Global convergence of new conjugate gradient method with inexact line search

Chergui Ahmed¹, Bouali Taher²

¹Mathematics and Computer Science Department, Laboratory of Mathematics, Informatics and Systems (LAMIS), Tebessa University, Algeria
²Department of Mathematics, Khemchela University, Khemchela, Algeria

Article Info

ABSTRACT

In this paper, we propose a new nonlinear conjugate gradient method (FRA) that satisfies a sufficient descent condition and global convergence under the inexact line search of strong wolf powell. Our numerical experiment show the efficiency of the new method in solving a set of problems from the CUTEst package, the proposed new formula gives excellent numerical results at CPU time, number of iterations, number of gradient ratings when compared to WYL, DY, PRP, and FR methods.

Keywords:
Conjugate gradient
Global convergence
Strong wolf line search
Unconstrained optimization

This is an open access article under the CC BY-SA license.

Corresponding Author:

Chergui Ahmed
Mathematics and Computer Science Department
Laboratory of Mathematics, Informatics and Systems (LAMIS)
Larbi Tebessi University-Tebessa, Algeria
Department of Mathematics, Khemchela University, Khemchela 40004, Algeria
Email: ahmed.chergui@univ-tebessa.dz

1. INTRODUCTION

The optimization problem finds application in several fields, such as pure mathematics, mathematical and computational physics, mathematical physics, fluid dynamics, an traffic routing in telecommunication systems [1], cyber-physical security [2], intelligent transportation systems [3], and smart grids [4]. The conjugate gradient method is an effective one for solving large-scale unconstrained optimization problems because it need not the storage of any matrices. Well-known conjugate gradient methods are [5-9]. Global convergence properties of these methods have been studied [9-12].

In this paper, we consider the following unconstrained optimization problem:

\[(p): \min \{ f(x) \}: x \in \mathbb{R}^n \]

where \(f \) smooth and its gradient \(\nabla f(x_k) \) is available

\[x_{k+1} = x_k + t_k d_k \quad t_k > 0 \quad k \ = \ 0; \ 1; \ 2; \ 3 \]

Journal homepage: http://ijece.iaescore.com
where \(t_k \) a positive step size along the search direction obtained by line search. \(x_k \) is the current iterative point and \(d_k \) is search direction has the form

\[
By \quad d_k = \begin{cases}
-g_k & \text{if } k = 1 \\
-g_k + \beta_k d_{k-1} & \text{if } k \geq 2
\end{cases}
\]

(3)

where \(\beta_k \) a parameter characterizes the CG method and \(g_k \) denotes \(\nabla f(x_k) \).

The main difference among CG methods is in the formulas of computing their parameters. Some of the well known CG methods are reviewed in [13]. A very famous formula for computing \(g_k \) is proposed by Fletcher and Reeves (FR) [5] as following

\[
B^F_{k} = \frac{\|g_k\|^2}{\|g_{k-1}\|^2} \text{Fletcher Reeves [5]}
\]

(4)

\[
B^{PRP}_{k} = \frac{\beta_k^T (g_k - g_{k-1})}{\|g_k - g_{k-1}\|^2} \text{Polak – Ribière – Polycak [6]}
\]

(5)

\[
B^{DY}_{k} = \frac{\beta_k^T g_k}{(g_k - g_{k-1})^T d_{k-1}} \text{Dai – Yuan [9],}
\]

(6)

\[
B^{WYL}_{k} = \frac{\beta_k^T g_k - \|g_k\|^2}{\|g_{k-1}\|^2} \text{Wei et al. [10],}
\]

(7)

where \(\|.\| \) Denotes the Euclidean norm. This formula is usually considered the rst nonlinear CG parameter [14]. Having the direction \(d_k \), the ideal choice for the steplength \(t_k \) would be the global minimizer of, conditions that require \(t_k \) satisfying. In order to find the step length \((\alpha_k) \), we use strong wolf powell (SWP) line search,

\[
f(x_k + t_k d_k) \leq f(x_k) + \delta t_k g_k^T d_k \leq -\sigma g_k^T d_k
\]

(8)

(9)

where \((0 < \delta < \frac{1}{2})\) and \((0 < \sigma < 1)\)

Strong Wolfe conditions used for establishing the global convergence in [9, 12], and [14-17]. The pioneer works about the global convergence of FR method with inexact line search was proposed by Al-Baali [18]. He proved that the FR method satisfied the sufficient descent directions and globally convergent under the (SWP) conditions with \(0 < \delta \) \(< \sigma \) \(< \frac{1}{2} \) in [9, 19]. This result was extended to \(\sigma = \frac{1}{2} \). It is shown that FR method with the (SWP) line search may not be a descent direction for the case that \(\sigma > \frac{1}{2} \). For the \(B^{F}_{k} \), neither Armijo nor Wolfe line search, guarantee that the condition sufficient descent. In 2006 [20], Nocedal, J. and Wright, S. (2006) [21-23]. The paper is organized as follows, in section 2. We introduce the new algorithm for \(B_{k} \) in section 3, we analyze the global convergence property of the new method. Finally, numerical results and conclusion in sections 4 and 5.

2. NEW ALGORITHM OF FRA

We propose a new \(B_k \) for the CG method. The sequence of iteration \(x_k \) in the new method is obtained from (2) for which the direction \(d_k \) is computed by (3). While the parameter \(B_{k} \) parameter \(B_k \) in the new method is;

\[
B^{FRA}_{k} = \lambda \frac{\|g_k^T\|^2}{\|g_{k-1}\|^2} \lambda \in (0; 1)
\]

(10)

where FRA designed the new modified method by Ahmed Chergui.

Note that, for the direction \(d_k \) defined by (3), with the CG parameter computed by (10), we have,

\[
g_k^T d_k = -\|g_k\|^2 + \lambda \frac{\|g_{k}^T\|^2}{\|g_{k-1}\|^2} d_{k-1}^T g_k
\]

(11)
By the Cauchy-Schwarz inequality, it can be concluded that,

\[g_k^T d_k \leq -\|g_k\|^2 + \lambda \|g_k\|^2 = (-1 + \lambda)\|g_k\|^2 < 0 \] \hspace{1cm} (12)

So, the new direction \(d_k\) is satisfied.

In the new CG method, the step \(t_k\) is determined by the (SWP). To this aim, we use a backtrack approach to compute the steplength. Now we are ready to propose the algorithm of the new CG method (10)

Algorithm 1

1. Given \(x_0 \in \mathbb{R}^n\) set \(k = 1, \ v \in (0, 1)\) set \(d_0 = -g_0 = -f(x_0)\)
2. Compute \(B_k\) by (10), (4), (5), (6), (7)
3. Compute \(d_k\) by (3); if \(\|g_k\| = 0\), then stop.
4. Calculate step length by (8) and (9) line search, \(\sigma = 0.1, \delta = 0.01\)
5. Let \(x_{k+1} = x_k + t_k d_k\).
6. If \(f(x_k) < f(x_{k-1})\) and \(\|g(x_k)\| < \epsilon\), then stop.
 Otherwise Set \(k = k + 1\) go to step 2.

3. THE GLOBAL CONVERGENCE PROPRINETES

In this section, we analyze the convergence of FRA method. To this aim, we made the following assumption:

Assumption 1

(H1) The objective function \(f\) is bounded below on the level set \(\mathbb{R}^n\) and is continuous and differentiable in neighborhood \(V\) of the level set \(\Omega = \{x \in \mathbb{R}^n; f(x) < f(x_0)\}\)

(H2) The gradient \(g_k\) is Lipschitz continuous in \(V\), so a constant \(M \geq 0\) exists, such that

\[\|g(x) - g(y)\| \leq M\|x - y\| \text{ for all } x, y \in V \] \hspace{1cm} (13)

The following lemma provides a lower bound for the steplength \(t_k\) (generated by Algorithm 1). The result of this lemma will be needed in the rest of this section.

3.1. Sufficient descent condition

Theorem 1: suppose that the sequence \(\{g_k\}\) and \(\{d_k\}\) are generated by (2) (3) and FRA. The step length \(t_k\), is determined by inexact line search (9) and (10) if \(g_k \neq 0\), then \(d_k\) possesses the sufficient descent condition: \(\frac{\|B_k g_k\|}{\|g_k\|^2} \geq 0\)

Proof: By the formula (10), we have the following: \(B_k = \lambda \frac{\|g_k\|^2}{\|g_k - 1\|^2} \geq 0\)

Hence we obtain \(0 \leq B_k \leq \frac{\|g_k\|^2}{\|g_k - 1\|^2}\) \hspace{1cm} (14)

Using (9) and (14), we get,

\[|B_k g_k T . d_k - 1| \leq \sigma \frac{\|g_k\|^2}{\|g_k - 1\|^2} |g_k T . d_k - 1| \] \hspace{1cm} (15)

By (3), we have \(d_k = -g_k + \beta_k d_{k-1}\)

\[\frac{g_k^T d_k}{\|g_k\|^2} = -1 + B_k g_k T . d_{k-1} \] \hspace{1cm} (16)

we have \(g_k^T d_0 \leq -\|g_0\|^2 < 0\)

If \(g_0 \neq 0\), suppose that \(d_i; i = 1, 2, \ldots, k\) are all descent directions, that is \(g_k^T d_k < 0\)

By (16) we get,

\[|B_k g_k T . d_k - 1| \leq \sigma \frac{\|g_k\|^2}{\|g_k - 1\|^2} g_k T . d_k - 1 \] \hspace{1cm} (17)

That is;

\[\sigma \frac{\|g_k\|^2}{\|g_k - 1\|^2} g_k T . d_k - 1 \leq B_k g_k T . d_k - 1 \leq -\sigma \frac{\|g_k\|^2}{\|g_k - 1\|^2} g_k T . d_k - 1 \] \hspace{1cm} (18)

Global convergence of new conjugate gradient method with inexact line search (Chergui Ahmed)
As shown in (17) and (18) deduce

\[- \sigma \frac{g_{k-1}^Td_{k-1}}{\|g_{k-1}\|^2} \leq \frac{g_k^Td_k}{\|g_k\|^2} \leq -1 - \sigma \frac{g_{k-1}^Td_{k-1}}{\|g_{k-1}\|^2}\]

By repeating this process and the fact \(g_0^T d_0 = -\|g_0\|^2\), we have

\[-\sum_{i=0}^{k-1}(\sigma)^i \leq \frac{g_k^T d_k}{\|g_k\|^2} \leq -2 + \sum_{i=0}^{k-1}(\sigma)^i \quad (19)\]

As shown in (19). Can be written as;

\[- \frac{1}{1-\sigma} \leq \frac{g_k^T d_k}{\|g_k\|^2} \leq -2 + \frac{1}{1-\sigma} \quad (20)\]

By making the restriction \(\sigma \in (0, 0.1)\) we have \(g_k^T d_k < 0\).

Now, we prove the sufficient descent condition of \(d_k\) if \(\sigma \in (0, 1)\)

Set \(c = -2 + \frac{1}{1-\sigma}\) then \(0 < c < 1\), and (17) turns out to be;

\[c - 2 \leq \frac{g_k^T d_k}{\|g_k\|^2} \leq -c \quad (21)\]

Thus we obtain \(g_k^T d_k \leq -C\|g_k\|^2\) Or \(C = -2 + \frac{1}{1-\sigma}\).

3.2. Convergent analysis

Lemma 1 Let the step length \(t_k\) is generated by Algorithm 1. Then, under the assumptions H1 and H2, there is a positive constant \(C\) such that,

\[t_k \geq C \frac{\|g_k\|^2}{\|d_k\|^2} \quad (22)\]

Proof: Subtracting \(g_k^T d_k\) from both sides of (10) and using (19) we have

\[-(1-\sigma)g_k^T d_k \leq (g_{k+1} - g_k)^T \leq Mt_k\|d_k\|^2 \quad (23)\]

therefore;

\[t_k \geq -\frac{(1-\sigma)g_k^T d_k}{M} \quad (24)\]

with (10) we obtain:

\[t_k \geq -\frac{(1-\sigma)\|g_k\|^2}{M\|d_k\|^2} \quad (25)\]

This inequality means that (25) satisfies with \(C = -\frac{(1-\sigma)}{M}\), the proof is completed. The next lemma is known as Zoutendijk condition [24].

Lemma 2: Suppose assumption 1 hold and \(d_k\) is generated by Algorithm 1, then;

\[\sum_{n=0}^{\infty} \frac{\|g_k\|^2}{\|d_k\|^2} < \infty \quad (26)\]

Proof: From (10) for any \(k\) we have;

\[f(x_k) - f(x_k + t_k d_k) \geq -\delta t_k g_k^T d_k \geq -\delta \frac{(1-\sigma)(g_k^T d_k)^2}{M\|d_k\|^2} \quad (27)\]

Moreover, from the hypothesis (1), we have that \(\{f(x_k)\}\) is a decreasing sequence and has a limit in, which shows that \(\lim_{k \to \infty} f(x_{k+1}) < +\infty\) and after (28) we have;
Then $\sum \frac{(g_k^T d_k)^2}{||d_k||^2} \leq +\infty$, so, the proof is completed.

Theorem 2: we assume that H1, H2 hold, and the sequence $\{x_k\}$ is generated by the Algorithm 1, then, $\lim_{k \to \infty} ||\nabla f(x_k)|| = 0$

4. NUMERICAL EXPERIMENT

In this part, we report numerical experiments that indicate the efficiency of the new algorithm. To this aim, we implement the new algorithm (Algorithm 1), Fletcher and Reeves (FR) algorithm and the modified Fletcher and Reeves (FR), WYL [10], DY [9], PRP [6]. The numerical results are given in the different initial points. We considered $\varepsilon = 10^{-6}$, $\sigma = 0.1$, $\delta = 0.01$, under inexact line search of (SWP). We used MATLAB R2010 the performance results are shown in Figures 1-5 and compare their results obtained from solving of 17 test problems from [25].

In our experiments the stopping tolerance for the algorithms is $N1 > 20000$ or when the step length t_k become less than $\text{eps}=10^{-6}$. We use we use the performance profiles in [26, 27]. The total number of iterations, the total number of function evaluations, and the running time of each algorithm number of function evaluations. It can be seen that the FRA is the best solver with probability around 80%, while the probability of solving a problem as the best solver is around 60%, 26%, 18% and 7% for the FR, PRP, WYL and the DAY respectively. The performance index in. Figure 2 is the total number of iterations. From this figure, we observe that the NEW method (FRA) obtains the most wins on approximately 70% of all test problems an the probability of being best solver is 55%, 29%, 26% and 8% for the FR, PRP, WYL and the DAY respectively.

Figure 1. Performance profiles based on the number of function evaluations

Figure 2. Performance of the number of iterations

Figure 3. Performance profiles for running times
The CPU time is illustrated in Figure 3. From this figure, it can be observed that the NEW is the best algorithm. Another important factor of these three figures is that the graph of the NEW algorithm grows up faster than the other algorithms. From the presented results, we can observe that the FRA method is best than the FR, PRP, WYL and the DAY methods. In solving unconstrained optimization problems.

Example 1: Extended Rosenbrock function \(f(x_1, x_2, \ldots, x_n) = \sum_{i=1}^{n-1} [100(x_{i-1} - x_i^2)^2 + (x_i - 1)^2], n = 2, x_{optimal} = (1, 1) \)

In Table 1, The FRA method was successful in all attempts to achieve the optimal solution, while the other methods failed.

- Remark 1: Table 2, shows that “FRA” has the best results since it solves about 100% from the test problems. Figures 4 and 5 list the comparison of FR method and DY, WYL, PRP, FR methods \(x_0 = [1, 7] \)

Table 1. Numerical results for FRA, FR, PRP, WYL and DY in terms of number iterations (NI) and CPU time with the strong wolf condition \(\varepsilon = 10^{-6}; \sigma = 0.1; \delta = 0.01; \lambda = 0.9 \)

<table>
<thead>
<tr>
<th>Initial point</th>
<th>FRA NI/CPU</th>
<th>FR NI/CPU</th>
<th>PRP NI/CPU</th>
<th>WYL NI/CPU</th>
<th>DY NI/CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10000, 10000)</td>
<td>637/6.41</td>
<td>Failed</td>
<td>Failed</td>
<td>Failed</td>
<td>Failed</td>
</tr>
<tr>
<td>(100000, 100000)</td>
<td>934/5.74</td>
<td>Failed</td>
<td>Failed</td>
<td>Failed</td>
<td>Failed</td>
</tr>
<tr>
<td>(100, 100)</td>
<td>161/1.68</td>
<td>469/2.043</td>
<td>Failed</td>
<td>Failed</td>
<td>Failed</td>
</tr>
<tr>
<td>(-1, 3)</td>
<td>1220/4.14</td>
<td>104/0.19</td>
<td>243/1.43</td>
<td>Failed</td>
<td>112/0.23</td>
</tr>
<tr>
<td>(0, -9)</td>
<td>1630/5.33</td>
<td>355/0.89</td>
<td>340/1.639</td>
<td>Failed</td>
<td>Failed</td>
</tr>
<tr>
<td>(1, 7)</td>
<td>678.533</td>
<td>2302/541</td>
<td>7375/739</td>
<td>4470/15.315</td>
<td>149/1.195</td>
</tr>
</tbody>
</table>

Table 2. Comparing the results obtained in Table 1

<table>
<thead>
<tr>
<th>Method</th>
<th>Ranking</th>
<th>The success rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRA</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>FR</td>
<td>2</td>
<td>55%</td>
</tr>
<tr>
<td>PRP</td>
<td>3</td>
<td>44%</td>
</tr>
<tr>
<td>DY</td>
<td>4</td>
<td>33%</td>
</tr>
<tr>
<td>WYL</td>
<td>5</td>
<td>22%</td>
</tr>
</tbody>
</table>

Remark 2: From the Figures 4 and 5, The FRA method performs better than other methods by selecting a starting point with the Resenbrock function \(f(x_1, x_2, \ldots, x_n) = \sum_{i=1}^{n-1} [100(x_{i-1} - x_i^2)^2 + (x_i - 1)^2], n = 2. \) And she is best performance in terms of values gradients and functions and the number of iterations.
5. CONCLUSION

In this paper, we have proposed a new CG method named FRA for solving a large-scale unconstrained optimization problem. We proved the global convergence of this method and sufficient descent condition under the inexact line search of (SWP) numerical experiment show that the new method FRA is more efficient than the others methods DAY, WYL, FR, and PRP.

ACKNOWLEDGEMENTS

I would like to thank the anonymous rulers and the editor for their accurate and valuable reading. Suggestions that led to a correction of errors and a significant improvement in the paper.

REFERENCES