Robot navigation in unknown environment with obstacle recognition using laser sensor

Neerendra Kumar, Zoltán Vámossy

Abstract


Robot navigation in unknown and dynamic environments may result in aimless wandering, corner traps and repetitive path loops. To address these issues, this paper presents the solution by comparing the standard deviation of the distance ranges of the obstacles appeared in the robot navigation path. For the similar obstacles, The standard deviations of distance range vectors, obtained from the laser range finder sensor of the robot at similar pose, are very close to each other. Therefore, the measurements of odometer sensor are also combined with the standard deviation to recognize the location of the obstacles. A novel algorithm, with obstacle detection feature, is presented for robot navigation in unknown and dynamic environments. The algorithm checks the similarity of the distance range vectors of the obstacles in the path and uses this information in combination with the odometer measurements to identify the obstacles and their locations. The experimental work is carried out using Gazebo simulator.


Keywords


laser scan; obstacle avoidance; obstacle recognition; robot navigation; turtlebot;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v9i3.pp1773-1779

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).