Stochastic control for optimal power flow in islanded microgrid

Thang Diep-Thanh, Quang Nguyen-Phung, Huy Nguyen-Duc

Abstract


The problem of optimal power flow (OPF) in an islanded mircrogrid (MG) for hybrid power system is described. Clearly, it deals with a formulation of an analytical control model for OPF. The MG consists of wind turbine generator, photovoltaic generator, and diesel engine generator (DEG), and is in stochastic environment such as load change, wind power fluctuation, and sun irradiation power disturbance. In fact, the DEG fails and is repaired at random times so that the MG can significantly influence the power flow, and the power flow control faces the main difficulty that how to maintain the balance of power flow? The solution is that a DEG needs to be scheduled. The objective of the control problem is to find the DEG output power by minimizing the total cost of energy. Adopting the Rishel’s famework and using the Bellman principle, the optimality conditions obtained satisfy the Hamilton-Jacobi-Bellman equation. Finally, numerical examples and sensitivity analyses are included to illustrate the importance and effectiveness of the proposed model.


Keywords


microgrid; optimal power flow; hybrid power system; hamilton-jacobi-bellman equation; markov process

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v9i2.pp1045-1057

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).