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Despite all the Model Predictive Control (MPC) based solution advantages
such as a guarantee of stability, the main disadvantage such as an exponential
growth of the number of the polyhedral region by increasing the prediction
horizon exists. This causes the increment in computation complexity of
control law. In this paper, we present the efficiency of particle swarm
optimization in optimal control of a two-tank system modeled as piecewise
affine. The solution of constrained final time-optimal control problem
(CFTOC) is derived, and then particle swarm optimization algorithm is used
to reduce the computational complexity of control law and set the physical
parameters of the system to improve performance simultaneously. On other
hand, a new combined algorithm based on PSO is going to be used to reduce
the complexity of explicit MPC-based solution CFTOC of the two-tank

Complexity reduction system; consequently, that the number of polyhedral is minimized and
system performance is more desirable simultaneously. The proposed
algorithm is applied in simulation and our desired subjects are reached.
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1.

INTRODUCTION

According to the system modeling, it is possible to introduce Piecewise Affine (PWA) systems, a
particular hybrid system class. It is defined by partitioning the vast input-state space into Polyhedron
regions and assigning a PWA equation to each of these regions. Discrete-time PWA systems are a very
effective tool for modeling most hybrid systems [1]. These systems have established themselves as a
powerful class for identifying and approximating generic nonlinear systems by multi-linearization at
Equilibrium [2]. A practical method in designing controllers of nonlinear systems is optimal control
concepts in constrained and non-constrained processes by linear discrete-time models in the form of state
space. a constrained discrete model predictive control strategy for a greenhouse inside temperature is
presented[3]. Given what has been said about the modeling advantages of most systems based on the
PWA class, in recent years, there has been a great deal of interest in computing the optimal form-
package controller for PWA systems. These problems became known as the Constrained Final Time-
Optimal Control (CFTOC)[4,5]. The most important methods of analysis of this problem are multi-
parameter programming, RHC, or MPC. MPC is an effective way to deal with constrained control
problems and has found many applications and advances in industry and academic research. This method
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requires that the next position of the variables be predicted based on the current position, the controller
input, and the process model. In other words, the sequence of control inputs that optimize the objective
function is computed and applied to the process. This control concept is called the MPC [6]. the control
of boiler turbine process with three manipulated variables and three controlled variables has been
attempted using MPC technique[7]. Optimal control sequence allows recalculation and feedback
performance in MPC whenever a new measurement arrives; this is known as MPC. The stability of the
control system and the fulfillment of conditions, constraints, and requirements during operation are
ensured by the proper formulation of the objective function. RHC has the complexity and high volume of
online computing related to optimizing and reducing system robustness due to the difference between the
actual and MPC processes. Optimal methods based on the use of MP-LP and MP-QP were provided
[8,9]. The offline calculation of the optimal control rule for constrained discrete-time linear systems was
performed using these methods. The resulting rules were made available as a PWA function on the
polyhedrons. At present, explicit MPC techniques enable a standard method in controller design for
nonlinear processes that are modeled in the PWA form, creating a substitute for intelligent controller
design methods such as fuzzy logic and neural networks in high-performance applications [10].
Unfortunately, one of the main problems is the increasing complexity of the control rule obtained by
increasing the prediction horizon and its effect on system performance. On the other hand, it is necessary
to increase the prediction horizon for the system's optimal performance. For linear systems with
parametric uncertainty by the Lyapunov function, the PWA controller is designed with low complexity
[11]. Effective representation and approximation are provided by in-depth learning to MPC of LTI
systems. Theoretically, at least neurons and hidden layers are considered [12]. A nonlinear robust MPC
with input-dependent perturbations and states and uncertainty is presented [13]. The MPC algorithm
with  PWA control rules is presented for discrete-time linear systems in the presence of
finite perturbation [14]. The online computational burden of the linear MPC can be transferred offline
using multi-parameter programming, which is called explicit MPC [15]. A flexibility algorithm is
proposed to reduce the calculation volume in [15] that the designer can balance between time and
storage Complexities. This is done by hash tables and the associated hash functions. Two modified
controllers instead of the standard MP-QP are used [16] to reduce the complexity of the multi-parameter
programming of MPC. The problem of reducing the complexity of explicit MPC for linear systems is
considered by PWA employing separating functions [17]. A Semi-Continuous PWA model based on the
optimal control method for the nonlinear system is proposed [18]. First, the nonlinear system is
approximated by multi-linear subsystems, then these subsystems are combined into a PWA system and
formulated as an optimal control problem. A computational method for optimizing and controlling a
two-tank system with three control valves is presented [19]. The main advantages of PSO are easy
implementation and the ability to optimize complex objective functions with many local minimums.
Furthermore, PSO can search the much-extended space of candidate solutions. The dynamics of the tank
system are nonlinear. The linear model is considered, and the parameters are adjusted so that the
difference between the actual system and the model is minimized by solving the optimal control
problem. PSO has been used to solve the problem of constrained optimization [20]. SAPSO is
recommended to increase PSO performance. Theoretically, the convergence of the method has been
investigated. Considerable interest has recently been generated to use PSO in optimization and
engineering problems [21]. a new algorithm which is a combination of model predictive control with
particle swarm optimization is presented to optimal control of constrained DC-DC power system
modeled as piecewise affine[22].The present paper organized as follows, First, the CFTOC of PWA
systems is expressed briefly. Having introduced the two-tank optimal control in section III, in section IV
the application of PSO to solve the expressed problem is discussed, and eventually, the simulation results
and conclusion are presented.

2.  CFTOC problem and solution
We will focus on the constrained PWA systems as follows [4]:

x(t + 1) = fpya (x(0,u(®)): = Ax(®) + Biu(® + f <38) €D, (1)
N

Where t>0, the domain D = U, D; of fy.(...) is a non-empty compact set in R™**™u | Np<co is the
number of system dynamics and D := U:\I:Dl D; denotes a polyhedral partition of the domain D. i.e. the
closure of D; is

b, = {(7) € R D+ D"u < D;°} and int(D) nint(D;) = @ Vi#j. We define CFTOC
problem for piecewise affine system (1) in the form below [4]:
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3.

J1(x(0)) = miny_ Jr(x(0), Ur) (2.2)
. x(t+ 1) = fpwa(x(0), u(®)
subject to { x(t) € f 2.b)
Jr(x(0),Up) = lp(x(T)) + i 1(x(1), u(v)) (2.0)
Where Jr(.,.) is the cost function, 1(.,.) the stage cost, 1(.) the final penalty, Ut optimization variable

described as the input sequence Ug := {u(t)}{=¢, T<oo receding horizon and ¥f is a compact terminal

target set inR™*. If the solution of CFTOC problem is not unique, ui}(x(O)) = {u* () }{=¢ determines
one realization from the set of possible optimizer.

CFTOC problem determine a set of initial state and feasible inputs as xp < R"x(x(0) € xt) , Ur_¢ C
R™(u(t) € Ur_,t=0,.., T — 1) respectively.

The explicit closed form solution can be expressed as u*(t): %, = Ur_¢ ,t=0,...,T-1. The considered
system is PWA (1) and the cost is based on 1,  norm. i.e.

L(x(®), u®) = 1Qx (I, + IIRu(®)l, (3.2)
(x(D) = IPx (D)l (3.b)
Where ||. ||, with p={1,00} represent the standard vector norm 1,00. The solution of (2) with aforesaid
restrictions is time-varying PWA function of the initial state x(0)€ P;

u(t) = upwa(x(0),t) = Kr_;x(0) + Ly, “)
Where t =0, ..., T—, {?i}ipl is the polyhedral partition of a set of feasible state x(0), xt = U:ipl P;,with
the closure of P; stated as P, = {x € R™|P*x < P°} [2].

If a receding horizon control strategy is used for closed loop, the control law is stated as time-varying
PWA state feedback of the form [4]:

wrn (x(D) = Kpx(t) + Ly if x(£) € P, )
Where i=1,...,Np and for t>0, u*(t) = pry (x(t)). CFTOC problem can be presented and solved for any
selection of P,Q,R, albeit here it is assumed that the parameters T,Q,R,P and Xf are selected by the
following assumptions[3]. To avoid additional control actions in steering states to the origin (equilibrium point),
matrices R, Q are required to have a full column rank.

Optimal Control of Two-Tank System

The two-tank [23] shown in Figure 1 is a basic benchmark model to investigate and analyze the control

issues for PWA system.
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Figure 1. Two-tank system schematic

It consist of two tanks that connected to each other. We assumed that:

—  The valves behavior is linear.
—  The initial volume of liquid in tanks is zero.
—  The inflow of liquid to the first tank is constant and has the maximum value.

The liquid volume of tank 1 is defined by a time varying equation as:
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Vi(©)=Vo,HQ1-Qi 2)xt (6.a)

Vi()=A;>h,(1) (6.b)
Where V is initial volume of liquid in tank land Q;,Q, are inflow and outflow liquid of tank1 (Q,>can be
defined as inflow of liquid to tank 2), A; and h, are base area and the time varying height of liquid in tank1
respectively. The Eq.(6) can be repeated for the tank 2 with similar definition as:

Va())=Vo2%(01-Q2) >t (7.2)

Va(t)=A2%hy(1) (7.b)
By combining equations (6),(7),

hy(t) = A_ll(Vo,1 + (Q1 - Q1,z) X t) (8.a)

hy(t) = Al_z(Vo,z + (Q1,2 - Qz) X t) (8.b)

The operation of instruction is following :

"The tanks are filled by a pump acting on tank 1, continuously manipulated from 0 up to a maximum flow
Q1. A switching valve V, controls the flow between the tanks. This valve is assumed to be either completely
opened or closed (V,=0 or 1 respectively). The Vy, manual valve controls the nominal outflow of the
second tank. It is assumed in the simulations that the manual valves, Vy; is always closed and that Vy, is
open. The liquid levels to be controlled are denoted by h;,h, for each tank respectively"[18].
The system is expressed as a discrete time model with a sampling time (T,=10s) by Eq.(9):

hy(k +1) = hy (k) + :—1 (Q (k) = k12 Vip (hy (k) — ko (K))
hy(k +1) = hy (k) + :—Z (k12Viz (hi (k) = hy (k) = knzViaho (K)
This model can be formulated as a piecewise affine system of form (1), with four subsystems (four modes),
described as follows:
— Mode one V7, open, h;>h,
— Mode two V{5, open, h;<h,
—  Mode three V7, closed, h;>h,
— Mode four Vg5 closed, h;<h,
For instance, for mode one the system matrices are:
0.9542 —0.0393 0.0699 0 0.0164
+=lo00a1 09601 Bi=1"0 ol c=mro1D = [01and s =)
The CFTOC problem of the presented PWA system is solved by MPT [25] based on MPC for the

prediction horizon=3,norm =1, Q = eye(2),R = (le-5)*eye(2) and the explicit PWA control law has 78
polyhedral region as shown in Figure 2 and the close loop system performance from a given initial condition
is presented in Figure 3.
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Figure 2. controller partitions Figure 3. closed loop system performance

Using PSO algorithm, the considered purposes are going to be fulfilled simultaneously:
—  The number of polyhedral of explicit MPC-based control law is minimized to get the complexity
reduction.
—  The liquid reaches a certain height in tanks in a short time and desirable manner.
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4. PSO algorithm Application for solving defined problem

Soon afterwards, a brief review of PSO algorithm is presented and then PSO Application is investigated to
solve the defined problem.

Particle swarm optimization is a heuristic global optimization method put forward originally by Kennedy
and Eberhart in 1995[24]. It is developed from swarm intelligence and is based on the research of bird and
fish flock movement behavior. Each particle's movement is influenced by its best known local position and is
also guided toward the best known positions in the search-space, which are updated as better positions are
found by other particles. According to Figure 4, the basis of methods is as follows:

Each particle can be shown by its current speed and position, the most optimal position of each individual
and the most optimal position of the surrounding [24].

Having chosen the initial population X, V;, the speed and position of each particle change around search
space according to the equality(10) [24]:

A Xi+|

VGbcsl

y

Figure 4. The basis of evolutionary PSO algorithm
Xi = [x1 X2 Xn,i]
Vi= [V, Vig -+ vnil

Vit = Vi + oo Xl x (Vo) + ¢ xrf x (V§Pe) (10.a)
Xl =Xl + v (10.b)
Vi]aZQSt = pbest% - Xikg (10.c)
Vet = gbestfy — Xjg (10.d)

Where In this equality, V,Xand X}, separately stand for the speed of the particle “i” at its “k” times and the
d-dimension quantity of its position; pbest, represents the d-dimension quantity of the individual “i” at its
most optimal position at its “k” times. gbestk, is the d-dimension quantity of the swarm at its most optimal
position. In order to prevent a particle being far away from the searching space, the speed of the particle
created at its each direction is confined between -vVymax, and Vgmax. If the number of vyp is too big, the
solution is far from the best,, otherwise the solution will be the local optimum; c1 and c2 represent the
speeding figure, regulating the length when flying to the most particle of the whole swarm and to the most
optimal individual particle. If the figure is too small, the particle is probably far away from the target field, if
the figure is too big, the particle mayfly to the target field suddenly or fly beyond the target field. The proper
figures for cl and c¢2 can control the speed of the particles flying and the solution will not be the partial
optimum. cl usually is equal to c2 and they are equal to 2; r; and r, represent random fiction, and 0-1 is a
random number.

As mentioned before, our new aim is using PSO for complexity reduction of explicit MPC-based control
law by reduction the number of its polyhedral and setting the physical parameter of system to improve the
system performance simultaneously. Therefore, the following objective function has been defined:

Fitness-Function £Number of polyhedral + Output specifications

Where output specifications are determined as a summation of operational specifications such as settling
time, over shoot, under Shoot, steady state deviation, time constant, and so forth.

Now, the explicit controller obtained in previous section as a part of PSO should be consider and the

following new performance index is being defined:

Jnewr = Min(Fitness — Function) :=

Min[number of polyhedrals of ugy(x(0) + Output speciication] (11.a)
ST{ ut = “’RH(X(t)) = KT,iX(t) + LT,i if X(t) € :Pi

Output — Spec. 2 Y desired output characteristic
It is used according the flowchart shown in Figure 5.
The problem is solved as following steps:

(11.b)
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Figure 5. Flowchart of PSO algorithm Application

1- Required data such as time step, liquid height, algorithm parameters like number of population and
number of iteration are considered.
2- Initial population is created as following:
X; = [height of valvel, cross section of valves, maximum height, base area of each tank]
Xy
initial population = .
XN pop
3- The system output specifications are measured based on initial parameters then the control
law(obtained by MPT) is applied and the number of polyhedral regions is calculated. Eventually
objective function is defined as
Fitness-Function=Number of polyhedral+ output specifications. Where we consider output
specifications can be assumed as:
Output specifications £ settling time + certain height of liquid
The best solution among the total population is determined and population is updated based on
(10.a, 10.b).
4-  For predefined iteration, steps 3,4 are done iteratively.
5-  The convergence condition is checked and the best solution is shown in output finally.
The optimal parameters are compiled in the table (1).
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Table.1. The optimal parameters

sampling time  height of valve I  cross-section of valves =~ maximum height area of each tank N;m Time(S)
10's 0.1 m 1.00E-05 0.5 0.001 m"2 10 189

T is the required time to reach the certain height of liquid. As presented, the number of control law
polyhedral reduces from 42 to 10. In Figure 6, the output flow variation of tank 1 and In Figure 7, the liquid
height in tank 1 is shown. These figures are repeated for tank 2 in Figure 8 and Figure 9 respectively.

Across Section Of Valves Steady State Level In First Tank
10 60

| / |

. /

Water Flow Rate (m3)
wn

Height Of Water (m)
N w
S S

- -
v i/

0 50 100 150 200 0 50 100 150 200
Time (S) Time (S)

Figure 6. The output flow variation of tank 1

Figure 7. the liquid height in tank 1
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Figure 8. the output flow variation of tank 2 Figure 9. the liquid height in tank 2

45 Controller partition with 10 regions.

40—

\ 0.4}

=35
5
1\ _
=%} _—
5 \
825 = gal
£ \ ’
z

20

Is

5 ‘
10 0 0.1 02 0.3 0.4 0.3
2 4 6 8 0 12 14 Level 1

Iteration

Figure 10. convergence diagram of objective function Figure 11. controller with minimum partitions
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According to the results, it can be concluded that physical parameters setting through using PSO, the
number of polyhedral of MPC-based control law is minimized; thus, the related complexity of solution to
CFTOC will be reduced along with the improvement of output specification simultaneously so that the liquid
height in both tanks reach desired certain value in 189 seconds.

5.  CONCLUSION

Several analytical methods have been used for the CFTOC solution. Their main disadvantage is the
computational complexity of the solution; therefore, the problem can be considered as NP-hard. The hyper-
heuristic algorithm is used to solve the NP-hard optimization problems that have strategies to escape from the
local optimal solution and are applicable in a wide range of issues. In general, the development of hyper-
heuristic methods is taken by investigating and inspiration optimization type in nature like Particle Swarm
Optimization. By using PSO and an appropriate definition of the objective function, the complexity of the
MPC-based solution of CFTOC was reduced and the system performance was improved simultaneously. The
most massive advantage of the recommended method is that if the mentioned purposes were not in one
direction, we can define a multi-objective function to fulfill aims. According to the simulation results, it is
demonstrated that the number of polyhedral and the dependent complexity of CFTOC solution are reduced,
the system performance such as reaching the liquid height at a certain time is desirable and the obtained
steady-state error reaches zero. the number of control law polyhedral reduces from 42 to 10. the liquid height
in both tanks reaches desired certain value in 189 seconds.
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