A data estimation for failing nodes using fuzzy logic with integrated microcontroller in wireless sensor networks

Saad Al-Azzam, Ahmad Sharieh

Abstract


Continuous data transmission in wireless sensor networks (WSNs) is one of the most important characteristics which makes sensors prone to failure. a backup strategy needs to co-exist with the infrastructure of the network to assure that no data is missing. The proposed system relies on a backup strategy of building a history file that stores all collected data from these nodes. This file is used later on by fuzzy logic to estimate missing data in case of failure. An easily programmable microcontroller unit is equipped with a data storage mechanism used as cost worthy storage media for these data. An error in estimation is calculated constantly and used for updating a reference “optimal table” that is used in the estimation of missing data. The error values also assure that the system doesn’t go into an incremental error state. This paper presents a system integrated of optimal data table, microcontroller, and fuzzy logic to estimate missing data of failing sensors. The adapted approach is guided by the minimum error calculated from previously collected data. Experimental findings show that the system has great potentials of continuing to function with a failing node, with very low processing capabilities and storage requirements.

Keywords


Failing sensor; Fuzzy logic; Microcontroller; Node replacement; Wireless sensor networks

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v10i4.pp3623-3634

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).