by monitoring the connections.

  ISSN: 2088-8708

IJECE Vol. 6, No. 1, February 2016 : 249 – 256

252

3. CONSIDERATIONS IN OUR PROPOSED METHODOLOGY
It is important to emphasize that the approach of this methodology consists in the development of

the mechanism to keep track of the network activity not the mechanisms to evaluate and detect any
suspicious behavior and nor to identify malware. In other words, our methodology shows the implementation
of a Network Activity Monitor (NAM) for Android that is capable of running all the time as a background
service in order to identify new established connections and attempts of connection. It is also capable of
listening open ports, waiting for a remote connection on a device and identifying, which installed App, is
responsible for each new connection.

Considering the aforementioned our methodology improves the Information Security level in
Android OS along with its three main attributes: confidentiality, integrity and non-repudiation. The NAM
App works without the need of root permissions (rooted device) and only requires a few permissions from
the user at the moment of installation.

As it has been clarified previously, the network activity monitor by itself cannot be used to identify
malware but it could be used as a standalone App working in a blacklisting scheme where a user receives an
alert if a selected App (blacklisted) generates network activity. As a consequence, the user running this NAM
on its device may have an opportunity to kill the process or App that is generating dubious network activity.
Alerting the user is the only reactive measure the NAM App can take without requiring root permissions.

Figure 2. Our proposal uses a call to the system from the kernel

Tests were made trying to provide the NAM with the capacity of killing a blacklisted application
automatically as an action triggered by the detection of network activity. It was found that in a rooted device
it would be as simple as run the command “kill [process id]” directly to the shell (as in a regular Linux) but in
a non-rooted device the user does not have permission to use the “kill” command and the means provided by
the Android’s SDK in the classes android and ActivityManager with its methods “killProcess()” and
“killBackgroundProcess()” only work to end the process itself and not external processes.

4. PROPOSED METHODOLOGY
This section will describe our entire methodology and the implementation of the Network Activity

Monitor for Android as if it was meant to be a standalone application.
The first step is to get the Android device’s current network activity. It can be easily achieved in

mobile devices running Android thanks to its Linux Kernel using the command “netstat” just like in an
ordinary Computer.

The Android App this work has developed uses a call to the system invoking the command netstat
directly from the kernel through the ”Process” and “Runtime” Java Classes and the method
“getRuntime().exec()”, as can be appreciated in Figure 2. As can be seen in Figure 2, the netstat command

IJECE ISSN: 2088-8708 

Network Activity Monitoring Against Malware in Android Operating System (Gualberto Aguilar Torres)

253

provides an output showing all active sockets in a table containing important information such as protocol
(TCP, UDP, TCP6 or UDP6), the local address (source IP address), foreign address (destination IP address)
and also the state of the socket.

The state parameter provides a way to differentiate connections that are already established
(“ESTABLISHED”) from connections that are initiating (“SYN_SENT”), connections ending
(“CLOSE_WAIT”, “TIME_WAIT”, “FIN_WAIT” and many more) and listening ports that are waiting for a
connection from a different host in the network (“LISTEN”) [11].

Once the active sockets are obtained it is necessary to determine the state for each element of the
output just between three types: active connections, attempts of connections, and listening ports; this will
determine the treatment required on the next step. On the other hand, it is important to clarify that due the
purpose of this work the rest of the sockets can be discarded (e.g. connections with a “TIME_WAIT” state)
since detecting a closing connections would not make a big difference because it would be too late for the
user to take actions if alerted; moreover, every active connections is originated with a state “SYN_SENT” or
“LISTEN” and become active (begins the data transfer) with a state “ESTABLISHED”.

Besides the “State” it is essential to identify the value on the parameter “Proto” of the output for
each element. This parameter can only take one of the following values: “TCP”, “TCP6”, “UDP” or “UDP6”.
We will get to the importance of this at the moment of process-connection identification.The following is to
identify the destination IP address as well as the source and destination ports for each element of the netstat
output with a state “ESTABLISHED” of “SYN_SENT; in other words, for active connections and
connection attempts. From the elements with a “LISTEN” state it is only possible to obtain the number of the
listening port.

Identification can be accomplished by parsing the output just using the “String” Java Class and its
methods such as: “trim()”, “split()”, “charAt()”, “replace()” and “indexOf()”. Still, it is not as simple as it
looks because the character structure of each socket in the output depends on two factors: the value of the
parameter “Proto” and the value of the parameter “State”. As a result, each case must be considered, that is
why it is important to differentiate the connections by its state, as is shown in Figure 3.

Figure 3. It is important to differentiate the connections over netstat output

The source port of the connections becomes really important in order to obtain all possible

connections because there can be multiple connections to the same destination address and port but there
cannot be two with the same source port. To sum up, each active or initiating connection requires a different
non-used source port, as seen in Figure 4.

Figure 4. Source port, destination IP, destination port and state of the connections

Identifying address and ports is fundamental not only because it is the connection’s detailed and

important information by itself but also because it will lead to the identification of the App responsible for
each socket. In a regular Linux Kernel or a Windows OS (where the netstat command can also be found) the
responsible process or file for a connection can be found by the command itself but not in Android’s kernel.
Getting the local port and the remote address and port needs to be complemented with the identification of
which process (App) is responsible for each connection (considering that one App could be responsible for
multiple connections); this can be done by taking a look into certain files stored in the Linux file system
containing dynamic information about the network activity. Which file to check depends on the value of the
parameter “Proto” (earlier it was entrenched that this value must be identified), there is one file per possible
value (“TCP”, “UDP”, “TCP6” or “UDP6”) and all the files are located in the path “/proc/net/” e.g. in a
connection with a value “TCP” the file that needs to be reviewed is “/proc/net/tcp”. This can be easily done
with the command “cat”. Hence, the NAM must run the command “cat /proc/net/tcp” (for example) and store
the output in a buffer so it can be analyzed, see Figure 5.

  ISSN: 2088-8708

IJECE Vol. 6, No. 1, February 2016 : 249 – 256

254

Figure 5. Existing files in the path "/proc/net/" have one possible value

Every file contains the information of current connections associated to that particular Protocol, this

information includes the source address and port as well as the destination address and port provided in
hexadecimal; moreover, it contains the information of the UID responsible per connection. This UID needs to
be obtained and can be done by converting the addresses and ports to hex and searching for them inside the
corresponding file, as shown in Figure 6.

Figure 6. Content of the file "/proc/net/tcp" shows connections to port 80 (0050 in HEX) with the UID 10003

UID is an integer value provided in UNIX systems for user identification within the kernel. On a

regular Linux all the Apps ran by the user would have the same UID; on the other hand, Android’s kernel
provide a different UID to each running App due to the concept of Virtual Machine (Dalvik Virtual Machine
in Android), this is know as “Application Sandbox”. Every App running in Android generates a new instance
of Dalvik, as a result, every App has a different UID. Although it is possible to share a UID between two
different App’s, it can only be accomplished by signing the App s by the same Developer [11]. Hence; the
identification of the UID can lead to the identification of the Process Name and to the App Name.

Once the UID has been obtained the acquisition of the Process Name can be accomplished through
the Android’s SDK by using the Class “ActivityManager” with its method “getRunningAppProcess()”. This
method will bring an Object’s List where each element is a running process with attributes such as UID, PID
(process id) and Process Name; therefore, a simple search for the UID in the List does the job. Because to
regular users would not make much sense to see a Process Name, the App Name (called Label) can also be
identified using the SDK

At the end, by using a loop to apply the presented mechanism to every element of the “netstat”
output there would have been identified three sets of connections (established connections, attempted
connections and listening ports), each element of these sets with a protocol, a source address and port, a
destination address and port and a Process (App) responsible for that particular socket. The three sets should
be stored in the device as data structures using non plain text files in order to keep a record on a previous
state of network activity so the user is not alerted if the NAM detects the same connection many times as
long as it is not closed. That is, the developed NAM App requires
"android.permission.WRITE_EXTERNAL_STORAGE" being this permission the only required so the App
does its assignment.

The average CPU usage of the Network Activity Monitor is the result of a designed test in which a
device is operated normally using four different Apps (YouTube, WhatsApp, Google Chrome and Gmail)
each one during one minute. During this four-minute operation the Network Activity Monitor keeps running
performing all of its tasks while CPU usage information is gathered through the execution of the “Top” tool
directly in the Android shell. This test was applied to four different devices of different market segments
(from low capacity to high capacity devices) giving as particular results the average commented value of
CPU usage.

IJECE ISSN: 2088-8708 

Network Activity Monitoring Against Malware in Android Operating System (Gualberto Aguilar Torres)

255

“Top” is a tool contained in most of the Linux distributions that allow gathering the information
about which processes are consuming most of the resources and giving the exact value of CPU usage. For our
test the “tool” command was set up with particular values to only capture the top ten processes, checking
every two seconds until reach 120 measures writing the collected information in a text file.

5. RESULTS AND DISCUSSION
The resulting App can run indefinitely as a background service without decreasing the performance

of the device giving a good user experience. This test was done under a Sony Tablet S with a single CPU
NVIDIA Tegra2 with 1GB in memory and the App runs perfectly in the background without making a
significant difference to the user experience. Tests were made reporting only an increase of 2-5% of CPU
usage when the detection is running. It’s important to recall that the user can change the time between the
performances of each detection process. Certainly, if we decrease the time, we can identify more dubious
network activities.

The firewall feature presented as a feature or as a dedicated App requires root permissions and
netfilter/iptables on the device. As a result, it is not easily accomplishable for a regular user; furthermore,
rooting a device could decrease the security level on a device. In this sense, our proposal uses storage
permissions in order to give agility to the user. Network activity-process identification can be accomplished
without rooting the device or asking for permissions.

There is no way to kill a process that has been spotted as a suspicious App because of its network
behavior without root permissions. The best chance is to alert the user based on a blacklist of Apps that
shouldn’t require network access. The user must set this blacklist.

Table 1. Results from the designed test to measure the NAM resource usage

Device

Model
Average CPU usage

by App process
Average CPU usage

by the system
Average total
CPU usage

Average CPU usage by
Network Activity

Monitor
LG Optimus L7 LG P700 52% 36% 87% 6%
LG Optimus L7x LG P714 44% 34% 79% 6%

Sony Xperia
Tablet

SGPT12 23% 18% 40% 5%

Google Nexus 4 LG E960 9% 7% 16% 3%
Average CPU usage 5%

It is important to mention a similar App was found in Google Play without any documentation

available; tests made to this App reflect that it presents suspicious behavior; for example, it requires phone
call permissions, it increases the CPU to around the 60% of its capacity and also it was not able to detect a
Listening Port opened by a custom App. Moreover best rated Anti-Malware Apps were not able to identify
suspicious network behavior.

As it is possible to see in Table 1, results we obtained report only an average 5% of CPU usage
caused by the Network Activity Monitor and even when there is a high usage of CPU in a device only a small
part of this consumption is caused by the Network activity monitor. This last point is really important since
the Network Activity Monitor would not be useful if the device’s performance was degraded decreasing the
user experience.

6. CONCLUSIONS AND FUTURE WORK
Google’s efforts to take down Malware still require to be improved due to Google should provide

the Android OS with the Firewall feature by default as part of the system so the user can choose which Apps
can access the network and which ones cannot.

Rooting a device to take advantage of a Firewall feature cannot be a good option from Information
Security perspective because the benefit is less than the risk taken.

The NAM is truly an opportunity for the user to identify Malware disguised as some cool App
downloaded from Google Play and provides a basis work that can be very useful in the future as many the
tendency points to move to cloud services.

Considering that the research and fundamental pieces of code are finished in this work, in the future
we leave as open research to take this code into a good user interface, to publish the App in order to it
becomes available for the Android users along with all the documentation, in addition to the design and
implementation of a mechanism to determine suspicious network behavior.

  ISSN: 2088-8708

IJECE Vol. 6, No. 1, February 2016 : 249 – 256

256

ACKNOWLEDGMENTS
The authors thank the Instituto Politecnico Nacional and the Consejo Nacional de Ciencia y

Tecnologia. The research for this paper was financially supported by Project Grant No. SIP-2014-
RE/123/CONACyT 216533.

REFERENCES
[1] Jiang Chun-mao, Qu Ming-Cheng, Wu Xiang-hu Hu. Optimization Design of a Realtime Embedded Operating

System Based on ISO17356. TELKOMNIKA Indonesian Journal of Electrical Engineering. Vol 11 No 10, 2013
pages 5763-5773.

[2] Patrick Mutchler, Adam Doupe, John Mitchell, Christopher Kruegel and Giovanni Vigna. A Large-Scale Study of
Mobile Web App Security.In Proc. of the Mobile Security Technologies. Pp: 1 – 6. 2015

[3] Sheng-Wen Chen, Chung-Huang Yang, Chien-Tsung Liu. Design and Implementation of Live SD Adquisition Tool
in Android Smart Phone. In Proc. of the International Conference on Genetic and Evolutionary Computing. Pp: 157
– 162. 2011.

[4] Muhammad Zuhair Qadir, Atif Nisar Jilani, Hassam Ullah Sheikh.Automatic Feature Extraction Categorization and
Detection of Malicious Code in Android Applications. International Journal of Information and Network Security
(IJINS). Vol 3 No 1.Pp: 12-17. 2014.

[5] Steffen Lortz, Heiko Mantel, Artem Starostin, Timo Bähr, David Schneider, Alexandra Weber. Cassandra: Towards
a Certifying App Store for Android. In Proc. of the 4th ACM Workshop on Security and Privacy in Smartphones &
Mobile Devices. Pp: 93-104. 2014.

[6] Yajin Zhou, Xuxian Jiang, Dissecting Android Malware: Characterization and Evolution. In Proc. of the IEEE
Symposium onSecurity and Privacy (SP). Pp: 95 – 109. 2012.

[7] Joshua J. Drake, Zach Lanier, Collin Mulliner, Pau Oliva Fora, Stephen A. Ridley, Georg Wicherski. Android
Hacker’s Hanbook. Published by John Wiley & Sons, Inc. Pp: 129 – 174. 2014.

[8] Hendrik. Pilz, Mobile Security Apps. AV-TEST the Independent IT Security Institute. Test Report. 2012
[9] Assem Nazar, Mark M. Seeger, Harald Baier. Rooting Android - Extending the ADB by an Auto-Connecting WiFi-

Accessible Service. In Proc. of 16th Nordic Conference on Information Security Technology for Applications.Pp:
189 – 204. 2011.

[10] Borgshell Developer Team, Connection Tracker Pro.Google Play.London, UK 2014.
[11] IMS; Diagnosis Guide and Reference, IBM. International Business Machines Corporation. Ver 3. 6th Edition. 2005.

BIOGRAPHIES OF AUTHORS

M. Eng. Luis Miguel Acosta Guzmán received the BS Computer Science and Technology from
The Monterrey Institute of Technology and Higher Education, Mexico City Campus in 2011. He
holds two certifications: the Ethical Hacking from the EC Council and CCNA from Cisco. He is
currently studying a Masters in Information Security. His areas of interest are: Hacking,
Computer Forensics and the Android Operating System.

Dr. Gualberto Aguilar Torres received the BS degree on Electronic and Communications
Engineer in 2002, the MS degree on Microelectronic Engineering, in 2004 and a Ph. D. degree in
Electronic and Communications in 2008, from the National Polytechnic Institute. In 2005 he
received the Best Thesis award from the National Polytechnic Institute of Mexico for his Master
research work. In 2009 he joints the Graduate and Department of the Mechanical Engineering
School of the National Polytechnic Institute of Mexico and nowadays he works at the National
Safety Commission in Mexico City.

Dra. Gina Gallegos-Garcia received a MS Degree and Ph. D from the National Polytechnic
Institute of Mexico in 2005 and 2011 respectively. She is currently Professor of Graduated
Section of Mechanical and Electrical Engineering School and belongs to the National System of
Researchers. During the summer of 2011 she performed a postdoctoral research at Yale
University in the United States of America. Her areas of interest include The Electronic Voting,
the Secure Cryptographic Application Design, Information Systems and Cryptography, Software
Engineering.

