A Novel Implementation of an Extended 8x8 Playfair Cipher Using Interweaving on DNA-encoded Data

Safwat Hamad

Abstract


Recentlty, cryptography makes extensive use of different fields including
bioinformatics. The fundamental idea behind the cipher presented here is to transform any kind of binary message; such as text, sound tracks, and even images, into the form of a single-stranded DNA sequence. Subsequently, digraphs of codon triplets are encrypted using a grid of 8x8 codon matrix that is randomly constructed according to some secret key. Although the encryption/decryption rules were kept almost the same as the classical 5x5 Playfair, using the DNA encoding step makes it almost impossible for an attacker to perform a frequency analysis on that vast number of character digraphs. Furthermore, an interweaving step is added to scramble the encrypted sequence offering more randomness. When compared with other modifications of the Playfair cipher, the proposed method showed a number of advantages including the ability to cipher any type of digital media, the elimination of plain-text preprocessing step, and the applicability to be integrated into larger security systems such as DNA steganography. Furthermore, due to the very weak correlation between cipher-data and original message, the proposed method shows a strong robustness against cipher attacks.

DOI:http://dx.doi.org/10.11591/ijece.v4i1.4969


Keywords


DNA; Encryption; Interweaving; Cryptanalysis

Full Text:

PDF


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).