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 As majority of the compression algorithms are implementations for CPU 

architecture, the primary focus of our work was to exploit the opportunities 

of GPU parallelism in audio compression. This paper presents an 

implementation of Apple Lossless Audio Codec (ALAC) algorithm by using 

NVIDIA GPUs Compute Unified Device Architecture (CUDA) Framework. 

The core idea was to identify the areas where data parallelism could be 

applied and parallel programming model CUDA could be used to execute the 

identified parallel components on Single Instruction Multiple Thread (SIMT) 

model of CUDA. The dataset was retrieved from European Broadcasting 

Union, Sound Quality Assessment Material (SQAM). Faster execution of the 

algorithm led to execution time reduction when applied to audio coding for 

large audios. This paper also presents the reduction of power usage due to 

running the parallel components on GPU. Experimental results reveal that we 

achieve about 80-90% speedup through CUDA on the identified components 

over its CPU implementation while saving CPU power consumption. 
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1. INTRODUCTION  

Best use of expensive computing resources such as memory, network bandwidth or processing 

units is growing day by day. As a result, consumption of those resources needs to be carefully planned 

in order to achieve maximum performance. Data compression helps to utilize space limited resources 

more effectively. There are several algorithms on lossless audio codecs; Free Lossless Audio Codec 

(FLAC) [1], Shorten [2], Windows Media Audio (WMA) [3], MPEG-4 [4], WavPack, Monkey’s Audio 

[5] and others being used by programs to alleviate space usage. Lossless audio compression detects and 

discards statistical redundancy in audio file in order to get reduced bit-rate and this process is generally 

obtained by implementing linear prediction for redundancy removal and the entropy encoder for coding the 

predictor output [6]. There are also some tradeoffs on the decision of using compression. One of the 

main issues is increase in encoding/decoding time as well as growth of power consumption. 

Apple Lossless Audio Codec (ALAC) is an audio coding format developed by Apple Inc. for 

lossless data compression of digital music. Filename extension .m4a is used for Apple Lossless data to store 

within an MP4 container. This extension is also used by Apple for lossy AAC audio data which is not a 

variant of ALAC [7]. An iTunes .m4p file is a DRM-encrypted M4A which isn’t interoperable outside of the 

Apple ecosystem. As a result, other lossless codecs, such as FLAC and Shorten, are not natively supported by 

Apple's iTunes software. So, users of iTunes software who want to use a lossless format have to use ALAC 

[8]. Apple Lossless supports bit depths of 16, 20, 24 and 32 bits and any arbitrary integer sample rate from  

1 to 384,000 Hz. 
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In comparison with the traditional GPGPU techniques, CUDA offers several advantages, such as 

shared memory, faster downloads, fully support for integer and bitwise operations and also CUDA code is 

easily understandable than OpenCL [9]. The process flow of CUDA programming is described below [10]: 

a. Data is copied from the main memory to the GPU global memory 

b. CPU sends the processing instructions to the GPU 

c. Each core at the GPU memory parallelly executes the data 

d. Result from GPU global memory is copied back to main memory 

In this paper, we propose an implementation of ALAC audio compression on NVIDIA GPUs. 

ALAC algorithm follows the same basic principle of other lossless audio compression illustrated in  

Figure 1 [11]. It is a highly serialized algorithm which is not efficient enough to be used on GPU. For 

example, as the input audio file is separated into packets, the encoding of next packet depends on the results 

of previous encoded packet. Our redesigned implementation for the CUDA framework aims to parallelly 

implement the parts of the algorithm where the computation of a method is not serialized by previous 

computations. 

The paper is presented as follows. Section 2 describes the implementation of CUDA model on 

ALAC Encoding and Decoding process. The experimental result with hardware and software setups are 

discussed in section 3 and finally conclusions will be made in section 4. 

 

 

2. RESEARCH METHOD 

2.1. SIMT Model 

The GPU core contains a number of Streaming Multiprocessors (SMs). On each SM, execution of 

each instruction follows a model like SIMD which is called SIMT referred by Nvidia. In SIMT, the same 

instruction is assigned to all the threads in the chosen warp. All threads in a warp are issued the same 

instruction, although not every thread needs to execute that instruction. As a result, threads in a warp 

diverging across different paths in a branch results in a loss of parallelism [12]. In our implementation, the 

branching factor is handled in CPU before calling the kernel to gain total parallelism. The kernel block size 

must be chosen less than or equal to tile size such that one or more elements of a tile is loaded into shared 

memory by each thread in a block. Resultantly, the device performs one instruction fetch for a block of 

threads which is in SIMT manner. This shortens instruction fetch and processing overhead of load instruction 

[13]. In the tests, we determine that 512 threads per block configuration is giving the best performance. In the 

CUDA implementation of ALAC algorithm, we have decided to exploit the framing and mixing phase of 

encoding. The decoding of an ALAC audio to pcm (pulse code modulation) data are done by following the 

steps of Figure 1 reversely. So, for the decoding section, we attempted to parallelize the un-mixing and 

concatenating phase. 

 

 

 
 

Figure 1. The basic operation of ALAC encoder 

 

 

2.1.1. SIMT Model in Encoding 

In serial CPU implementation of ALAC, the input data is divided to several frames by the encoding 

phase, where a frame is split into even smaller pieces to carry out mixing operation. As shown in Figure 2, 

the possible way to utilize this serialization of framing and mixing of encoding a stereo audio is to batch all 

the input packets into CUDA global memory for a single parallel operation of mixing the data as shown in 

Figure 3 taking advantage of SIMT nature. 
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Figure 2. CPU implementation of Framing and Mixing 

phase 

 

Figure 3. GPU implementation of Framing and 

Mixing phase 

 

 

2.1.2. SIMT Model in Decoding 

The decoding process is reverse of the encoding process. First ALAC audio data is decompressed. 

Then the predictors are run over the data to convert it to pcm data. Finally, for stereo audio, un-mix function 

is carried out to concatenate the 2 channels into a single output buffer. As the same independent behavior 

exist in the decoding process to make use of the data parallelism in CUDA, we distribute the work of the end 

of the decoding process across the GPU. 

 

2.2. Memory Coalescing 

 According to Jang B, Schaa D, et al, GPU memory subsystems are designed to deliver high 

bandwidth versus low-latency access. To gain highest throughput, a large number of small memory accesses 

should be buffered, reordered, and coalesced into a small number of large requests [14]. 

 For strided global memory access, the effective bandwidth is always poor. When concurrent threads 

simultaneously access memory addresses that are located far apart in physical memory, there is no possibility 

for coalescing the memory access [15]. Thus, we restructure the buffer in such a way that global memory 

loads issued by threads of warp are coalesced in encoding process as show in Figure 4. 

 

 

 
 

Figure 2. Uncoalesced and coalesced memory access 

 

 

2.3. Pinned Memory 

 By default, CPU data allocations are pageable. As CUDA driver’s uses page-locked or pinned 

memory, GPU cannot directly access data prom pageable host memory. Consequently, the GPU first 

allocates a temporary pinned memory, copies host data into it and then transfers data to the device memory. 

So, it is better to use pinned memory beforehand rather than using paged memory in order to reduce copying 

cost [16]. As we have to transfer channel buffers from GPU to CPU for each iteration while encoding frames, 

we kept the channel buffer of CPU as pinned memory for fast transfer of data. 

 

 

3. RESULTS AND ANALYSIS  

 To analyze the performance of CUDA implementation, we used a GeForce GTX 960 card with 

CUDA version 7.5 installed on a machine with Intel(R) Core(TM) i5-4590 CPU running at 3.30GHz. The 
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CPU implementation of ALAC is also tested on the same testbed. To compare the performance of our GPU 

implementation of ALAC algorithm, we selected representative of five audio files for testing. All these files 

have the CD format, i.e. 44.1kHz, 16 bits. 

a. Track 5 of [17] (28 s): Electronic Gong 5kHz (Mono) 

b. Track 20 of [17] (39 s): Saxophone 

c. Track 50 of [17] (22 s): Male speech (English) 

d. Track 68 of [17] (2 min 44 s): Orchestra 

e. Track 70 of [17] (21 s): Song by Eddie Rabbitt 

The audio files are collected from Sound Quality Assessment Material (SQAM) recordings for subjective 

tests 9. The flies were converted to WAV from FLAC to work with pcm data. To measure the results, we ran 

our test 10 times on each dataset for each reading and showed the average running results in this section. 

 

3.1. Encoding Results  

3.1.1. Execution Speed Gain 

 The results on Table 1 shows the average running speed results of both mono and stereo audio 

(Track 68) for CPU and GPU separately. For 16bit audio we achieve speed gain about 67% for mono and 

85% for stereo audio type. For 24bit audio the speed up is around 90% for both audio types. For 32bit audio, 

the speed increase is around 81%. Here we can infer that 24bit audio conversion results in faster encoding 

speed for GPU where for 16bit audio it is slower than the others. 

In Figure 5, we see for first test file (Track 5) we achieve 3x speed up, for second and third test file (Track 20 

& 50) we achieve 7x speed up, for fourth test file (Track 68) we gain 6.5x speed and lastly for fifth file 

(Track 70) we get 5x speed up. 

 

 

Table 1. Mixing/Converting phase execution time comparison for encoding process 

Bit Depth 
CPU execution time for 

mono (ms) 
GPU execution time for 

mono (ms) 
CPU execution time for 

stereo (ms) 
GPU execution time for 

stereo (ms) 

16 2.85 0.94 20.3 3.0259 

24 25.68 1.62 63.5 5.246 

32 9.32 1.71 38 4.8266 

 

 

 
 

Figure 3. Mixing/Converting phase speed up for encoding and decoding process against CPU using dataset 
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3.1.2. Power Consumption Saving 

 Looking at Table 2, the power consumption saving is least for 16bit audio for both mono and stereo 

audio files where for 24bit audio power saving is the highest. 

 

 

Table 2. CPU power saving in encoding process 

Bit Depth 
Power consumption saving for mono 

(Watt) 

Power consumption saving for stereo 

(Watt) 

16 0.66792 3.636927 

24 5.49444 9.209082 

32 2.0544 7.257163 

 

 

3.2. Decoding Results 

3.2.1. Execution Speed Gain 

 Decoding results for both mono and stereo file (Track 68) are shown in Table 3. According to the 

results, we get around 85% speed increase for 16bit mono audio and 90% for 16bit stereo. For 24bit audio, 

we achieve more than 90% speed up. Lastly for 32bit audio, around 89% speed up is gained. From this table, 

we can also state that 24bit audio decoding is faster in GPU than the others where 16bit audio conversion is 

slowest. 

 

 

Table 3. Un-mixing/Converting phase execution time comparison for decoding process 

Bit Depth 
CPU execution time for 

mono (ms) 
GPU execution time for 

mono (ms) 
CPU execution time for 

stereo (ms) 
GPU execution time for 

stereo (ms) 

16 4.02 0.5892 10.25 1.0764 

24 10.884 0.8352 28.032 1.8192 

32 7.093 0.864 20.354 1.715 

 

 

3.3.2. Power Consumption Saving 

 For decoding stage, we get less power saving than that of encoding stage. Here also 16 bit audio has 

the least power saving where 24 bit audio has the highest shown in Table 4. 

 

 

Table 4. CPU power saving in decoding process 

Bit Depth 
Power consumption saving for mono 

(Watt) 

Power consumption saving for stereo 

(Watt) 

16 0.690414 1.577814 

24 1.85396 4.379118 

32 1.124886 3.087194 

 

 

4. CONCLUSION  

In this paper, we analyzed the feasibility to use CUDA framework for Apple Lossless Audio Codec 

compression algorithm. Our primary focus was on outperforming the mixing/un-mixing speed of the CPU 

based ALAC implementation by using NVIDIA GPUs without losing any compression ratio. We tested our 

implementation on several datasets and made comparison. Experimental results demonstrate that we achieve 

average of 80-95% speed up for mixing/un-mixing audio data. 
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