Potential and Electric Field Characteristics of Broken Porcelain Insulator

H. Rosli, N. A. Othman, N. A. M. Jamail, M. N. Ismail

Abstract


Overhead line insulators can be damaged for various reasons during their service life. Porcelain or glass insulators once damaged can affect the reliability of power system networks. This paper presents the study of voltage and electric characteristics along the surface of a broken porcelain insulator located in a string of 10 unit insulators. Three models of broken porcelain insulators were being proposed and the analysis results on voltage and electric characteristics were individually collected. The broken porcelain insulator with the most significant effect were then being investigated in the strings of 10 unit insulators. The finite element software of Quickfield was used to analyze the voltage and electric characteristics. Form the presented results, it is proven that the single porcelain insulators with broken shed at the nearest to the electrode terminal gave the most significant effect of voltage and electric field distribution pattern along the creepage distance. However, when this type of broken insulator was included in a string of 10 unit insulators, maximum average value of voltage achieved once the broken insulator was located at the HV terminal. Meanwhile, the highest electric field strength was recorded when the broken insulator was located in the middle of the string.

Keywords


broken, electric field characteristics, finite element software, porcelain insulator, voltage distribution

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v7i6.pp3114-3123

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).