Nonlinear control strategy of single-phase unified power flow controller

Younes Abouelmahjoub¹, Mohamed Moutchou²

¹Department of Industrial Science and Technology, LABSIPE Lab, National School of Applied Sciences, Chouaib Doukkali University in EL Jadida, Morocco
²Department of Electrical Engineering, National Higher School of Arts and Crafts, Hassan II University in Casablanca, Morocco

ABSTRACT

In this work we propose a nonlinear control strategy of single-phase unified power flow controller (UPFC), using in order to enhance energy quality parameters of a perturbed single-phase power grid supplying nonlinear loads. The control objectives are: i) The current harmonics and the reactive power compensation, that ensure a satisfactory power factor correction (PFC) at the point of common coupling (PCC); ii) compensation of the voltage perturbations (harmonics and sags of voltage) in order to ensure the desired level, of load voltage, without distortion; iii) DC bus voltage regulation. The considered control problem entails several difficulties including the high system dimension and the strong system nonlinearity. The problem is dealt with by designing a nonlinear controller with structure including three control loops. The inner-loop regulator is designed using the Lyapunov technique to compensate the current harmonics and reactive power. The intermediary-loop regulator is designed using the Backstepping technique to compensate the voltage perturbations. The outer-loop regulator is designed using a linear PI to regulate the DC bus voltage. The control stability is proved theoretically and through simulations, these latter show the effectiveness and strong robustness of the proposed control, and prove that the above-mentioned objectives are achieved.

Keywords:
Backstepping technique
Harmonics compensation
Lyapunov design
Nonlinear control
Power factor correction
UPFC system

This is an open access article under the CC BY-SA license.

Corresponding Author:
Younes Abouelmahjoub
Department of Industrial Science and Technology
National School of Applied Sciences, Chouaib Doukkali University
Azemmour road, National No. 1, El Haouzia BP: 1166 El Jadida 24002, Morocco
Email: abouelmahjoub.y@ucd.ac.ma

1. INTRODUCTION

Nowadays, the increased use of computer equipments and power electronics-based devices on electrical grids contributes to the degradation of the electrical energy quality. In fact, the power electronics dedicated to electrical engineering as well as the electronics of computer equipments essentially contribute to the proliferation of harmonic disturbances. These devices, called nonlinear or distorting loads, generate harmonic currents which cause the distortion of the voltage waveform at the PCC (due to load current in the grid impedance) [1]. In addition, the presence of these harmonic disturbances in electrical installations becomes a real 'headache' for producers and users of electricity in the industrial, tertiary and domestic sector.

Now, the concerns of distributors and consumers of electricity focus on improving the power factor. The harmonic pollution that affects the electricity supply grid has led electricity producers and distributors to
take this new constraint seriously into account with a view to finding solutions for a better of the electrical energy quality.

In recent times, active power filters (APFs) have proved to be the best modern solution to cope with electrical power quality issues. Various APFs configurations exist namely: shunt APF [2-4], series APF [5] and UPFC system [6], which combines both parallel and series structures of APF. The UPFC system injects at PCC, appropriate current and voltage signals of harmonics compensation, which ensure the cancellation of all disturbing harmonics, in the electrical distribution networks, upstream of the PCC [7-15].

In this study, we are interested in single-phase UPFC system connected between the perturbed power grids and the nonlinear loads. The problem of controlling single-phase UPFC system has arouse a great of interest over the last years. In this respect, several control strategies have been proposed. The work [16] presented a microcontroller program used to control the single-phase UPFC system. The obtained experimental result showed a good agreement with the simulation result. The paper [17] proposed a real-time control system for a single-phase UPFC, both obtained simulation and experiment results have proved the effectiveness of the proposed control system. In [18], an attempt was made to separate the series part and the shunt part of UPFC, this gives the possibility to install series and shunt parts of UPFC at different required locations. Finally the responses of two modified DC link UPFC are compared. In [6], an implementation for controller to control the single-phase UPFC system using the DSP-TMS320C31 is developed. In [19], a new hybrid technique which combines the radial basis function (RBF) neural network with the sliding mode technique is proposed to design a UPFC system for power flow control of an electric power transmission system. In [20], a proportional resonant (PR) controller is used to generate switching signals for each leg of the input full-bridge converter; by synthesizing an appropriate injection voltage, the half-bridge inverter controls the power flow of the transmission line; in addition to simulation of system by MATLAB/Simulink, an experiment realization on the UPFC was carried out. In all the previous studies, the objective was controlling the power flow in the transmission systems between the power grids and the consumer loads in order to improve the quality of electrical energy; but note that the performances of the controllers which were proposed in [6, 16-21] were not quantified by the indication of the current THD and the voltage THD. Furthermore, in most previous works, the grid internal impedance was supposed to be zero [6, 16, 18, 19]. In real life, this impedance is nonzero and must be considered in single-phase power grid model.

In the present paper, the problem of controlling single-phase UPFC system, associated with perturbed single-phase power grids supplying nonlinear loads, is addressed considering reduced-part topology. A novel nonlinear controller is designed and formally shown to meet the PFC requirement, the compensation of the voltage perturbations, and the regulation of DC bus voltage. A major feature of the new control design is that none of the limitation of previous controllers is present i.e. the grid internal impedance is not neglected. The structure of proposed nonlinear controller contains three control loops. The inner-loop is designed, using the Lyapunov technique, to ensure a perfect PFC. The intermediary-loop is designed, using the Backstepping technique, to compensate the voltage perturbations. The outer-loop is established in order to regulate the DC bus voltage, through filtered PI regulator. The closed-loop control system analysis is presented in this paper to proof, that all control objectives are actually achieved by the proposed controller. Several simulation results show that additional robustness features are reached. Compared to the controllers previously cited, the new nonlinear controller enjoys several features including:

- The present controller is designed for the single-phase UPFC system with reduced topology, this latter features less switches and a smaller number of gate drivers, compared to the Two-Leg Full-Bridge topology used in [6, 18, 19, 20]. As a result, the present nonlinear controller is simpler to implement because it involves less control signals to generate and apply.
- The control design proposed, in works [6, 16, 18, 19], relies upon very restrictive assumption e.g. the internal impedance of the single-phase power grid was supposed to be zero [6, 16, 18, 19] which entails an approximate model used in control design (because the model dimension is smaller than that of the true system). The present study does not rely on this above assumption. Therefore, the system model used in the control design is of higher dimension leading to a higher performances controller.
- The performances of the proposed controller were quantified by calculation of the THD values of current and voltage. Such a study based in terms of THD current and voltage was missing in the all previous works [6, 16-21].
- By using a rigorous theoretical analysis, the control objectives (i.e. PFC, compensation of voltage perturbations and DC voltage regulation) are actually achieved. Such a formal analysis was missing in the all previous works [6, 16-21].

This paper organized as follows: Section 2 is devoted to the description and modeling of the single-phase UPFC system. The design of the nonlinear controller is treated in section 3. The closed-loop control system analysis is presented in section 4. In section 5, the controller performances are illustrated by several numerical simulations.

Nonlinear control strategy of single-phase unified power flow controller (Younes Abouelmahjoub)
2. PROBLEM FORMULATION

2.1. Single-phase UPFC topology

The proposed single-phase UPFC system is shown in Figure 1. It contains two inverters back-to-back, connected to the DC bus side including two identical energy storage capacitors C_{dc}. The IGBT-diode based inverters operate in accordance with PWM [22, 23]. From the AC side, the single-phase UPFC system is connected on the one hand in parallel with the perturbed power supply grid through filtering inductor (L_p, r_p), on the other hand in series with a nonlinear load via filtering inductor (L_s, r_s), capacitor C_s and current transformer. The perturbed power grid is modeled by a disturbed voltage source v_g in series with an internal impedance formed by a resistor r_g and an inductor L_g.

![Figure 1. Single-phase UPFC system](image)

The switching functions μ_p and μ_s of the single-phase UPFC system are defined as:

$$\mu_p = \begin{cases} +1 & \text{if } S_1 \text{ is ON and } S_3 \text{ is OFF} \\ -1 & \text{if } S_1 \text{ is OFF and } S_3 \text{ is ON} \end{cases}$$

$$\mu_s = \begin{cases} +1 & \text{if } S_2 \text{ is ON and } S_4 \text{ is OFF} \\ -1 & \text{if } S_2 \text{ is OFF and } S_4 \text{ is ON} \end{cases}$$

The load current $i_L(t)$, in steady-state, is a periodic signal that can be expressed as (1).

$$i_L(t) = \sum_{h=1}^{n} I_h \sin(h\omega_s t + \varphi_h)$$

where I_h is the current harmonic amplitude of order h, φ_h is the « h » harmonic phase at the origin.

2.2. Single-phase UPFC modeling

The instantaneous model of the single-phase UPFC system is given by:

$$\frac{di_g}{dt} = (1/L_g)(-r_g i_g + v_g - v_s - v_L)$$

$$\frac{di_{fp}}{dt} = (1/L_p)(-r_{fp} i_{fp} + \frac{\mu_p v_0}{2} + \frac{v_d}{2} - v_s - v_L)$$

$$\frac{dv_s}{dt} = (1/C_s)(m_s i_s + m_s^2 i_L)$$
Nonlinear control strategy of single-phase unified power flow controller (Younes Abouelmajjoub)

\[
\frac{di_{fs}}{dt} = \frac{1}{L_{g}} (-r_{g} i_{f} + \frac{\mu_{s} v_{0}}{2} + \frac{v_{d}}{2} - \frac{v_{0}}{m_{s}}) \tag{2d}
\]

\[
\frac{dv_{0}}{dt} = \frac{1}{C_{dc}} (-\mu_{p} i_{fp} - \mu_{s} i_{fs}) \tag{2e}
\]

\[
\frac{dv_{d}}{dt} = \frac{1}{C_{dc}} (-i_{fp} - i_{fs}) \tag{2f}
\]

where \(m_{s}\) is the transformation ratio of current transformer, \(v_{0} = v_{1} + v_{2}\) and \(v_{0} = v_{1} - v_{2}\).

The model (2a-f) is useful for building up an accurate simulator of the UPFC system. However, it cannot be based upon in the control design as it involves binary control inputs, namely \(\mu_{p}\) and \(\mu_{s}\). This type of difficulty is generally overcome by resorting to average models where instantaneous signals are replaced by their average shapes. The signals are averaged over cutting intervals \([22, 24]\). The average model of the single-phase UPFC system is expressed as (3a), (3b), (3c), (3d), (3e), (3f):

\[
\dot{x}_{1} = \frac{1}{L_{g}} (-r_{g} i_{1} + v_{g} - x_{3} - v_{L}) \tag{3a}
\]

\[
\dot{x}_{2} = \frac{1}{L_{p}} (-r_{p} i_{2} + \frac{u_{p} x_{5}}{2} + \frac{x_{6}}{2} - x_{3} - v_{L}) \tag{3b}
\]

\[
\dot{x}_{3} = \frac{1}{C_{dc}} (m_{s} x_{4} + m_{s}^{2} L_{L}) \tag{3c}
\]

\[
\dot{x}_{4} = \frac{1}{L_{s}} (-r_{s} x_{4} + \frac{u_{s} x_{5}}{2} + \frac{x_{6}}{2} - \frac{x_{3}}{m_{s}}) \tag{3d}
\]

\[
\dot{x}_{5} = \frac{1}{C_{dc}} (-u_{p} x_{2} - u_{s} x_{4}) \tag{3e}
\]

\[
\dot{x}_{6} = \frac{1}{C_{dc}} (-x_{2} - x_{4}) \tag{3f}
\]

where \(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, u_{p}, u_{s}\) are respectively the averaged variables \(i_{g}, i_{fp}, v_{s}, i_{fs}, v_{0}, v_{d}, \mu_{p}, \mu_{s}\).

3. CONTROLLER DESIGN

The proposed nonlinear controller for the system (3a-f) represented by Figure 2 will be developed in three major steps, respectively devoted to: i) the inner loop design, ii) the intermediary loop design, iii) and the outer loop design. The first step is to design an inner-loop control, using the Lyapunov technique, to ensure a perfect PFC. The second step is to design an intermediary-loop control, using the Backstepping technique, to ensure the compensation of voltage perturbations in the power grid. In the third step, an outer-loop control, involving filtered PI regulator, is built-up to achieve DC bus voltage regulation.

3.1. Current inner-loop design

According to the PFC requirement, the current \(x_{1}\) provided by the single-phase power supply grid must be a sinusoidal signal in phase with the fundamental of grid voltage namely \(v_{g1}\). To this end, the current \(x_{2}\) injected by the single-phase UPFC system should follow as closely as possible its reference \(x_{2}^{*}\) as (4).

\[
x_{2}^{*} = i_{L} - \beta v_{g1} \tag{4}
\]

where \(v_{g1} = E_{1} \sin(\omega t)\), and \(\beta\) is any positive constant. As a matter of fact, the latter is allowed to be time-varying but it must converge to a constant value. That is, \(\beta\) stands as an additional control input. To achieve the PFC objective, we introduce the tracking error on the filter current \(x_{2}\).

\[
z_{1} = x_{2} - x_{2}^{*} \tag{5}
\]
Using (3b), the time-derivative of (5) yields the following dynamics of the error z_1.

$$\dot{z}_1 = \left(-r_p x_2 + \left(u_p x_5 / 2\right) + \left(x_6 / 2\right) - x_3 - v_L\right) / L_p + di_L / dt + \beta v_{g1} + \beta \dot{v}_{g1} \tag{6}$$

The control variable, noted μ_p, appears in (6) after a single derivation of the error z_1. This control variable must now be determined in order to make z_1-system globally asymptotically stable. To this end, we introduce the following Lyapunov function candidate:

$$V_1 = z_1^2 / 2 \tag{7}$$

Its dynamic is given by:

$$\dot{V}_1 = z_1 \dot{z}_1 \tag{8}$$

To ensure z_1-system global asymptotical stablity, it is sufficient to choose the control law μ_p so that

$$\dot{z}_1 = -c_1 z_1 \tag{9}$$

where c_1 is any positive parameter. Comparing (9) and (6) yields the following control law:

$$u_p = (2r_p x_2 + 2x_3 - x_6 + 2v_L - 2L_p c_1 z_1) + 2L_p \frac{di_L}{dt} - 2L_p \beta v_{g1} - 2L_p \beta \dot{v}_{g1} \bigg/ x_6 \tag{10}$$

As this control law μ_p involves the dynamics of the signal β, it follows from (6) that the signal β and its first time-derivative must be available.

3.2. Voltage intermediary-loop design

In order to compensate the voltage disturbances at the PCC, the load voltage v_L must be a sinusoidal signal at the terminals of sensitive load:

$$v_L \rightarrow v_L^* = V_{L_{max}} \sin(\omega t) \tag{11}$$

According to the voltage disturbances compensation requirement, the series voltage x_3 injected by the single-phase UPFC system should follow as closely as possible its reference signal x_3^* as (12).

$$x_3^* = v_{pcc} - v_L^* \tag{12}$$

where v_{pcc} is the voltage at the point of common coupling.

The proposed regulator must force the voltage x_3 to track its reference signal x_3^*. The synthesis used is known as the Backstepping technique [25] and is carried out in two steps.

- **Step 1: Stabilization of tracking error z_2.**

$$z_2 = x_3 - x_3^* \tag{13}$$

The time-derivative of (13) yields the following dynamics of the error z_2:

$$\dot{z}_2 = \left(m_r x_4 / C_s\right) + \left(m_0^2 i_L / C_s\right) - x_3^* \tag{14}$$

We use the following Lyapunov candidate function:

$$V_2 = z_2^2 / 2 \tag{15}$$
Its dynamic is given by:

\[
\dot{V}_2 = \left((m_s x_4/C_s) + (m_s^2 i_L/C_s) - \dot{x}_3^* \right) z_2
\]

(16)

Consider that \((m_s x_4/C_s)\) is the effective control, \(\sigma\) is the stabilizing function, it is sufficient to take:

\[
\sigma = -c_2 z_2 - (m_s^2 i_L/C_s) + \dot{x}_3^*
\]

(17)

where \(c_2\) is a positive parameter.

To study the stability of the above control, we define the following corresponding error \(z_3\):

\[
z_3 = (m_s x_4/C_s) - \sigma
\]

(18)

Then, we get the equation of \(z_2\) dynamics, and that of \(V_2\) derivative:

\[
\dot{z}_2 = -c_2 z_2 + z_3
\]

(19)

\[
\dot{V}_2 = -c_2 z_2^2 + z_2 z_3
\]

(20)

Step 2: Stabilization of the subsystem \((z_2, z_3)\)

In this step 2, we present the design of the controller that makes the errors \((z_2, z_3)\) to tend to zero. The \(z_3\) dynamics is given in (21):

\[
\dot{z}_3 = \left(m_s \left(-r_n x_4 + (u_s x_5/2) + (x_6/2) - (x_3/m_s)\right)/C_s L_n \right) - \dot{\sigma}
\]

(21)

The control variable, noted \(u_s\), appears for the first time in (21). Let us consider the following Lyapunov function.

\[
V_3 = V_2 + (z_3^2/2)
\]

(22)

Using (20), the time-derivative of \(V_3\) is given by:

\[
\dot{V}_3 = -c_2 z_2^2 + z_3 (z_2 + \dot{z}_3)
\]

(23)

To ensure that the \((z_2, z_3)\)-system to be globally asymptotically stable, it is sufficient to choose the control law \(u_s\) so that \(\dot{V}_3 = -c_2 z_2^2 - c_3 z_3^2\) which, due to (23), amounts to ensuring that:

\[
\dot{z}_3 = -z_2 - c_3 z_3
\]

(24)

where \(c_3\) is a positive parameter.

From the (21) and (24), we deduce the following backstepping control law \(u_s\):

\[
u_s = \left(2r_n x_4 - x_6 + (2x_3/m_s) + 2C_s L_n (-z_2 - c_3 z_3 + \dot{\sigma})/m_s \right)/x_5
\]

(25)

Remark: The control laws (10) and (25) involve a division by the DC bus voltage \(x_5\), there is no risk of singularity (division by zero) in steady state because, in practice, the DC bus voltage remains all the time positive. Otherwise, the two power converters of the UPFC system cannot work.

3.3. Voltage outer-loop design

According to the DC bus voltage regulation requirement, the outer-loop regulator generates an adjustment law for the signal \(\beta\) so that the DC bus voltage \(x_5\) is regulated to its reference value \(x_5^*\). To this end, the relation between \(\beta\) and the voltage \(x_5\) is established see in Figure 2.
Figure 2. Synoptic scheme of the multi-loop nonlinear control of UPFC system

- The DC bus voltage x_5 varies, in response to the signal β, according (26a):

$$\dot{x}_5 = \left[K + f_1 (\beta, \dot{\beta}, z_1, z_2, z_3) + f_2 (\beta, \dot{\beta}, z_1, z_2, z_3, t) \right]/2x_5$$

(26a)

- Then, the squared-voltage $y_d = x_5^2$ varies, in response to the signal β, according to the following time-varying linear (26b):

$$\dot{y}_d = K + f_1 (\beta, \dot{\beta}, z_1, z_2, z_3) + f_2 (\beta, \dot{\beta}, z_1, z_2, z_3, t)$$

(26b)

with $K = (4V_{max}I_1 \cos(\phi_1) - 4E_1I_{Q} \cos(\phi_1) - 2r_p \sum_{k=1}^{C_{dc}}) / C_{dc}$

$$f_1 (\beta, \dot{\beta}, z_1, z_2, z_3) = (4E_1I_1(r_g + r_p) \beta \cos(\phi_1) + 2E_1I_1B_L \omega (\cos(\phi_1) + \sin(\phi_1)) + 2 \beta E_1^2 / C_{dc})$$

$$-2(r_g + r_p) \beta^2 E_1^2 / C_{dc}) - 2((L_g + L_p) \beta E_1^2 / C_{dc}) + (4z_1(-r_p z_1 - z_2 + L_p z_1^2) / C_{dc})$$

The expressions of $f_2 (\beta, \dot{\beta}, z_1, z_2, z_3, t)$ is complex and so is no cited in this paper.

The signal β stands as a control input of the system (26b). The problem is to design for β a tuning law so that the squared voltage $y_d = x_5^2$ tracks its reference $y_d^* = x_5^2$. At this stage, the signal β and its first time-derivative must be available, the following filtered PI regulator is adopted:

$$\beta = c_6(c_4z_4 + c_5z_5)/(c_6 + s)$$

(27a)

with $z_4 = y_d^* - y_d$ and $z_5 = \int_0^s z_4 \, d\tau$, where s denotes the Laplace variable, and the parameters (c_4, c_5, c_6), of the outer-loop regulator, are any positive real constants. The choice of these parameters will be clearly mentioned in the following analysis so that the control objectives are achieved. For now, let us note that (27a) implies that $\dot{\beta}$ can be computed using (27b):

$$\dot{\beta} = c_6(c_4z_4 + c_5z_5) - \beta$$

(27b)
4. CONTROL SYSTEM ANALYSIS
The following notations are needed to formulate the results:

\[k_2 = c_6k_1 - ((4E_1I_1(r_p + r_g)\cos(\phi_I) + 2E_1I_1L_g\omega_g(\cos(\phi_I) + \sin(\phi_I)) - (2(r_p + r_g)\beta_6E_1^2 + 2E_1^2)/C_{dc})\]
\[z_6 = \beta_6\epsilon = \frac{1}{\epsilon} = -2\beta_6E_1^2/(L_g + L_p)/C_{dc} \]
\[a_0 = -c_1^22(\epsilon_0^2k_1 - c_1c_2c_3c_4c_5k_1 + c_1c_2^2c_3c_4c_5k_2) \]
\[a_1 = -(c_1c_2c_3c_4c_5 - c_1 + c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5)k_1 \]
\[+ (c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5)k_2 \]
\[a_2 = (c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5)k_1 \]
\[+ (c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5)k_2 \]
\[a_3 = c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 - c_1c_2c_3c_4c_5 \]
\[x_3 = z_3 = (m_0x_4/C_r) - \sigma \] vanish exponentially fast with \(x_3^* = v_{pcc} - \nu_L \).

Then, the global closed-loop control system has the following properties:
- The tracking error \(z_2 = x_2 - x_2^* \) vanishes exponentially fast with \(x_2^* = i_L - \beta_1v_{g1} \).
- The tracking errors \(z_2 = x_2 - x_2^* \) and \(z_3 = (m_0x_4/C_r) - \sigma \) vanish exponentially fast with \(x_3^* = v_{pcc} - \nu_L \).
- The augmented state vector \(Z(t) = (z_2 z_3 z_4 z_5 z_6)^T \) undergoes state (28a):

\[\dot{Z} = f(t, Z) \]

(28a)

Where

\[f(t, Z) = \begin{bmatrix} -c_1z_1 & -c_2z_2 & -c_3z_3 & -c_4z_4 & -c_5z_5 & -c_6z_6 \\ -K - f_1(Z) - f_2(Z, t) & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \]

(28b)

- The control parameters \((c_1, c_2, c_3, c_4, c_5, c_6)\) are chosen so that the following inequalities hold:

\[b_1 = a_0d_{a1} - a_1, \quad b_2 = a_1d_{a2} - a_1, \quad a_1 > 0, \quad b_1 > 0, \quad a_0d_{a1} - b_2a_1 - b_2a_1 > 0, \quad a_0d_{a1} - a_0d_{a1}a_2 - a_0d_{a2}a_2 > 0, \quad a_0 > 0 \]

(29)

Then, there exist positive constants \(\epsilon^* \) and \(\eta^* \) such that for all \(0 < \epsilon < \epsilon^* \), the system (28a-b) has a unique exponentially stable \((2\pi/\alpha_{\beta})\)-periodic solution \(Z(t, \nu) \) with the property \(|Z(t, \nu) - Z_0^x| \leq \eta \cdot \epsilon \) (where \(Z_0^x = (0 0 0 0 0 0)^T \)). With

\[\beta_0 = \frac{k_4 - \sqrt{k_4^2 + 4k_5^2k_3}}{2k_3} \]

\[k_3 = -2(r_p + r_g)E_1^2/C_{dc} \]

\[k_4 = (4E_1I_1(r_p + r_g)\cos(\phi_I) + 2E_1I_1L_g\omega_g(\cos(\phi_I) + \sin(\phi_I)) + 2E_1^2)/C_{dc} \]

5. NUMERICAL SIMULATION
The control system described in Figure 2 is simulated using the MATLAB/SIMPOWER toolbox (V.R2013a). The controlled system is a single-phase UPFC which is connected between the disturbed power supply grid and the nonlinear load based on a bridge rectifier, the latter supplying a load composed of resistor \(R \) in series with inductor \(L \). The inductor \(L_0 \) protects the bridge rectifier against abrupt voltage changes. The numerical values, of single-phase UPFC system parameters, are placed in Table 1.
5.1. Control performances in presence of harmonics at power grid voltage

The simulation vises at illustrating the controller behavior in response to step changes of the DC bus voltage reference v_{0}^*. Taking into account the system parameters values of Table 1, the simulation profile is described by Figure 3 which shows that the DC bus voltage reference switches from 800 V to 900 V at time (0.25 s) and return up to its nominal value at time (0.6 s) while the load is kept constant ($R=20 \ \Omega$, $L=500 \ mH$). In this case, the circuit is supplying by a polluted power grid which its voltage contains the harmonics. The resulting controller performances are illustrated by Figures 3-10. The DC bus voltage v_{0} converges to its reference value with a good accuracy see in Figure 3. Furthermore, it is observed that the voltage ripple oscillates at the frequency of $2\omega_{g}$, but its amplitude is quite small see in Figure 3 compared to the average value of the signal v_{0}. Figure 4 shows the waveform of the load current i_{L}. It is seen that the latter presents a serious harmonic distortion. Figure 5 reveals a serious distortion in the voltage v_{g} of the power supply grid. Its calculated harmonic distortion rate is around $THD_{v_{g}}(\%) = 24.58\%$, which recommends performing compensation. To better appreciate the controller performances, Figure 6 clearly shows that the grid current i_{g} remains sinusoidal all the time and in phase with the fundamental of the grid voltage namely v_{g1}. This confirms that a satisfactory PFC is well ensured. Also, Figure 7 shows that the voltage v_{L}, at the terminals of the nonlinear load after compensation, becomes sinusoidal. This confirms that the voltage perturbations compensation is well ensured. Figure 8 shows the load current spectrrogram, where the THD value of this current equal to 32.04%. Figure 9 shows that the THD value of grid current after compensation is very low (3.82%). This latter value is below the limits of the IEEE-519 standard. Figure 10 shows the grid voltage spectrrogram, where its THD value equal to 24.58%. Figure 11 shows that the THD value of load voltage after compensation is very low (0.68%). This latter value is below the limits of the IEEE-519 standard.

![Figure 3. DC bus voltage and its reference](image3.png)

![Figure 4. Load current i_{L}](image4.png)

![Figure 5. Distortion in the grid voltage v_{g}](image5.png)

![Figure 6. Current and fundamental voltage of grid](image6.png)

Table 1. Single-phase UPFC system characteristics

<table>
<thead>
<tr>
<th>Parameters of</th>
<th>Symbol</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-phase power grid</td>
<td>E_{1g}, R_{g}, L_{g}</td>
<td>$220\sqrt{2}$ V/50 Hz, 50 mH, 0.5 $\times 10^{-6} H$</td>
</tr>
<tr>
<td>Single-phase UPFC system</td>
<td>$r_{p}, L_{p}, r_{g}, L_{g}, C_{g}, C_{dc}$</td>
<td>80 mH, 3 mH, 80 mH, 3 mH, 500 μF, 9000 μF</td>
</tr>
<tr>
<td>Nonlinear load (Bridge rectifier and RL circuit)</td>
<td>L_{0}, R, L</td>
<td>5 mH, 20 Ω, 500 mH</td>
</tr>
</tbody>
</table>
Nonlinear control strategy of single-phase unified power flow controller (Younes Abouelmahjoub)

5.2. Control performances in presence of a sags at power grid voltage

Figure 12 to Figure 16 illustrating the behavior of the proposed controller in the presence of the voltage sags in the power grid. Indeed, Figure 12 reveals a sag in the signal of the grid voltage v_g, the depth of which is 90% of the nominal voltage and its duration is 100 ms, which exceeds the values fixed by the standard EN 50160. Figure 13 clearly shows that the grid current i_g remains sinusoidal all the time and in phase with the grid voltage v_g. This confirms that a satisfactory PFC is well ensured. As for Figure 14, it shows that the voltage v_L at the terminals of the nonlinear load after compensation is a sinusoidal signal, in this case the voltage sag decreases sharply and its depth becomes 7% which is less than the value of 10% imposed by standard EN 50160. The harmonics spectrum of the load current is plotted in Figure 15, it is noted that the THD value of this current equal to 32.04%. It is observed in Figure 16 that the THD value of grid current equal to 3.82%. This latter value is below the limits according to IEEE-519 standard.
6. CONCLUSION

The problem of controlling the single-phase UPFC system of Figure 1 is addressed in presence of disturbed single-phase power grid supplying nonlinear loads. The complexity of the control problem resides in the high dimension and the nonlinearity of the system dynamics. The proposed nonlinear controller, including the inner regulator (10), the intermediary regulator (25) and the outer regulator (27a-b), is developed by using various tools of control e.g. Lyapunov technique, Backstepping technique. It is shown that all control objectives are achieved, including PFC requirement, voltage perturbation compensation, and DC bus voltage regulation. The simulation results illustrate and prove the high performances of the proposed controller and its strongest robustness. The extension of the present study to the case of three-phase UPFC system is underway, and also an adaptive nonlinear control strategy taking into account the uncertainty on the grid impedance applied to single-phase UPFC system is underway.

REFERENCES

Nonlinear control strategy of single-phase unified power flow controller (Younes Abouelmahjoub)