
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 8, No. 5, October 2018, pp. 3852~3859 

ISSN: 2088-8708, DOI: 10.11591/ijece.v8i5.pp3852-3859      3852 

  

Journal homepage: http://iaescore.com/journals/index.php/IJECE 

An Effective PSO-inspired Algorithm for Workflow Scheduling 
 

 

Toan Phan Thanh1, Loc Nguyen The2, Said Elnaffar3, Cuong Nguyen Doan4, Huu Dang Quoc5 

1,2Hanoi National University of Education, Ha Noi, Viet Nam 
3American University of Ras al Khaimah, UAE 

4Military Institute of Science and Technology, Ha Noi, Viet Nam  
5Thuong Mai University, Ha Noi, Viet Nam 

 

 

Article Info  ABSTRACT  

Article history: 

Received Jan 21, 2018 

Revised Apr 18, 2018 

Accepted Apr 25, 2018 

 The Cloud is a computing platform that provides on-demand access to a 

shared pool of configurable resources such as networks, servers and storage 

that can be rapidly provisioned and released with minimal management effort 

from clients. At its core, Cloud computing focuses on maximizing the 

effectiveness of the shared resources. Therefore, workflow scheduling is one 

of the challenges that the Cloud must tackle especially if a large number of 

tasks are executed on geographically distributed servers. This entails the need 

to adopt an effective scheduling algorithm in order to minimize task 

completion time (makespan). Although workflow scheduling has been the 

focus of many researchers, a handful efficient solutions have been proposed 

for Cloud computing. In this paper, we propose the LPSO, a novel algorithm 

for workflow scheduling problem that is based on the Particle Swarm 

Optimization method. Our proposed algorithm not only ensures a fast 

convergence but also prevents getting trapped in local extrema. We ran 

realistic scenarios using CloudSim and found that LPSO is superior to 

previously proposed algorithms and noticed that the deviation between the 

solution found by LPSO and the optimal solution is negligible.  
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1. INTRODUCTION  

The Cloud is a computing platform that provides convenient, on-demand access to a shared pool of 

configurable computing resources such as networks, servers and storage [1]. Workflow scheduling is one of 

the challenges that the Cloud must tackle especially if a large number of tasks are executed on the 

geographically distributed servers. This demands the adoption of a reasonable scheduling algorithm in order 

to attain a minimal completion time (called makespan).  

The rest of the paper is organized as follow. Section 2 reviews some of the related works germane to 

workflow scheduling algorithms. Section 3 describes the computation and communication model on which 

Cloud tasks operate. Based on this model, Section 4 presents our proposed scheduling algorithm LPSO 

(Local-search Particle Swarm Optimization). Section 5 describes the experiments we conducted using the 

CloudSim simulation tool [2] in order to evaluate the proposed algorithm. Section 6 concludes our paper and 

sketches future work. 
 
 

2. RELATED WORK 

2.1. Approaches for workflow scheduling problems 

A workflow is a sequence of connected tasks. Workflow scheduling in Clouds is challenge because 

each task needs to be mapped to an appropriate server while enabling that task to satisfy some performance 
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constraints. In general, the scheduling problem, i.e., the mapping of tasks to the computation resources such 

as servers, is an NP-complete problem [3]. Hence, past works banked mostly on heuristic-based solutions for 

scheduling workflows. 

For example, S. Parsa [4] proposed a scheduling algorithm that minimizes the makespan of the 

workflow in the Grid environment. A. Agarwal [5] studied the greedy algorithm which assigned an 

appropriate priority sequence numbers to tasks. J. Huang [6] proposed a workflow task scheduling algorithm 

based on genetic algorithm. S. Pandey [7] presented an effective scheduling algorithm (PSO_H) to minimize 

the cost of the execution. R. Buyya [2] presented a brief description of CloudSim, the useful simulation 

toolkit that used in this paper to simulate the execution of the tasks with different scheduling policy. 

J. Jintao [8] proposed a task scheduling algorithm based on service quality and the advantages of the 

Min-min algorithm. Guo-Ning and Ting-Lei [9] presented an optimized algorithm for task scheduling based 

on Hybrid Genetic Algorithms. The authors covered in their study the QoS requirements like completion 

time, bandwidth, cost, distance, reliability of different types of tasks. L. Guo [10] presented a model for task 

scheduling in Cloud to minimize the overall time of execution and transmission. L. Guo proposed the PSO 

algorithm (Particle Swarm Optimization) which is based on the small position value rule. R. Rajkumar [11] 

proposed a hierarchical scheduling algorithm that helps satisfy service level agreement with quick response 

from the service provider. S. J. Xue [12] proposed the hybrid PSO algorithm to minimize the cost execution 

of the workflow. Crossover and mutation of genetic algorithm are embedded into the PSO algorithm to 

improve the global search. J. Liu In et al [13] presented the components of an intelligent job scheduling 

system in cloud computing.  

 

2.2. The particle swarm optimization method 

The Particle Swarm Optimization (PSO) is one of the latest evolutionary optimization techniques 

introduced in 1995 by Kennedy and Eberhart [14]. There are many studies which succeed PSO strategy such 

as [15], [16]. They proposed the formula of updating the position vector as follows: 

 

vi
k+1=vi

k + c1 rand1×(pbesti - xi
k) + c2 rand2 ×(gbest - xi

k)    (1) 

 

xi
k+1 = xi

k + vi
k                 (2) 

 

where 

a. vi
k , vi

k+1 : velocity of particle i at iteration k and k+1  

b. xi
k, xi

k+1  : position of the particle i at iteration k and k+1 

c. ω : inertia weight; c1, c2 : acceleration coefficients  

d. rand1, rand2 : random number between 0 and 1 

e. pbesti : best position of particle i; gbest: position of best particle in a population 

The goal of PSO is to find the position that minimizes the fitness function denoted by: Fitness(gbest) → Min 

 

2.3. Topological neighborhood for the PSO 

The standard PSO has no neighborhood relationship, all of particles are directly connected to each 

other so there are no neighborhood relationships between them. The position of each particle is updated 

according to its personal best position (pbest) and the global best position among all the particles (gbest). 

However, various personal relationships, such as parent-child relationships, in real world do exist. This 

compelled some researchers [17] to propose topological neighborhood between particles in PSO’s. 

Researches [17] have applied various topological neighborhoods such as the Ring neighborhood and Von 

Neuman neighbourhood  where each particle shares its local best position among neighboring particles in the 

topological space. For this reason each particle is affected by the local best (lbest) in its local neighborhood 

instead of pbest. In PSOs that use a local best position, the formula for updating the position vector is 

 

vi
k+1 = ×vi

k + c1 rand1× (pbesti - xi
k) + c2rand2× (lbesti - xi

k)    (3) 

 

where lbesti is the local best position of particle i with the best fitness value among its neighbors. 

As shown in Figure 1, the neighborhood relationships are determined based on each topology. For 

example, in the Ring topology, each particle has k neighbors. In this paper we set k=2 so each particle xi 

connects directly to its left-neighbor (Left(xi)) and its right-neighbor (Right(xi)). Based on the Ring topology, 

we build a searching function described as follows 
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Function Ring(xi) 

Input: current position xi 

Output: x where Fitness(x) = min{Fitness(xi), Fitness(Left(xi)), Fitness(Right(xi))} 

 

 

 
 

 

3. PROBLEM FORMULATION 

We denote the workflow as a Directed Acyclic Graph (DAG) represented by G=(V, E), where:  

a. V is a set of vertex, each vertex represents a task 

b. T={T1, T2,…,TM } is the set of tasks, M is the number of tasks  

c. E represents the data dependencies between these tasks. The edge (Ti, Tj)  E means the task Ti is the 

father of the task Tj, the data produced by Ti will be consumed by the task Tj. 

d. The Cloud’s computation resource, set of servers S = {S1, S2,….,SN}. N is the number of servers. 

e. Each task Ti can be executed by any server SjS, and Si has to handle whole the workload of Ti 

f. The computation of task Ti denoted by Wi (flop-floating point operations) 

g. P(Si): the computation power of the server Si (MI/s : million instructions/second)  

h. The bandwidth B(Si,Sj) between server Si and server Sj represents by the function B(): S×S → R+ . We 

assume that B(Si,Si) = ∞ and B(Si,Sj ) = B(Sj,Si) 

i. Dij: data produced by task Ti and consumed by task Tj.  

Each scheduling plan can be represented by the function f(): T→S where f(Ti) is the server which handles the 

task Ti. 

Under the above assumptions, we may compute: 

a. The execution time of the task Ti is  

 

  i

i

TfP

W
              (4) 

 

b. The communication time between the task Ti and Tj is  

 

    ji

ij

TfTfB

D

,
         (5)

       

 

 

Formally, we seek to minimize the execution time of the workflow: makespan → min 

where the execution time, called makespan, is the time difference between the start and finish of a sequence 

of workflow's tasks. 

 

 

4. PROPOSED ALGORITHM 

4.1. Escaping local extremum 

During their execution, PSO-based algorithms may get trapped in local extrema. Our proposed idea 

to escape such local extrema is as follows: when the swarm falls into the area around the local extrema, we 

combine the PSOs in order to have a topological neighborhood with a neighborhood searching function [18] 

that moves particles to a new area. 

Variable Neighborhood Searching Function in order to help the swarm escape from the area around 

the local extrema, we devised two operators named Exchange and RotateRight, as illustrated in Figure 2, and 

built a Variable_Neighborhood_Searching function based on these operators. 

Figure 1. Neighborhood topologies 

(a) Star topology (b) Ring topology (c) Von neumann topology 
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Figure 2. Operator rotateright (a) and Operator exchange (b) 

 

 
Function Variable_Neighborhood_Searching ( ) 

Input: position vector xi 
Output: position vector xk : Fitness(xk) < Fitness(xi) 

Begin 

1. t := 0; 
2. while (Fitness(xk) > Fitness (xi) and (t < Max_Iteration) 

3. r := random [1,M]; 

4. xi := RotateRight(xi, r); 
5. rand1 := [1,M]; rand2 := [1,M]; 

6. xk := Exchange (xi, rand1, rand2); 

7. if Fitness(xk) < Fitness(xi)  then return xk else return xi; 
8. t := t+1;   

9. end while 

End.  

Note: If the function cannot find a better position than the current position(xi) within the Max_Iteration limit, xi is returned. 

 

4.2. The LPSO algorithm 

The LPSO algorithm can be described as follows: 

 
Algorithm LPSO ( ) 

Input: T, S, size of workload W[1×M], P[1×N], B[N×N], D[M×M],  the constant K, the deviation , the number of particle NoP  

Output: the best position gbest  

Begin 
1. For i:=1 to NoP do  

2.     xi:= random vectors; vi:= random vectors; 

3. end for 
4. t:= 0 ;  

5. While (the deviation of gbest > ) Do  

6.     for i:=1 to NoP do 
7.         Compute new position xi   

8.     end for 

9.     for i:=1 to NoP do 
10.        Update pbesti;   

11.    end for 

12.    Update gbest; 
13.    for i:=1 to NoP do 

14. lbesti := Ring(xi) ;  

15.    end for 

16.    for i:=1 to NoP do 

17.  Update vi
k and compute xi ; 

19.     end for 
20.    t++ ;  

21.  if (the deviation of gbest ≤  after K generations) then gbest:= Variable_Neighborhood_Searching (gbest); 

23. End while; 
24. Return gbest; 

End. 

 

In each iteration, the LPSO updates the position vectors of particles based on gbest and lbest using 

formulas (2) and (3). If the deviation of gbest less than  during K continuous generations, this means that the 

swarm is trapped in a local extremum area, and hence the function Variable_Neighbourhood_Searching( ) 

should be called. This function moves (migrates) the swarm to a new area and produces a new generation. 

If gbest is not improved significantly, i.e. the deviation of gbest is still less than  after K continuous 

migrations upon calling the function Variable_Neighbourhood_Searching( ), LPSO halts. In our experiments, 

we set K=100 and  = 0.21. In the best case, LPSO can find the absolute position upon calling the function 

Variable Neighbourhood Searching( ) K times, leading to spawning K2 generations. 

(b) (a) 

 

 

 

3 1 2 3 1 

 

3 1 2 3 1 

 

3 3 2 1 1 
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In the worst case, LPSO always finds a better position after the function 

Variable_Neighbourhood_Searching( ) is executed without getting trapped in a local extrumum, rendering 

LPSO an exhaustive search. Our default threshold for number of generations is 300. The LPSO stops upon 

reaching this threshold.  

 

 

5. RESULTS AND DISCUSSION 

We conducted some experiments in order to compare the performance of the LPSO algorithm with 

others, namely the PSO_H [7] and Random [19]. Our experimental setup consists of a computer with Intel 

Core i5 2.2 GHz, RAM 4GB, and Windows 7 Ultimate. The experiments were carried out using the 

CloudSim simulation package, the packet library Jswarm [20] and Java. 

 

5.1. Problem instance 

We use both random and real world instances in our experiments using the following data sets:  

a. The computation power of the servers and the bandwidth of connections between servers are collected 

from Cloud firms such as Amazon [21] and their Web site (exp. http://aws.amazon.com/ec2/pricing) 

b. The sets of working data are collected from the Montage project [22] 

 

We denote the ratio of the number of edges and the number of vertexes of graph G as follows: 

 

  2/1


MM

E


  
 

5.2. Configuration parameters 

The Cloud's configuration parameters are choosen as follows:  

a. Server’s computation power:  from 1 to 250 (million instructions/s) 

b. Connection bandwidth B:  from 10 to 100 (Megabit/s) 

c. Communication data  D:  from 1 to 10000 (Megabit) 

d.  = 0.729; c1 = c2 = 1.49445;  K = 30, Deviation  = 0.21,  

e. Number of particles NoP=25 ;  = 0.21 ;  : from 0.2 to 0.7 

 

5.3. Results 

Each problem instance was executed 30 times continuously. The results summarized in Table 1 

show that the mean value (listed in column Mean) and standard deviation value (listed in column STD) of 

LPSO are better than those of PSO_H [7] and Random [19] in most of the cases. When the number of servers 

(N) and the number of tasks (M) are relatively large (i.e. larger scale cloud), for example M=20 and N=8; 

M=25, N=8; M=50, N=8, LPSO outperforns PSO_H and Random with respect to all metrics: mean, standard 

deviation and best value (listed under column Best). 

Since the number of server (N) is a finite integer number, the elements of the position vector 

(denoted by xi
k[t]) must be integer numbers (t =1..M) too. In Equation (2), the value of the left hand side xi

k+1 

is an integer number while the value of the right hand side (xi
k + vi

k) is a real number. Pandey [7] resolved 

this situation by rounding the real value of the right hand side to the nearest integer. For example,  

if xi
k[t] + vi

k[t] = 3.2 then task Tt gets assigned to server S3. If xi
k[t] + vi

k[t] = 3.8 then Tt gets assigned to server 

S4. Inevitably, this introduces some sort of randomness in the assignment of servers in the PSO_H  

algorithm [7], and hence it can not maintain the diversification of swarm. For this reason, PSO_H often gets 

trapped in local extrema.  

Alternatively, we propose a novel method in which we assign the left hand side xi
k+1 to the server 

whose computation power is the closest to (xi
k + vi

k). 

 

xi
k+1[t]←j  if │P(Sj) - (xi

k[t] + vi
k[t])│≤│P(Sr) - (xi

k[t] + vi
k[t])│  SrS ; t =1,2 .. M 

 

In other words, the new particle’s position is the one which renders the task to be assigned to the 

server that has the closest computation power to the real value computed from the position vector. The results 

described in Table 1 show that the mean value (the Mean column) and standard deviation value (the STD 

column) of LPSO are better than those of PSO_H [7] and Random [19] in most of the cases. The solutions of 

LPSO are smaller than the solutions of PSO_H with a value difference varying from 1% to 12%. The LPSO's 

standard deviations are smaller than the PSO_H's with a value difference varying from 53% to 84%. These 
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results show that LPSO is stable and better than both the PSO_H [7] and Random [19]. Table 2 shows the 

comparison the makespan of LPSO with other algorithms for Montage workflows (seconds). 

Figure 3, Figure Figure 4 Figure 5 and Figure 6 depict the performance of the three algorithms: 

proposed algorithm LPSO, PSO_H [7], and Random [19] where the vertical axis represents the makespan of 

the schedule in seconds. For each instance, we compare the best position vector (column BEST), the mean 

value (column MEAN) and standard deviation value (column STD). At the first instance, LPSO was even able 

to find the optimal solution. 

 

 

Table 1. Comparison the Makespan of LPSO with other Algorithms for Random Workflows (Seconds) 
M N  LPSO PSO_H RANDOM 

Best Mean STD Best Mean STD Best Mean STD 

10 3 0.26 16.2 18.2 1.5 16.4 20.4 2.4 21.4 28.6 3.2 
10 5 0.26 75.6 81.0 5.0 86.0 107.5 13.2 123.3 184.1 42.4 

20 5 0.15 28.5 34.2 3.1 29.6 41.0 5.0 45.8 59.0 6.8 

20 3 0.31 122.7 128.4 3.6 130.6 142.1 4.8 140 161.8 8.4 
25 8 0.3 228.4 236.1 6.1 235.1 260.3 15.0 271.9 359.0 39.9 

50 8 0.3 11.1 12.6 0.8 12.1 14.0 0.9 13.9 87.1 25.2 

 

 

Table 2. Comparison the Makespan of LPSO with other Algorithms for Montage Workflows (Seconds) 
M N LPSO PSO_H RANDOM 

Best Mean STD Best Mean STD Best Mean STD 

20 5 421.4 437.7 9.3 440.1 461.1 10.9 450.2 540.2 44.6 
20 5 118.7 123.4 3.3 122.8 132 5.4 143.8 156.9 9.0 

25 8 228.4 236.1 6.1 235.1 260.3 15.0 271.9 359.0 39.0 

25 3 311.6 312.5 0.5 311.7 315.4 4.0 324.4 389.3 43.9 
50 8 91.1 101.7 5.5 95.0 108.0 6.3 110.5 196.8 32.8 

 

 

  
  

Figure 3. M=10, N=3 Figure 4. M=20, N=3 

 

 

  
 

Figure 5. Montage, M=20, N=5 

 

Figure 6. Montage, M=50, N=8 

 

 

6. CONCLUSION 

The ultimate goal of any scheduling algorithm is to minimize the execution time. In this work, we 

showed is advantageous as it avert getting trapped in local extrema. The contributions of our paper are: 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 8, No. 5, October 2018 :  3852 – 3859 

3858 

a. Building a novel approach, represented by the function Variable_Neighbourhood_Searching, to help 

optimization algorithms escape from a local extremum. 

b. Proposing a new scheduling algorithm named LPSO by incorporating the PSO strategy and function 

Variable Neighbourhood Searching. 

The experimental results show that LPSO is superior to its predecessor especially when LPSO 

works in a larger scale Cloud. In the future, we wish to investigate how to improve the LPSO algorithm in 

order to solve bigger instances within a reasonable makespan. 
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