Design methodology of smart photovoltaic plant

Boutlilis Fatima, Chouitek Mama, Bekkouche Benaissa

Abstract


In this article, we present a new methodology to design an intelligent photovoltaic power plant connected to an electrical grid with storage to supply the laying hen rearing centers. This study requires a very competent design methodology in order to optimize the production and consumption of electrical energy. Our contribution consists in proposing a robust dimensioning synthesis elaborated according to a data flow chart. To achieve this objective, the photovoltaic system was first designed using a deterministic method, then the software "Homer" was used to check the feasibility of the design. Then, controllers (fuzzy logic) were used to optimize the energy produced and consumed. The power produced by the photovoltaic generator (GPV) is optimized by two fuzzy controllers: one to extract the maximum energy and another to control the batteries. The energy consumed by the load is optimized by a fuzzy controller that regulates the internal climate of the livestock buildings. The proposed control strategies are developed and implemented using MATLAB/Simulink.

Keywords


Design; Fuzzy logic; Internal climate livestock buildings; Photovoltaic; Storage

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v11i6.pp4718-4730

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).