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The model is based on the presentation of different machine inductances as 

Fourier series without any kind of reference frame transformation. The 

proposed approach shows that this model is able to give important features 

on the state of the motor. Simulation based on spectral analysis of stator 

current signal using Fast Fourier Transform (FFT) and experimental results 
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1. INTRODUCTION  

Electric Power Research Institute (EPRI) carried out a large survey on faults in induction motor 

in1985. Bearing faults contain over 40% of all machine failure. For this reason, the detection of bearing faults 

has been an important research area [1-6].The different faults occurring in a rolling-element bearing can be 

classified according to the damaged element as [7]: 

a. Outer raceway defect 

b. Inner raceway defect 

c. Ball defect  

d. Cage defect 

Bearing faults as all other induction motor failures ought to be diagnosing as early as possible in 

order to prevent the complete failure of the system and unexpected production costs. For that, the challenge is 

to have an adequate model of the induction motor which behaves as the real motor, and is able to generate the 

desired signals as we see in real motors under healthy or faulty state [8], [9], or in motor-pump system [10]. 

The model for bearing fault proposed by Schoen has been applied in several works as, [11], [12]. Blödt [13] 

consider this model incomplete, and extended it by the consideration of the torque variations, and the 

introduction of the radial movement of the rotor center. The fault impact on the airgap length is considered 

by a series of Dirac generalized functions of vibrations analysis and has been used in Blödt’s model [13], 

[14]. In this approach, one can notice that, firstly, the surface of the Dirac function is equal to 1, but its 

amplitude tends towards the infinite one, and that makes the simulation of inductances impossible, and 

secondly, it’s true that the contact angle is considered, but the angle of the defect does not exist. Then, for 
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these two raisons, we consider that this approach is not highly reliable. In this work a new approach with 

taking into account the angle of the defect will be proposed. 

In this paper, one of the fourth types of bearing faults classified above is studied, namely the inner 

race bearing fault, and because the similarity which exists between this last and the dynamic eccentricity 

fault, a new way for formulating a general model is suggested. The main objective is to offer accurate 

mathematical formulas of all the inductances of the machine in order to simulate efficiently the behavior of 

the motor under either healthy and/or faulty conditions.  

Bearing faults can be diagnosed with help of many condition monitoring methods such as vibration 

monitoring [15], [16]. This method is applied with the use of broad band, narrow band and the spectral 

analysis of the vibration energy of motor. But this method has a drawback of high cost as it requires 

expensive accelerometers.Thermal monitoring [17]. This method is done by measuring the local and the bulk 

temperature of motors; it also can be achieved by parameter estimation. This method has a drawback that it 

might be too slow to detect fault. Current monitoring [18-21]. The method used for diagnosis [22] is accurate 

and remains one of the most used, but require expensive sensors or specialized tools. For that, and because 

the stator current harmonics measurement can provide the same indications without requiring access to the 

motor, in this paper, stator current monitoring is used. 

 

 

2. DYNAMIC ECCENTRICITY AND INNER RACE BEARING FAULT 

In (DE), the center of the rotor is not at the centre of the rotation and the position of the minimum 

air-gap rotates with the rotor (Fig1). 

With the same manner used in. The 3D expression of the air gap variation is [23]: 
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And from the approximation for the first harmonic, one can get: 
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Figure 1 shows the two types of dynamic eccentricity (uniform and non-uniform) 

 

 

  
  

Figure 1. Non uniform (left) and uniform (right) dynamic air gap eccentricity 

 

 

δd: is the relative degree of eccentricity.  

The variation of δd versus the axial position x is: 
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The equivalent level of dynamic eccentricity is defined as a function of the axial position x by: 
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If the variation of “δd” versus the axial position x is removed, we return to a 2D expression.  

 

2.1. Inner Race bearing Fault 
Bearing is an arrangement of two concentric rings with a set of balls which spin in raceways 

between the inner ring and outer ring as shown in Figure 2. When a bearing spins, any irregularity in the 

inner raceway surface generates vibration occuring at periodic frequency, called (BPFI) Ball Pass Frequency 

of the inner Race, and is created when all the rolling elements roll across a defect in the inner race as shown 

in Figure 3. 

 

 

 
 

  

Figure 2. Bearing geometery Figure 3. Dynamic eccentricity caused by the inner 

raceway defect 
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 is the equivalent temporary level of eccentricity and γ is the defect angle. 

Cages function to maintain all the balls at a uniform pitch and rotates at the fundamental cage frequency 

ωcage, which is given by [24] 
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β: is the contact angle.  

Defect frequency depends upon the bearing geometry and shaft speed ωr. In particular for the inner race, and 

running at a certain rotor speed ωr, the predictable characteristic fault frequency intf
 
is [24]: 
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   : The number of balls. 

The contact between the balls and the defect caracterised by the angle γ, generates a temporary static 

eccentricity. The new way for modelling this fault impact, is the introduction of a digital square wave  

Figure 4. This signal is expressed as complex Fourier series development. 

 
































1

int
2

cos
2

sin
12

2 










swD      (7) 

 

 

 
 

Figure 4. Digital square wave signal 

 

 

Equations (4) to Equation (7) can be combined into a simplifie expression of the equivalent level of 

the outer race bearing fault. 
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By analogy with (1) and (2), the new formula of the air gap lenght, and the inverse of the air gap 

function approximated for a small variations, become respectively  
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    (Healthy state),       (Dynamic eccentricity),         (Inner race bearing fault)  

 

 

3. INDUCTANCES CALCULATION  

According to winding function theory, the mutual inductance between any two windings i and j in 

any electric machine can be developed by [25-27]: 
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where θr is the angular position of the rotor with respect to the stator frame, θ is a particular angular 

position along the stator inner surface,g
-1

(θ,θr,x) is termed the inverse air gap function. The terms n(θ,θr,x), 

M(θ,θr,x) are the turn function and the modified winding function in windings i and j respectively.(the 

modified winding function theory is used because the non uniformity of the air gap). The model equations of 

the induction machine are the same as [28]. 

 

3.1. Turn and Winding Rotor Functions 

3.1.1. Healthy Conditions 

In this case the air gap length g is uniform and equal to g0 (δd=0), the turn function, and the winding 

function of the rotor loop k  (with taking into acount the skew angle δr of the rotor bars) are respectively: 
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  : The rotor loop opening. 
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  : The number of rotor bars.  

The variation in the angle γr versus the axial position x i 
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3.1.2. Inner Race bearing Fault 

The modified rotor winding function   (      ) can be expressed independently from the value of
p as: 
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3.2. Turn and Winding Stator Functions 

3.2.1. Healthy Conditions 

As the same as for the rotor (δd=0), the turn and the winding functions are respectively [28]: 
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were,   : the stator coil opening,  : the nuber of slots per pitch turn,   : the number of the conductor per 

stator slot,   : the number of slots per pole and per phase,   : tne number of stator turns in series, and p: is 

the number of pole pairs. 

 

3.2.2. Inner race bearing Fault 

One can notice that the modified winding function Msq (θ) is different from the winding function 

Nsq(θ) only in the case of p=1. 
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3.3. Derivation of Inductances 

3.3.1. Healthy Conditions 

Using relation (12) and when the skewing effect is considered, the different inductances have 

similar formulas as presented without skewing effect [28], except that the stator-rotor mutual inductances are 

multiplied by a skewing factor  
ske
hk for each harmonic component h: 
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3.3.2. Inner race bearing Fault:  

By using (14) one can obtain the different formulas of the stator and rotor inductances. The stator 

and the stator-rotor mutual inductances are dependent on the value of p, (p=1 or p≠1).  
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    (       ),       (       ) are the inductances given in the case of symmetrical rotor respectively 

[28].  

 

a. The case of p≠1: 
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b. The case of p=1: 

For this case, one can use the inductances        (       )
   

 ,     (       )
   developed in our old works 

cited previously, with the same manner as for the case of p≠1 by adding r . 

The stator and rotor self magnetizing inductances are respectively sqiqiL  (i=1, 2, 3) and rjjL  (j=1: nb-1). 

The different inductances formulas presented for the case of the Inner race bearing fault confirme that, when: 

                       (       )   (Healthy state) [28]  

                    (       ) ,      
       (       )

    (Dynamic eccentricity) [29] without skew 

                   (   ) ,      
       (   )

    (Inner race bearing fault) 

Figure 5 shows that when the rolling elements roll across a defect in the inner race, a dynamic 

eccentricity is created at periodic frequency called (BPFI). 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 8, No. 1, February 2018 :  458 – 471 

464 

Figure 6 shows the effect of the defect angle on the eccentricity created by the inner race bearing 

fault on the mutual inductances, and one can notice that the enlarging of the defect angle, involves an 

increase in the duration of the fault, and if the value of the defect angle is very small (close to zero), the 

variation in the inductance waveform is almost invisible. 

 

 

  
  

Figure 5. Mutual inductances Ls1r1 for dynamic 

variationseccentricity (red) and inner race bearing 

fault (blue) 

Figure 6. Mutual inductances Ls1r1 with γ and δd =0.3 

(lex=l) 

 

 

Finally, the Figure 5 and Figure 6 show that inner race bearing fault causes an asymmetrical mutual 

inductance between stator phases and rotor loops. 

 

 

4. INNER RACE BEARING FAULT SIGNATURES IN STATOR CURRENT  

To find in the current of the stator the different signatures of the inner raceway bearing fault, and to 

understand their origins, it is first necessary to identify the harmonics induced by this defect in the rotor 

current.For an ideal three-phase supply, the stator’s currents which flow in the stator phases are of the form: 
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The derivative of rotor flux in vector matrix form can be written as: 
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Where: 

   : is the main voltage supply pulsation 

[   ] : is the rotor loop inductances matrix 

[    
  ]  : is the stator to rotor mutual inductances matrix 

Since the skewing of the rotor bars does not generate any new harmonics, so the study will be made 

with the mutual stator-rotor inductance without skewing effect, and which can be expressed as follows: 
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After development of rotor flux derivative and some simplifications we get: 

 

          hrkhrkhrkrk IIII 111        (32) 

where:  
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All the harmonics induced in the rotor current have their images at the stator current. From there, 

and following the same previous steps, we can write the derivative of the stator flux as follows: 
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were:  
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After development, we find that the terms in (40) are always null except for the follow harmonic 

orders [29], [30]:  
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The voltages induced in the stator produce a new series of high frequency in the stator current, and 

the expression of these components are: 
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The voltages induced in the stator produce a new series of high frequency in the stator current, and 

the expression of these components are: 
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The Table 1 shows the new expression of the frequencies found by our approach, and that found by 

the approach of Blodt. 

 

 

Table 1. Stator Current Inner Race Bearing Fault Frequency 
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5. TEST LABORATORY  

A test bench have been set up at Ampere Laboratory CNRS,UMR 5005 of Claude Bernard 

university Lyon 1, France, in order to validate the previously discussed analytical model. The Tested machine 

is a star connected induction motor. Ratings of the tested motor are a 5.5kW three-phase induction machine 

with 48 stator slots, 28 rotor bars, and 2 pair poles from 5 Leroy Somer manufacturer,LS 132S with a 

protection factor of 55 (protection against dust and against water jets), nominal motor speed is 1440tr / min 

for 11.4A and cosφ=0.84. Stator phase resistance 1.315Ω. It has two NUP 206 type rolling ball bearings with 

13 balls. 

The defect was simulated on a roller bearing by the addition of a contaminant (cement powder). The 

inner ring fault (a stripe on the inner ring) was carried out on 3 levels of severity as shown in Figure 7. 

 

 

   
   

Figure 7. Failure on the inner ring of the bearing NUP 206 (a-Level 1/3, b- Level 2/3 

and c- Level 3/3)  

 

 

For a load speed of 1406 tr / min for a level (1/3) of defective bearing, 1423 tr/min for the level (2/3) 

,and 1420 tr/min for the levels (3/3) and for 1420 tr/min the safe bearing - Bearing NUP 206, and using 

equation (53), it sets the table for the frequencies detected a small angle default (γ) so a hole, or a larger 

defect angle therefore for our case a groove in the inner ring.  

Indeed, for any motor we always distinguish visible small eccentricity rotor frequencies, which 

explain the existence of some specific harmonics of the inner race bearing fault even for a healthy motor as 

shown in Figures 8 (a), (b), (c), Figures 9 (a), (b), (c), when the motor is tested with a defect angle at level 

(1/3). 

 

 

 
 

Figure 8. (a) Experimental FFT spectrum of the stator current under healthy condition (Blue), and faulty 

condition (Red), s=0:061. Level (1/3) between 100Hz and 180Hz (Zoom on (b) 113.03 Hz, (c) 172.21 Hz) 

 

 

 
 

Figure 9. (a) Experimental FFT spectrum of the stator current under healthy condition (Blue), and faulty 

condition (Red), s=0:061. Level (1/3) between 170 and 250 (Zoom on (b) 189.56 Hz, (c) 213.03 Hz) 
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This group of harmonics is summarized in Table 2.  

 

 

Table 2. Specific Harmonics of the Inner Race Bearing Fault in Stator Current (Level 1/3) 
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The spectrum of the faulty condition case (Level 1/3) contains new harmonic components (162.30 

Hz, 262.30 Hz, 202.83 Hz and 302.83 Hz) as illustrated in Figures 10 (a), (b), (c) and Figures 11 (a), (b), (c). 

 

 

 
 

Figure 10. (a) Experimental FFT spectrum of the stator current under healthy condition (Blue), and faulty 

condition (Red) s=0.063. Level (1/3) between 140Hz and 220Hz (Zoom on (b) 159.28 Hz, (c) 198.48 Hz) 

 

 

 
 

Figure 11. (a) Experimental FFT spectrum of the stator current under healthy condition (Blue), and faulty 

condition (Red) s=0.063. Level (1/3) between 230Hz and 310Hz (Zoom on (b) 259.28 Hz, (c) 298.48 Hz) 

 

 

This group of harmonics is summarized in Table 3. 
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The motor is now tested with a few significant increase in the degree of severity (level 2/3) from the 

previous (level 1/3), but with a clear reduction of the load relative to the previous test (1423 Tr/min instead of 

1406 Tr/min). 

Note that the amplitudes of the specific harmonics of the fault inner ring have decreased due to the 

reduction of the load, against the minimal increase in severity had no impact on either the amplitude of the 

harmonic and on the new generation of harmonics. The Figures 12 (a), (b), (c) show an example of a pair of 

harmonics (159.28 Hz and 259.28 Hz). 

 

 

 
 

Figure 12. (a) Experimental FFT spectrum of the stator current under Healthy condition (Black), faulty 

condition Level (1/3) (Blue)s =0.063, and Level (2/3) (red)s=0.051 between 150Hz and 280Hz (Zoom on  

(b) 159.28 Hz- 259.28 Hz Level (1/3) and (c) 162.73 Hz-262.73 Hz Level (2/3)) 

 

 

This pair of harmonics is summarized in Table 4. 

 

 

Table 4. New Specific Harmonics of the Inner Race Bearing Fault in Stator Current (Level 1/3 and 2/3) 

rsecc f
P

kffs
P

N
f

1
1)1( intint 









  

 Level 1/3 Level 3/3 

λ=2, k=6 
159.28 Hz 162.3 Hz 

259.28 Hz 262.3 Hz 

λ=4, k=13 
198.48 Hz 202.83 Hz 

298.48 Hz 302.83Hz 

 

 

The motor is tested again under the same conditions monitoring for healthy case (load speed 1420 

Tr/min), with increasing the defect angle to level (3/3).  

Note that despite the decrease of the load from the level (1/3), the inner race bearing fault harmonics 

do not lose their amplitudes and remain visible, which shows the influence of the increase angle fault 

confirming that which was predicted in section III. Some examples show this difference in Figures 13 (a), 

(b), (c) and Figures 14 (a), (b), (c). 

 

 

 
 

Figure 13. (a)Experimental FFT spectrum of the stator current under Healthy condition (Black) s=0.053, 

faulty condition Level (1/3) (Blue)s=0.063, and faulty condition Level (3/3) (red)s=0.053 between 140Hz 

and 220Hz. (Zoom on (b) 159.28 Hz- 198.48 Hz Level (1/3) and (c) 162. 3 Hz-202.63 Hz Level (3/3)) 
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Figure 14. (a) Experimental FFT spectrum of the stator current under Healthy condition (Black), faulty 

condition Level (1/3) (Blue)s=0.063, and faulty condition Level (3/3) (red)s=0.053 between 250Hz and 

330Hz (Zoom on (b) 259.28 Hz- 298.48 Hz Level (1/3) and (c) 262. 3 Hz-302.63 Hz Level (3/3)) 

 

 

This two pairs of harmonics are summarized in Table 5. 

 

 

Table 5. New Specific Harmonics of the Inner Race Bearing Fault in Stator Current (Level 1/3 and 3/3) 

     rsecc fpkffspNf 11)1( intint    

 Level 1/3 Level 2/3 

λ=2, k=6 159.28 Hz 162.73 Hz 

259.28 Hz 262.73 Hz 

 

 

6. CONCLUSION 

A new comprehensive method for the calculation of different inductance values of an induction 

motor based on winding function approaches is presented. Inductances of healthy machine as well as 

dynamic eccentricity and inner race bearing fault is calculated and studied. The effect of the defect angle is 

verified. It is also shown that due to the air-gap asymmetry such as dynamic eccentricity or the inner raceway 

defect, the values of inductance coefficients have considerable variations with respect to the healthy 

condition and this last was applied for the study and detection of this fault.  

The experimental results which show current spectra of an induction machine with inner race 

defects, and are used to verify the new expression of the characteristic frequency of this fault. The 

experimental results clearly illustrate that the Stator Current Signature Analysis can be used to identify the 

presence of a bearing fault. 
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