Reducing power consumption in LEO satellite network

Mohammed Hussein, Abdellatif Abu-Issa, Iyad Tumar, Abdalkarim Awad

Abstract


Current low earth orbit (LEO) satellite network display poor power efficiency, running network devices at full capacity all the time regardless of the traffic matrix and the distribution of the population over the Globe. Most of the research on energy efficiency of LEO satellites has focused on component level or link level. Therefore, this kind of research is not holistic to try to look at the satellite system as a single node. To enhance the energy efficiency. The solution should exploits multipath routing and load balancing. LEO network is overprovisioned, and hence selectively shutting down some satellite nodes and links during off-peaks hours seems like a good way to reduce energy consumption. In this paper, we exploit the fact that due to geographical and climatic conditions, some satellite links are expected to be loaded with data while others remain unused. Our approach is to power down satellite nodes and links during period of low traffic, while guaranteeing the connectivity and QoS. Finding the optimal solution is NP-problem and therefore, we explore in this work two heuristic algorithms. We evaluate our heuristics on a realistic LEO topology and real traffic matrices. Simulation results show that the power saving can be significant.

Keywords


extended lifetime; LEO satellite; sleep mode; traffic matrix;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v11i3.pp2256-2265

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).