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 Abstract:-In Internetworking system, the huge amount of data is scattered, 

generated and processed over the network. The data mining techniques are 

used to discover the unknown pattern from the underlying data. A traditional 

classification model is used to classify the data based on past labelled data. 

However in many current applications, data is increasing in size with 

fluctuating patterns. Due to this new feature may arrive in the data. It is 

present in many applications like sensornetwork, banking and 

telecommunication systems, financial domain, Electricity usage and prices 

based on its demand and supplyetc .Thus change in data distribution reduces 

the accuracy of classifying the data. It may discover some patterns as 

frequent while other patterns tend to disappear and wrongly classify. To mine 

such data distribution, traditionalclassification techniques may not be suitable 

as the distribution generating the items can change over time so data from the 

past may become irrelevant or even false for the current prediction. For 

handlingsuch varying pattern of data, concept drift mining approach is used 

to improve the accuracy of classification techniques. In this paper we have 

proposed ensemble approach for improving the accuracy of classifier. The 

ensemble classifier is applied on 3 different data sets. We investigated 

different features for the different chunk of data which is further given to 

ensemble classifier. We observed the proposed approach improves the 

accuracy of classifier for different chunks of data. 
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1. INTRODUCTION  

 Research over last few decades have developed many data mining algorithms for discovering 

knowledge underlying the data [1], [2]. These algorithms, however, are often used for static datasets, while 

recently developed new applications face the problem of processing large volumes of data generated in the 

form of data streams. Applications like sensor networks, web log analysis, and telecommunication systems 

require to process data generated at very high rates. Data stream imposes challenges like limited memory, 

less processing time and one scan of instances while processing. Traditional data mining algorithms cannot 

efficiently handle these problems, thereby leading to the development of stream data mining techniques. One 

of the challenges while learning from data streams is handling concept drifts, i.e., changes in data streams 

which deteriorate the accuracy of classifiers. This happens since classifiers learnt on past data instances are 

used for labelling recent data instances that reflect current concept which may be different from the old ones. 

Thus, for handling drifts in data streams, classifiers must use some technique for adjusting with changing 

environment [3-6]. Also, classifiers must be able to detect different types of drifts, sudden and gradual drift, 

that are characterized by the rate of changes observed [7]. 
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 Data stream is the sequence of data instances {x
t
,y

t
} for time t=1,2,3,...,T, where x is set of attributes 

and y is class label. We assume that as data instance x
t
 arrives, classifier C predicts its class label. After some 

time, actual class label y
t
 is available and is used by classifier for evaluation and as additional information for 

training purpose. This technique called supervised learning is used by most of data mining algorithms. 

However constraints applied by stream data are not well addressed by this technique.As time elopes, the 

concept about which data is collected changes over time. This phenomenon, also called, concept drift is 

divided into two main categories as: sudden drift and gradual drift. The first type of drift occurs when source 

distribution S of data stream is suddenly replaced by another distribution S
’
. The later type of drift is 

associated with slower rate of changes in data streams. Typically, data instances from different source 

distributions start mixing, where probability of observing data instances from new source distribution 

increases and that of old distribution decreases over time Multiple algorithms have been proposed for dealing 

with concept drifts in data streams. Here we describe works related to our study briefly.  

 Drift detector is mechanism used for analyzing data instances and triggering alarm as soon as drift is 

observed. The trigger indicates need of rebuilding classifier. The most popular drift detection is Drift 

Detection Method in which predicted labels are compared with actual labels for determining classification 

errors. Classification error is monitored to check if it falls beyond certain threshold. When an error falls 

beyond threshold, alarm is signalled to store incoming data instances into a buffer. When alarm level is 

reached, new classifier is build on data instances in buffer and old classifier is removed.Concept drift is 

adapted into system when system is updated over current concept. The popular technique for accommodating 

current concept is windowing technique. This technique helps in keeping selected data instances in the 

system. Windowing technique is most widely used, since it keeps most recent data instances while 

eliminating data instances belonging to old concepts. Window size is common trade-off due to the fact that 

larger window size helps in keeping track of slower changes, but fail in case of sudden changes, whereas 

smaller window size can adapt sudden drifts efficiently as compared to gradual changes.The best way for 

dealing with concept drifts in data streams is ensemble technique which is a set of component classifier, votes 

of which are combined to predict class labels. Ensemble classifiers are best for dealing with changes in data 

streams due to their modular nature, which allows ensemble to be structured either by retraining component 

classifiers or by replacing weakest classifier by recently trained classifier or by updating weights assigned to 

component classifiers depending on their respective performances. 

 

 

2. RESEARCH METHOD  

 Many algorithms have been developed with variations in basic processing technique of ensemble 

[8], [9] Minkuet. al. [10] proposed new approach that keeps different ensembles for dealing with diversity of 

concepts. It maintains different ensembles of data steams before concept drift and after concept drift in order 

to keep both old and new concepts in the system Senaratneet.al. [12] proposed a framework for determining 

hotspot of twitter activities and detecting drifts using kernel density estimation in streams of tweets. But it 

fails in determining the type of drift detected and taking measures over it. We overcome this problem by 

integrating online classifier and block-based classifier within single ensemble for reacting to different types 

of drifts efficiently.. To maintain minimum number of ensembles, we propose to use sliding window 

technique which helps in keeping most recent data instances. These data instances are used for retraining 

component classifiers, so as to keep ensemble updated over recent concept. In [13], [14] authors proposed a 

system that maintains ensemble of per-feature classifiers. One classifier is maintained for a single feature of a 

particular class. Such all per-feature classifiers of a class are combined for all classes making it hierarchy of 

weighted classifiers. The system spans over large memory space as the number of classes increases and 

thereby increasing time overhead. Our system analyzes features of class for checking out features responsible 

for drift, if any and for updating ensemble with necessary measures. 

 To overcome the problem of availability of actual class labels, learning technique is categorised into 

two types: online learning and block-based learning. In first approach, classifier predicts and evaluates as 

soon as datainstance is available. Whereas in later approach, blocks of data instances are used for evaluating 

classifier performance.Littlestone et. al. [15] put forward one of the algorithms for online learning, Weighted 

Majority Algorithm which aggregates predictions of component classifiers and updates weights of classifiers 

when predictions go wrong. Another ensemble proposed by Kotleret. al. [16] maintains set of classifiers, the 

weights of which are updates incrementally after each data instance. On each misclassification of data 

instance, the weights of the classifiers making false predictions are decremented. 

 Memory constraintis one among many challenges while handling data steams with concept drift. 

Hayat et. al. [17] proposed compact clustering technique to overcome this problem. Traditionally, every data 

instance of belonging to cluster was used for evaluating the cluster. The proposed compact clustering 

algorithm uses only neighbourhood instances for classification and clusters formed from unclassified 
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instances are compared with clusters of classified instances for checking abnormality and detecting drifts.Gao 

et. al. [18] proposed framework for detecting drift as well as new emerging classes in data streams using time 

constraints. The proposed system maintains buffer of instances unclassified by ensemble for certain time 

period. Instances remaining unclassified after time limit expiry are considered to be forming drift and are 

further analyzed for novel class evolution. Evolution of novel classes is another challenge in learning from 

data streams in which new classes emerge over time generating the need of restructuring ensemble by 

building new classifier for new class and eliminating the weakest component classifier. Novel class and 

feature evolution have been studied and many algorithms have been proposed for dealing with these issues 

[19-21].  

 The proposed system for handling concept drifts in data streams uses ensemble classifier technique 

for building base classifiers and using them for classification of testing data. The system builds online 

classifier as soon as new data instance is available and when block of fixed number of data instances is 

formed, block based c  classifier is developed. The classification of in coming data 

instance is done using weighted majority of base classifiers using weighting functions as: 

 

Where,  is weight of base classifier  at time and ) is the accuracy of classifier  at time . 

The accuracy and error rates are monitored for each type of classifier continuously over blocks of data 

instances using Error Rate function as: 

 
Where,  is the error rate of classifier  on recent block  of data instances and  is the probability 

given by the classifier  that  is an instance of class . 

As the value of error rate monitoring crosses certain threshold, drift is detected. These drifts are analyzed and 

ensemble is updated accordingly. 

 

 

3. RESULTS AND ANALYSIS 
 In our experiments, we evaluate our proposed ensemble that combines online classifier and block-

based classifier. We implemented our ensemble system in Java. The experiments were performed on 

computer system with Intel Core i5 480M @2.67 GHz processor and 4.00 GB of RAM. 

 We tested the performance of ensemble with single component classifiers. Our ensemble used k=5 

component classifiers; NB Tree, J48, Logistic, Random Forest and Bagging. The size of block used for all 

component classifiers and ensemble was equal d=100 as this size was best suitable for more accurate results. 

We evaluated ensemble performance for different sizes of block: 50, 100, 200, 500 and 1000. We observed 

that the statistical comparisons of performances of ensemble for each of above block size gives better results 

in terms of accuracy when block size was 100. However Block size does not alter ensemble accuracy 

significantly, but block size matters in case of drift detection. If the block size is large it ignores drifts that 

lasted for small time, while smaller block size detects drifts even if there are blips or noise in data streams. 

Real world data contain no precise information about occurrence or type of drifts in it. So it is practically 

impossible to test the desire accuracy in terms of drift however a manual drift is to be inserted in the data to 

achieve the target.So we decided to use publically available machine learning benchmark datasets gathered in 

the UCI repository [22] that signified presence of gradual drifts. 

 We evaluate our ensemble of online classifier and block-based classifier against single classifiers as 

well/ We chose J48, NB Tree, Logistic, Random Forest and Bagging as component classifiers of basic 

ensemble. The ensemble is further modified for learning incrementally as well as in blocks of fixed size. 

From performance comparison of proposed ensemble with component classifiers as shown in Table 1, we can 

see that ensemble improves the accuracy of classification on all datasets and ensemble takes equal processing 

time.  

 

 

Table 1. Performance Comparison between Component Classifier and Proposed Ensemble 
 

Classifier 

Classifier accuracy (in %) on 

Census income dataset Spam email dataset Electricity dataset 

NB Tree 86.6957 83.4624 72.9652 
J48 87.1901 85.0879 80.4749 

Logistic 85.2062 84.4444 76.0979 

Random Forest 84.4726 88.1553 81.9853 
Bagging 87.1257 86.0137 83.3485 

Proposed Ensemble 94.4094 92.6495 92.8426 
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 Traditional approach of classifying testing dataset against given training dataset becomes inefficient 

while dealing with data streams, as the data streams keep arriving unboundedly and testing dataset is not 

completely available. The modification to ensemble by adding online and block-based learning component to 

classifiers shows significant role for keeping track of classification accuracies. Thus the two approaches: 

online classification and block-based classification are applied to solve this issue. These approaches help in 

monitoring classifier performances as data instances arrive and keeps track of changes in data stram.  

 In block-based technique, size of the block can be instance based or time based. In instance based 

technique, blocks of fixed number of instances are used. While in time based technique, blocks of data 

instances arriving over specific time period are used. As data streams arrive at any rate, it is not feasible to 

keep track of performance in time based technique, since some blocks will be densely populated while others 

being rarely populated. We observed this pattern in electricity data where demand and supply changes 

drastically with different time stamps We evaluated our ensemble using different sizes of block and 

compared our results with experiments conducted using MOA framework. The results are shown in Table 2. 

From the experiments we concluded, although performance of ensemble remains constant for any block size, 

the block size of 100 instances gives results for drift detection similar to those obtained using standard MOA 

(Massive Online Analysis) framework. Thus for further experiments we used 100 instances as block size. 

 

 

Table 2. Performance comparison using different block size 
Block size (in no. of instances) Average accuracy of Ensemble No. of drifts detected 

50 86.0893 7 

100 86.0810 3 
200 86.0324 1 

500 85.9928 1 

1000 85.9574 0 

 

 

 Table 3 shows drifts detection using online and block-based method to ensemble. We analysed that 

for any dataset our ensemble works well in comparison with the component classifiers, online and block-

based classification while detecting gradual and sudden drifts efficiently. 

 

 

Table 3. Performance comparison using online and block-based technique 
 

Classifier 

Accuracy Comparisons using: 

Online technique over: Block-based technique over: 

Census income 
dataset 

Spam email dataset Census income Dataset Spam email  
dataset 

NB Tree 81.4659 78.6537 85.5649 81.1856 

J48 79.7652 72.7620 84.7610 78.6970 
Logistic 78.3652 74.9539 83.9865 78.0652 

Random Forest 83.6575 74.2886 83.4569 79.9099 

Bagging 80.3315 76.2449 85.7326 83.6666 
Proposed Ensemble 87.2546 88.0241 87.2701 86.1635 

No. of drifts detected - 4 3 1 

 

 

 Further we analysed the detected drifts to extract the hidden patterns in drifts that could potentially 

help us to find out the technique that can respond when next drift encounters. The analysis of drifts shows 

that values of few attributes are significantly missing and this leads to one of the root cause behind drift. The 

analysis of block before and after drift concluded that few blocks before drift, missing values of attributes 

started to observe in ascending way towards drift and in descending way afterwards the drift. The peak 

frequencies of missing values were noticed during drift. The results obtained as shown in Table 4 summarize 

that as the frequency of missing values started to increase, the performance of ensemble started degrading 

and visa versa. The values of attributes like workclass, occupation and native country were found missing 

during drifts. 

 The same pattern as shown in Table 4 was observed for all the further drifts in Census income 

dataset. This is recurring type of drift. Also we computed the information gain over the attributes of Census 

income dataset and we observed that the attributes that were found missing during drift are associated with 

highest values of information gain, thereby leading to be the main contributor to classification task. Thus 

handling missing values of attributes is also one of the key task in our proposed system. 

 We performed many experiments for handling missing values of attributes by either removing the 

instance that carries missing values or by replacing them using mean-mode imputation. We replaced the 
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missing values of numeric type of attributes by mean of values observed in previous instances and missing 

values of nominal attributes by mode. The graph shown in Figure 1 describes that replacing missing values 

by mean-mode imputation shows improved performance over other techniques: not dealing with missing 

values and removing missing values. 

 

 

Table 4. Summary of detected drifts 
Blocks observed Count of missing values Ensemble Accuracy over 

blocks workclass occupation native country 

10 blocks before drift 6 6 2 87.7510 

5 blocks before drift 14 14 8 86.5461 
Drift blocks 31 31 10 83.6993 

5 blocks after drift 18 20 8 86.9491 

10 blocks after drift 9 10 4 87.5421 

 

 

Another problem that causes performance loss of classifier is the training dataset. Concept drift is 

the scenario where old concept occurs with less probability and new concept is mostly seen. In this situation, 

classifiers show degraded performances. This is because classifiers are trained on dataset that carries old 

concept and data instances that are being classified belong to new concept. Thusincorporating a new concept 

in learning process is an important task. This can be done in two ways: by using just classified recent block 

of data instances for retraining classifier ensemble or by adding recent block of data instances to training 

dataset iteratively and using it for retraining ensemble. We conducted different experiments in which for each 

case, we changed training dataset in three different approaches. In the first approach, we did not retrain 

ensemble once it is trained at starting with provided standard training dataset. In second approach, we first 

trained ensemble using standard training dataset and tested the first block of data instances. We used this 

recently tested block for retraining the ensemble and testing next block of data instances. The process is 

repeated iteratively for next blocks of data streams. This case of keeping recently classified block as training 

dataset maintains the current concept, but fails to keep track of old concepts as time proceeds. Thus in third 

approach, while proceeding forward we simply added recently classified block to the training dataset and 

then retrained the ensemble. Figure 2 shows the performance of ensemble using the above three approaches 

of retraining ensemble. The results concludes that adding recent block of data instances to provided standard 

training dataset is a wise solution and improves the performance of ensemble very well. 

 

 

  
 

Figure 1. Performance comparison between different 

techniques of handling missing values 

 

Figure 2. Performance comparison between 

different approaches of re-training ensemble 

 

 

4. CONCLUSION 

 Most of recent applications generate large volumes of data at rapid rate, thus establishing the need 

of special data mining techniques for critical sensitive applications. Data stream mining is solution to the 

problem. Data stream mining poses challenges like limited memory storage, performance and change in 

concepts underlying data. Identification of two types of drifts, sudden and gradual drift may degrade the 

classifiers performance in terms of accuracy. To monitor such causes and parameters of drift identification, 

our proposed ensemble combines the characteristics of online classification technique and block-based 

classification technique and detects both types of drifts efficiently. Further our system analyzes theattributes 
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which are responsible behind the change in accuracy.Noisy, unbalance data and missing values of attributes 

were found to be the root cause behind the drift [23]. Our proposed system shows improved performance 

while detecting both kinds of drifts efficiently.However our work focuses on offline streaming data. 

 The contribution opens several directions for research studies. Current works in data stream 

classification focus detection of concept drift. Adaption of drifts to the system leads to new line of research. 

An interesting future work would be to identify evolution of new concepts for online streaming data. Recent 

techniques can be further extended for solving novelty detection problem. 
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