Permanent Magnet Synchronous Motor Design using Grey Wolf Optimizer Algorithm

Yannis L Karnavas, Ioannis D Chasiotis, Emmanouil L Peponakis

Abstract


Common high-torque low-speed motor drive schemes combine an induction motor coupled to the load by a mechanical subsystem which consists of gears, belt/pulleys or camshafts. Consequently, these setups present an inherent drawback regarding to maintenance needs, high costs and overall system deficiency. Thus, the replacement of such a conventional drive with a properly designed low speed permanent magnet synchronous motor (PMSM) directly coupled to the load, provides an attractive alternative. In this context, the paper deals with the design evaluation of a 5kW/50rpm radial flux PMSM with surface-mounted permanent magnets and inner rotor topology. Since the main goal is the minimization of the machine's total losses and therefore the maximization of its efficiency, the design is conducted by solving an optimization problem. For this purpose, the application of a new meta-heuristic optimization method called “Grey Wolf Optimizer” is studied. The effectiveness of the method in finding appropriate PMSM designs is then evaluated. The obtained results of the applied method reveal satisfactorily enhanced design solutions and performance when compared with those of other optimization techniques.

Keywords


PM Synchronous motor; Electrical machines design; High efficiency motors; Meta-heuristic optimization; FEM analysis

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v6i3.pp1353-1362

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).