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 In analog filter design, discrete components values such as resistors (R) and 

capacitors (C) are selected from the series following constant values chosen. 

Exhaustive search on all possible combinations for an optimized design is not 

feasible. In this paper, we present an application of the Ant Colony 

Optimization technique (ACO) in order to selected optimal values of 

resistors and capacitors from different manufactured series to satisfy the filter 

design criteria. Three variants of the Ant Colony Optimization are applied, 

namely, the AS (Ant System), the MMAS (Min-Max AS) and the ACS (Ant 

Colony System), for the optimal sizing of the Low-Pass State Variable Filter. 

SPICE simulations are used to validate the obtained results/performances 

which are compared with already published works. 
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1. INTRODUCTION  

The optimal sizing of analog circuits is one of the most complicated activities, due to the number of 

variables involved, to the number of required objectives to be optimized and to the constraint functions 

restrictions. The aim is to automate this task in order to accelerate the circuits design and sizing. Recently, 

the used of the metaheuristics have proved a capacity to treat these problem efficiently, such as Tabu Search 

(TS) [1], Genetic Algorithms (GA) [2], Local search (LS) [3], Simulated Annealing (SA) [4], Ant Colony 

Optimization (ACO) [5-7] and Particle Swarm Optimization (PSO) [8]. 

Active analog filters are constituted of amplifying elements, resistors and capacitors; therefore, the 

filter design depends strongly of passive component values. However, the manufacturing constraints makes 

difficult an optimal selection of passive component values. 

Indeed, the search on all possible combinations in preferred values for capacitors and resistors is an 

exhaustive process, because discrete components are produced according to a series of values constants such 

as the series: E12, E24, E48, E96 or E192. 

Consequently, an intelligent search method requires short computation time with high accuracy, 

must be used. The ACO technique has been applied successfully to solve a variety of optimization problems, 

such as the prediction of the consumption of electricity [9], the traveling salesman problem (TSP) [10], the 

vehicle routing problem [11], the optimization of  power flow [12], the learning problem [13] and the field of 

analog circuits design [5-7]. 

In this work, we propose to apply three variants of the ACO technique such as, the AS (Ant 

System), the MMAS (Max-Min Ant System) and the ACS (Ant System), for the optimal sizing of the Low-
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Pass State Variable Filter considering two objectives functions, the cutoff frequency and the selectivity 

factor.  

The remainder of the paper is structured as follows: The second section presents an overview of the 

ACO technique and highlights its three most important variants. The third section deals with the application 

example. The fourth section presents the simulation and the ACO variants comparison. The fifth section 

gives some comparisons with published works. The last section summarizes the main results of the work. 

 

 

2. ANT COLONY OPTIMIZATION: ACO TECHNIQUE: AN OVER VIEW 

ACO has been inspired by the foraging behavior of real ant colonies. Figure 1 shows an illustration 

of the ability of ants to find the shortest path between food and their nest [14], [15]. It is illustrated through 

the example of the appearance of an obstacle on their path. Every ant initially chooses path randomly to 

move and leaves a chemical substance, called pheromone in the path. The quantity of pheromone deposited 

will guide other ants to the food source. The indirect communication between the ants via the pheromone trail 

allows them to find shortest paths from their nest to the food source.   

 

 

 
 

Figure 1. Self -adaptive behavior of a real ant colony, (a) Ants go in search of food; (b) Ants follow a path 

between nest and food source. They; choose, with equal probability, whether to shortest or longest path;  

(c) The majority of ants have chosen the shortest path. 

 

 

2.1. Ant System 

The first variant of the ACO is « Ant System » (AS) which is used to solve combinatorial 

optimization problems such as the traveling salesman problem (TSP), vehicle routing problem. For solving 

such problems, ants randomly select the vertex to be visited. When ant k is in vertex i, the probability of 

going to vertex j is given by (1): 

 

   
      

J  i if                          

J  i if  
.

.

P

k

i

k

i

Jl ijij

ijij

k

ij k
i

















  





0
      

(1) 

 

Where Ji
k
 is the set of neighbors of vertex i of the kth ant, τij is the amount of pheromone trail on 

edge (i, j), α and β are weightings that control the pheromone trail and the visibility value, i.e. η ij, which 

expression is given by (2): 
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The dij is the distance between vertices i and j. 

Once all ants have completed a tour, the pheromone trails are updated. The update follows this rule:  
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Where 𝜌 is the evaporation rate, m is the number of ants, and Δτij
k
(t) is the quantity of pheromone 

laid on edge (i, j) by ant k: 
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Q is a constant and LK is the length of the tour constructed by ant k. 

 

2.2. Max-min Ant System 

The Max-Min Ant System is another variant of ACO, which was developed by Stützle & Hoos  

[15], [16] to improve convergence of AS. 

Max-Min ant system has always been to achieve the optimal path searching by allowing only the best 

solution to increase the information and use a simple mechanism to limit the pheromone, which effectively 

avoid the premature stagnation. MMAS which based on the ant system does the following areas of 

improvement: 

a. During the operation of the algorithm, only a single ant was allowed to increase the pheromone. The ant 

may be the one which found the best solution in the current iteration or the one which found the best 

solution from the beginning of the trial.  

b. In order to avoid stagnation of the search, the range of the pheromone trails is limit to an interval [τmin, 

τmax]. 

c. The pheromone is initialized to τmax in each edge. 

 

2.3. Ant Colony System: 

The ACS algorithm represents an improvement with respect to the AS. The ACS incorporates three 

main differences with respect to the AS algorithm: 

a. ACS introduced a transition rule depending on a parameter q0, which provides a direct way to balance 

between diversification and intensification. In the ACS algorithm, an ant positioned on node i chooses 

the city j to move to by applying the rule given by: 
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Where q is a random number uniformly distributed in [0, 1], q0 is a parameter (0≤q0≤1). 

b. The global updating rule is applied only to edges which belong to the best ant tour. The pheromone 

level is updated as follows: 
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c. While ants construct a solution a local pheromone updating rule is applied: 

 

  intijij τρτρ1τ       (8) 

 

 

3. APPLICATION TO THE OPTIMAL DESIGN OF LOW PASS STATE VARIABLE FILTER 

The three proposed variants of ACO algorithm were used to optimize the analog circuit, namely 

State Variable Filter. Analog active Filters are important building blocks in signal processing circuits. They 

are widely used in the separation and demodulation of signals, frequency selection decoding, and estimation 

of a signal from noise [17]. 

Analog active filters are characterized by four basic properties: the filter type (low-pass, high-pass, 

bandpass, and others), the passband gain (generally all the filters have unity gain in the passband), the cutoff 

frequency (the point where the output level has fallen by 3 dB from the maximum level within the passband), 

and the quality factor Q (determines the sharpness of the amplitude response curve) [18]. A state variable 
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filter (SVF) realizes the state-space model directly. The instantaneous output voltage of one of the integrators 

corresponds to one of the state-space model‟s state variables. 

SVF can generate three simultaneous outputs: low-pass, high-pass, and bandpass. This unique 

characteristic comes from the filter‟s implementation using only integrators and gain blocks. A second order 

SVF is illustrated in Figure 2. In this paper, the low pass output is supposed to be the desired output. 

 

 

R3

Vo

C1

+

_

+

_

+

_

C2
R4

R5
R6

R2

R1

Vi

 
 

Figure 2. Second order state variable low pass filter 

 

 

The response of a second order low-pass circuit is specified by the passband gain (H), the cutoff 

frequency (ω=2πf), and the selectivity factor (Q). These quantities are given in terms of passive component 

values as follows: 
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The specification chosen here is ω0= 10 k rad/s (f= 10 000/ (2*π) = 1591.55Hz) and Q0= 0.707 for 

reduced peak on low-pass response. 

In order to generate ω and Q approaching the specified values; the values of the resistors and 

capacitors to choose should be able to satisfy desired constraints. For this, we define the Total Error (TE) 

which expresses the offset values, of the cut-off frequency and the selectivity factor, compared to the desired 

values, by: 
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Where: 

 

0.707

.Q
Q   ,

SVF 











     (13) 

 

The objective function considered is the Total Error. The decision variables are the resistors and 

capacitors forming the circuit. Each component must have a value of the standard series (E12, E24, E48, E96, 

and E192). The resistors have values in the range of 10
3
 to 10

6
Ω. Similarly, each capacitor must have a value 

in the range of 10
-9

 to 10
-6

F. The aim is to obtain the exact values of design parameters (R1…6; C1, 2) which 

equate the Total-Error to a very close value to 0. 
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3. RESULTS AND ACO VARIANTS COMPARISON 

In this section we applied ACO algorithms to perform optimization of a Second order State Variable 

Low-Pass Filter. The studied algorithms parameters are given in Table 1 with a generation algorithm of 1000. 

The optimization techniques work on C codes and are able to link SPICE to measure performances. 

 

 

Table 1. The ACO Algorithmus Parameters 
Number of Ants 200 

Evaporation rate (ρ) 0 

Quantity of deposit pheromone (Q) 0.4 
Pheromone Factor (α) 1 

Heuristics Factor (β) 1 

τmin 0.5 
τmax 1.5 

 

 

The optimal linear values of resistors and capacitors forming the low-pass state variable Filter and 

the performance associated with these values using the three variants of the ACO technique: The MMAS, the 

AS and the ACS are shown in Table 2.  

 

 

Table 2. Linear values of component and related filter performance for the AS, The MMAS and the ACS 
 ACO 

„MMAS‟ 

ACO 

„AS‟ 

ACO 

„ACS‟ 

R1 (KΩ) 65.4 80.2 63.2 

R2 (KΩ) 19.4 58.1 88.8 

R3 (KΩ) 28.9 24.0 29.9 

R4 (KΩ) 84.3 74.9 39.3 

R5 (KΩ) 56.2 70.4 12.6 

R6 (KΩ) 15.7 22.8 48.3 

C1 (nF) 03.8 02.4 05.4 

C2 (nF) 08.7 08.1 04.0 

∆ω 0.00001 0.00008 0.00005 

∆Q 0.00008 0.00014 0.00002 

TE 0.00004 0.00011 0.00004 

 

 

The optimal values of resistors and capacitors forming the low-pass state variable Filter and the 

performance associated with these values for the different series using the three variants of the ACO 

technique: The MMAS, the AS and the ACS are shown in Table 3, Table 4 and Table 5 respectively. 

 

 

Table 3. Values of component and related filter performance for the MMAS 
 E12 E24 E48 E96 E192 

R1(KΩ) 68.0 68.0 64.9 64.9 65.7 

R2(KΩ) 18.0 20.0 19.6 19.6 19.3 
R3(KΩ) 27.0 30.0 28.7 28.7 29.1 

R4(KΩ) 82.0 82.0 82.5 84.5 84.5 

R5(KΩ) 56.0 56.0 56.2 56.2 56.2 
R6(KΩ) 15.0 16.0 15.4 15.8 15.8 

C1(nF) 3.90 3.90 3.83 3.83 3.79 

C2(nF) 8.20 9.10 8.66 8.66 8.66 

𝛥ω 0.06328 0.07287 0.00069 0.00015 0.00182 

𝛥Q 0.02898 0.00723 0.02377 0.00483 0.00338 

TE 0.04613 0.04005 0.01231 0.00250 0.00260 
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Table 4. Values of component  and related filter performance for the AS 
 E12 E24 E48 E96 E192 

R1(KΩ) 82.0 82.0 78.7 80.6 80.6 

R2(KΩ) 56.0 56.0 59.0 57.6 58.3 
R3(KΩ) 22.0 24.0 23.7 24.3 24.0 

R4(KΩ) 68.0 75.0 75.0 75.0 75.0 

R5(KΩ) 68.0 68.0 71.5 69.8 70.6 
R6(KΩ) 22.0 22.0 22.6 22.6 22.9 

C1(nF) 2.20 2.40 2.37 2.43 2.4 

C2(nF) 8.20 8.20 7.87 8.06 8.06 

𝛥ω 0.07018 0.03026 0.02467 0.00052 0.00039 

𝛥Q 0.06842 0.02974 0.03184 0.00611 0.00085 

TE 0.06930 0.03000 0.02826 0.003316 0.00062 

 

 

Table 5. Values of component  and related filter performance for the ACS 
  E12 E24 E48 E96 E192 

R1(KΩ) 68.0 62.0 61.9 63.4 63.4 

R2(KΩ) 82.0 91.0 90.9 88.7 88.7 
R3(KΩ) 27.0 30.0 30.1 30.1 29.8 

R4(KΩ) 39.0 39.0 40.2 39.2 39.2 

R5(KΩ) 12.0 13.0 12.7 12.7 12.6 
R6(KΩ) 47.0 47.0 48.7 48.7 48.1 

C1(nF) 5.60 5.60 5.36 5.36 5.42 

C2(nF) 3.90 3.90 4.02 4.02 4.02 

𝛥ω 0.08289 0.01298 0.00108 0.01145 0.00192 

𝛥Q 0.07117 0.09045 0.01873 0.00821 0.00110 

TE 0.07702 0.05172 0.00990 0.00983 0.00151 

From the results, we notice that the AS achieved a smaller design error. 

 

 

Figure 3 to 5 show the PSPICE simulation of the filter gain for the optimal values. The practical cuts 

off frequency using the three variants of the ACO technique: The MMAS, the AS and the ACS are equal to 

1.610 KHz, 1.601 KHz and 1.595 KHz respectively. 

 

 

  
Figure 3.  Frequency responses of low-pass State 

variable filter using the MMAS 

Figure 4. Frequency responses of low-pass State 

variable filter using the AS 

 

 

 
Figure 5. Frequency responses of low-pass State variable filter using the ACS 
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Table 6. Comparisons between the theoretical and practices for the error on the cut-off frequency 
 ∆ω 

theoretical 
∆ω 

Practical 

MMAS 0.00015 0.01194 

AS 0.00039 0.00628 
ACS 0.00192 0.00251 

 

 

Table 6 shows the comparison between the theoretical values and those practices for the error on the 

cut-off frequency for the optimal results. From Table 6, we notice that there is a slight difference between the 

simulation results and the theoretical results which is mainly due to imperfections of the op-amp which are 

considered perfect in the theoretical calculations. 

 

 

4. COMPARISON AND DISCUSSIONS 

4.1. Accuracy and Time Computing 

The optimal component selection of the Low-Pass State Variable Filter has been elaborated by other 

metaheuristics. Table 7 presents the ACO results for series E96 and E192, compared to those of the GA, 

ABC and PSO techniques. One can notice that the ACO techniques provide acceptable results than those 

achieved by the GA, PSO, and ABC algorithms. The AS technique has a deviation of about 0.06% from what 

is expected, which presents a highly accurate in the field of analog circuit design. 

Table 8 shows the run time of the three variants of the ant colony optimization compared to those of 

other metaheuristics. The comparison shows that the ABC algorithm achieved the shortest execution time, 

followed by the ACO techniques, in particular the ACS, which presents an execution time less than the half 

of those of the GA algorithm and PSO algorithm. 

 

 

Table 7. Component Values and Performance of GA, ABC, PSO and ACO Techniques 
 
 

GA 
[18] 

ABC 
[18] 

PSO 
[19] 

ACO 
„MMAS‟ 

ACO 
„AS‟ 

ACO 
„ACS‟ 

R1 (KΩ) 69.0 59.0 10.2 64.9 80.6 63.4 

R2 (KΩ) 2.55 88.7 8.66 19.6 58.3 88.7 

R3 (KΩ) 65.3 54.9 14.7 28.7 24.0 29.8 

R4 (KΩ) 237 90.9 187 84.5 75.0 39.2 

R5 (KΩ) 28.7 10.0 1.130 56.2 70.6 12.6 
R6 (KΩ) 1.43 51.1 2.940 15.8 22.9 48.1 

C1 (nF) 110 7.5 464 3.83 2.40 5.42 

C2 (nF) 80.4 4.32 82.5 8.66 8.06 4.02 
∆ω×10-4 0.3627 0.295 145.7 1.5 3.9 19.2 

∆Q×10-4 1.727 0.047 4.759 48.3 8.5 11.0 

TE×10-4 1.045 0.171 3.108 25.0 6.2 15.1 

 

 

Table 8. Computation time of GA, ABC, PSO and ACO Techniques: 
GA(s) 

[18] 

ABC(s) 

[18] 

PSO(s) 

[19] 
„MMAS‟(s) „AS‟(s) „ACS‟(s) 

444.0 2.6 336.0 188.6 134.1 121.8 

 

 

4.2. Convergence Rate and Optimum Rapidity 
 In order to check the convergence rate of the proposed algorithms, a robustness test was performed. 

i.e. the three algorithms  are applied a hundred times for optimizing the Total Error (TE) objective. In  

Figure 6 we present obtained results for the algorithms: AS, MMAS and ACS.  

The good convergence ratio can be easily noticed, despite the probabilistic aspect of the ACO 

algorithms. We can, also, notice that the robustness of the MMAS algorithm is better than the robustness of 

the AS and ACS algorithms; in fact the convergence rates to the same optimal value are 26%, 49% and 19% 

respectively for AS, MMAS and ACS.  

The Total Error (TE) values versus iteration number are ploted in Figure 7 and Figure 8 for the AS, 

the MMAS and the ACS algorithms for linear values and E192 series, respectively. From these figures, it can 

be seen that the number of iterations required to achieve the quality requirements are slightly different for 

each algorithm. In fact for the AS, the optimal value of the TE is reached on the 42
nd

 iteration, for the MMAS 

it is reached on the 253
rd

 iteration and for the ACS it is reached on the 14
th

 iteration. 
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We notice that the ACO methods are faster in term of the number of iterations to achieve the 

optimal values of the TE, in particular the ACS, compared to the GA algorithm and ABC algorithm, with 

4441 iterations and 175 iterations, to reach the optimal design respectively [18].  

 

 

  
Figure 6. Box plot for the convergence rate for TE Figure 7. TE values versus iteration number for the AS, 

ACS, and MMAS algorithms (linear values) 

 

 

 
Figure 8. TE values versus iteration number for the AS, ACS, and MMAS algorithms (E192 series) 

 

 

5. CONCLUSION  

We presented in this paper an application of the three important variants of the Ant Colony 

Optimization technique for optimal sizing of a state variable filter. SPICE simulation confirms the validity of 

the proposed methods. The AS performs the smaller Total Error, the AS and ACS give the rapid convergence 

to the optimal values and the MMAS provide a better convergence rate. The comparison, with already 

published works, showed that the ACO techniques present alternative and competitive methods for the 

analog filter design automation and optimization. 
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