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	The purpose of this study is to investigate performances of some of the data mining approaches while understanding desire and intention to participate in virtual communities and its antecedents. A research model has been developed following the literature review and the model was tested afterwards. In research part of the study, some of the data mining approaches as JRip, Part, OneR Method, Multilayer Perceptron (Neural Networks), Bayesian Networks have been used. Based on the analysis conducted it has been found out that Multilayer Neural Network had the best correct classification rate and lowest RMSE.
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1. INTRODUCTION
[bookmark: OLE_LINK42][bookmark: OLE_LINK43][bookmark: OLE_LINK44][bookmark: OLE_LINK45][bookmark: OLE_LINK46][bookmark: OLE_LINK47]As virtual community concept emerged during time, new definitions of the term found place in the literature. Porter proposes a virtual community definition that, a virtual community is an aggregation of individuals or business partners who interact around a shared interest, where the interaction is at least partially supported and/or mediated by technology and guided by some protocols or norms (Porter, 2004; Hagel, 1998). Plant approaches the term from a similar perspective defining a virtual community as a collective group that come together either temporarily or permanently through an electronic medium to enable the interaction of entities, individuals or organizations in a common problem or interest space (Plant, 2004). In addition to these, Rheingold defines a virtual community as social aggregations that emerge from the Internet when enough people carry on those public discussions long enough, with sufficient human feeling, to form webs of personal relationships in cyberspace (Rheingold, 2000).

2. RESEARCH METHOD
Data mining can be defined as the process of extracting hidden patterns from large chunks of data. In doing this knowledge discovery, prediction or forecasting can be in the focus of data mining. While knowledge discovery provides us explicit information about the characteristics of the data set predictive modeling provides predictions of future events. As stated by Simoudis, data mining is the process of extracting valid, previously unknown, comprehensible and actionable information from large databases and using it to make business decisions (Simoudis, 1996). Data mining borrows approaches from several disciplines as statistics, mathematics or computer science in order to find useful patterns and knowledge from large data sets. As it is indicated in Shearer’s crisp-dm model, a data mining process is composed of business understanding, data understanding, data preparation, model building, testing/evaluation and deployment processes. In the following sections some of the data mining approaches used in analyzing the data set will be introduced (Shearer, 2000).


2.1. Data Gathering and Processing
	As suggested in literature over 385 observations (425 in our sample in this study) has been found sufficient for the sample size values with an error of 5% and a confidence level of 95% (Águila et. al.,2014; Lemeshow et.al.,1990; Yau,2013; survey monkey site-sample size calculator).In literature used formula to calculate this has been n= t2 x ( p x q) / e2    where n refers to sample size, p refers to proportion, percentage or presence of the study characteristics (in literature it is suggested that when we have no prior values for the proportions to be estimated, we can use p- and q-values as 50%.) q=1-p,  e refers to margin of error; t = 1.96 (with 95% confidence  level). Based on that, n = 1.962 x 0.5 x 0.5 / 0.052 sample size has been found 384.16 and rounded to 385 Águila et al., 2014; Lemeshow et al. , 1990; Yau, 2013).

Table 1. Scales Used In the Study
	Construct
	Adapted From

	Positive anticipated emotions
	Bagozzi, 2002

	Norm of reciprocity
	Chiu, 2006

	Perceived Usefulness
	Dong, 2008

	Predisposition to Virtual Community Usage

	Bagozzi, 2002

	Social Comparison
	Kim, 2006


	*Desire And Intention to Participate In Virtual Com.

Desires

We-Intention
	Dholakia, 2004


Dholakia, 2004

Dholakia, 2004

	
	


*Desire and Intention to Participate in Virtual Communities is the combination of Desires and 
We Intention Scales

	Scales used in the study is given in detail. Positive anticipated emotions refer to the pre-factuals hypothesized to influence desires to perform a behavior which can be in the form of positive anticipated emotions or negative anticipated emotions and it’s likely to expect its influence on virtual community participation and desire and intention to participate in virtual communities (Bagozzi, 2002).In the literature, it is pointed out that in general people are in a tendency to expect some return when they share their knowledge.  As it is defined by Chiu, norm of reciprocity refers to knowledge exchanges that are mutual and perceived by the parties as fair and one of the important factors that leads to knowledge sharing behavior (Chiu et al., 2006). 
Perceived usefulness refers to the degree to which a person believes that using a particular system would enhance his or her performance (Davis, 1989; Dong, 2008).  As it is indicated by Porter, in the technology acceptance model, perceived usefulness and perceived ease of use are the beliefs that are presumed to influence attitudes toward new technology (Porter, 2006). As it is pointed out in Fishbein and Ajzen’s theory of reasoned action, attitudes are formed as a result of the beliefs about the outcomes of performing that act and expected outcomes. If the outcome of performing that behavior seems beneficial to the individual, he/she may participate in that particular behavior (Fishbein & Manfredo, 1992; Ajzen & Fishbein, 1980). 
Early definitions of social comparison theory date back to 1954s that started with Festinger’s social comparison theory (Festinger, 1954). As stated in the literature according to social comparison theory, there is a drive within individuals to look to outside images in order to evaluate their own opinions and abilities in the sense that it mainly focuses on explaining and understanding tendencies of individuals in evaluating and comparing their own opinions and desires with others which may lead to an self enhancement in individuals’ self images (Festinger, 1954). As it is pointed out in  literature desires provide the motivation to decide in favor of acting as part of a virtual community (Dholokia, 2004) Therefore desire construct has been measured with the help of questions adapted from Dholokia’srespective scale (Dholokia ,2004). 
As it is defined by Dholokia, We-Intentions construct used in the model refers to the intentions to participate ingether as a group which is to be a function of both individual (i.e., attitudes, perceived behavioral control, positive, and negative anticipated emotions) and social determinants (Dholokia, 2004). Desire and intention to participate in virtual communities refers to the merge of we-intention and desires of Dholakia where desires provide the motivation to decide in favor of acting as part of a virtual community and we intentions stand for the intentions to participate together as a group, to be a function of both individual (i.e., attitudes, perceived behavioral control, positive, and negative anticipated emotions) and social determinants (i.e., subjective norms, group norms, and social identity) (Dholakia, 2004).  Respective scales have been borrowed empirically from the studies as shown in table 1.


2.2. Data Mining Methods
As part of the research conducted several data mining approaches have been applied to the data set. Brief descriptions of the methods that have been used as follow.

· JRip: JRip implements a propositional rule learner, “Repeated Incremental Pruning to Produce Error Reduction” (RIPPER), as proposed by Cohen, JRip is a rule learner alike in principle to the rule learner Ripper (Cohen, 1995).

· PART: The PART algorithm combines two common data mining strategies; the divide-and-conquer strategy for decision tree learning with the separate-and-conquer strategy for rule learning.

· OneR: OneR, generates a one-level decision tree, that is expressed in the form of a set of rules that all test one particular attribute. OneR is a method that often comes up with quite good rules for characterizing the structure in data (Frank, 2000).

· Multilayer Perceptron: Multilayer Perceptron is a version of the original perceptron model proposed by Rosenblatt in the 1950s and considered as a type of neural networks (Rosenblatt, 1958).

· Bayesian Network: Every graph of a Bayesian Network codes a class of probability distributions. The nodes of that graph comply with the variables of the problem domain. Arrows between nodes denote allowed (causal) relations between the variables. These dependencies are quantified by conditional distributions for every node given its parents (Taniguchi, 1998).

3. FINDINGS
	In this research, comparison of the algorithms of JRip, Part, OneR Method, Multilayer Perceptron, Bayesian Networks have been made. In testing the research model with each of the data mining approaches 66 percent of the data has been used for the training whereas remaining part of the data set has been used for the testing of the model. Among different data mining approaches JRip had the values (RMSE=0.2913; Precision=N/A; Correct Classification Rate=90.90%; Incorrect Classification Rate=9.09; True Positive Rate=0.909 and False Positive Rate=0.909), Part had the values (RMSE=0.264; Precision=0.923; Correct Classification Rate=91.60%; Incorrect Classification Rate=8.39; True Positive Rate=0.916 and False Positive Rate=0.839), OneR had the values (RMSE=0.3015; Precision=N/A; Correct Classification Rate=90.90%; Incorrect Classification Rate=9.09; True Positive Rate=0.909 and False Positive Rate=0.909), Multilayer Perceptron had the values (RMSE=0.2476; Precision=0.921; Correct Classification Rate=93.007%; Incorrect Classification Rate=6.99; True Positive Rate=0.930 and False Positive Rate=0.561) and finally Bayesian Networks had the values (RMSE=0.2873; Precision=0.876; Correct Classification Rate=89.51%; Incorrect Classification Rate=10.49; True Positive Rate=0.895 and False Positive Rate=0.703). Precision values of JRip and OneR method could not been calculated since  proportion of instances truly classified of a class divided by the total instances classified in that class have been calculated undefined in the confusion matrix. Among all the algorithms, multilayer perceptron had the most correct classification rate with 93.007 percent, a good true positive rate of 0.930 and a precision 0,921. Part method had a correct classification rate of 91.60 percent, true positive rate of 0,916 and a precision value of 0,923. Multilayer perceptron had the lowest RMSE with a value of 0.24. 







Table 2. Comparison Of Data Mining Methods Used
	Method
	RMSE
	Precision
	Correctly Classified %
	Incorrectly Classified %
	True Positive Rate
	False Positive Rate

	JRip
	0.2913
	N/A
	90.90
	9,09
	0,909
	0,909

	Part
	0.264
	0,923
	91.60
	8,39
	0,916
	0,839

	OneR Method

	0.3015
	N/A
	90.90
	9,09
	0,909
	0,909

	Multilayer Perceptron

	0.2476
	0,921
	93.00
	6,99
	0,930
	0,561

	Bayesian Networks
	0.2873
	0,876
	89.51
	10,49
	0,895
	0,703

	
	
	
	
	
	
	




4. DISCUSSION AND CONCLUSION

In this study, we investigated the factors behind desire and intention to participate in virtual communities following an intensive literature review. This is later followed with the model formation and applying the data mining techniques as suggested in literature. In the analysis part of the study we examined relationship of positive anticipated emotions, norm of reciprocity, social comparison, predisposition towards virtual community usage and perceived usefulness with desire and intention to participate in virtual communities. In doing so we trained the model using 66 percent of the data of training of the model whereas remaining part for the testing of the model for each approach. 
Data mining can be defined as the process of extracting hidden patterns from large chunks of data. In doing this knowledge discovery, prediction or forecasting can be in the focus of data mining. Jrip, part, oner method, multilayer perceptron (neural networks), and Bayesian Networks have been chosen as the data mining techniques in order to examine desire and intention to participate in virtual communities for this purpose. Among them JRip is a rule learner alike in principle to the rule learner Ripper (Cohen, 1995). The part algorithm combines two common data mining strategies; the divide and conquer strategy for decision tree learning with the separate and conquer strategy for rule learning. Oner generates a one level decision tree that is expressed in the form of a set of rules that all test one particular attribute. A Multilayer Perceptron is a version of the original perceptron model proposed by Rosenblatt in the 1950s and considered as a type of neural networks (Rosenblatt, 1958). A perceptron (artificial neuron) is a function of several input perceptrons which is formed as a combination of input weights to the hidden layer perceptrons which lead them to the output layer. Finaly graphical models such as bayesian networks supply a general framework for dealing with uncertainly in a probabilistic setting and thus are well suited to tackle the problem of prediction.
In this study, we have met our objectives of evaluating and investigating the performances of different data mining techniques for the data set that is being used to understand desire and intention to participate in virtual communities. Based on the results, multilayer perceptron had the most correct classification rate with 93.007 percent, a good true positive rate of 0.930 and a precision 0,921. Part method had a correct classification rate of 91.60 percent, true positive rate of 0,916 and a precision value of 0,923. Multilayer perceptron had the lowest RMSE with a value of 0.24. Based on the high correct classification rate and low RMSE measure, multilayer perceptron (neural network) can be considered as an effective method and can be used in understanding desire and intention to participate in virtual communities and its antecedents.  
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