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 Selection of the most suitable translation among all translation candidates 

returned by bilingual dictionary has always been quiet challenging task for 

any cross language query translation. Researchers have frequently tried to 

use word co-occurrence statistics to determine the most probable translation 

for user query. Algorithms using such statistics have certain shortcomings, 

which are focused in this paper. We propose a novel method for ambiguity 

resolution, named „two level disambiguation model‟. At first level 

disambiguation, the model properly weighs the importance of translation 

alternatives of query terms obtained from the dictionary. The importance 

factor measures the probability of a translation candidate of being selected as 

the final translation of a query term. This removes the problem of taking 

binary decision for translation candidates. At second level disambiguation, 

the model targets the user query as a single concept and deduces the 

translation of all query terms simultaneously, taking into account the weights 

of translation alternatives also. This is contrary to previous researches which 

select translation for each word in source language query independently. The 

experimental result with English-Hindi cross language information retrieval 

shows that the proposed two level disambiguation model achieved 79.53% 

and 83.50% of monolingual translation and 21.11% and 17.36% 

improvement compared to greedy disambiguation strategies in terms of MAP 

for short and long queries respectively. 
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1. INTRODUCTION 

 The two commonly used linguistic resources used for query translation are parallel corpora and 

bilingual dictionaries. Algorithms based on parallel corpora estimate the translation of query words by 

finding the association between words of the source language and words of the target language. Examples in 

this category include relevance language models [1]-[3] and statistical translation models [4]-[7]. The major 

shortcoming of these methods is the availability of parallel bilingual corpora, especially for low resource 

languages.  

Dictionaries, on average offer a good number of translation alternatives for each source query term. 

The simplest scheme to this problem is to use all alternatives, a method adopted by [8], [9]. This cannot be 

approved as ambiguity resolution. Other researchers study co-occurrence patterns of query terms in large 

document collection for sense disambiguation [10]-[13]. Suppose the two terms „railway‟ and „coach‟ are 

present in source language query. The term „coach‟ has three senses (rail coach; carriage; instructor) in 

bilingual dictionary. Presence of other term „railway‟ in the query, suggest that „coach‟ is unrelated to 

carriage or instructor. Thus it can be rationally predicted that a correct translation of „coach‟ will tend to co-

occur with translation of „railway‟ in target language corpus.  
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Approaches based on above idea deal with translation ambiguity by computing the coherence score 

of a translation candidate to the entire query. A translation candidate has a high coherence score if it 

frequently co-occurs with the translations of other query terms. Finally the translation with highest coherence 

score is selected for the query term under consideration [1], [14], [15]. In this way these approaches make a 

binary decision for each translation. This is not functional when we have a number of translations of a query 

term with similar coherence score. Likewise given the context of query, these approaches do not prioritize the 

translation alternatives of a query term and treat them equally. This may degrade the effectiveness of any 

CLIR system. Also the selection of a translation of a query term on the basis of high coherence score is 

obtained independently from the translations of other query words thereby leading to local solutions. 

To overcome these shortcomings of previous works, we propose a novel model, named „two level 

disambiguation model‟. The model performs disambiguation at two levels. At first level, we call it „local 

disambiguation‟. Local disambiguation provides a proper distribution of importance factor for translation 

candidates indicating their relevancy in the given context. This will impact the effectiveness of our CLIR 

system. At next level we perform „global disambiguation‟, which scan all possible permutations of translation 

candidates to select the best one and then form the target language query by combining its elements .This 

eradicates the problem of translations being selected independently. It‟s for the first time that query terms 

have been disambiguated twice- once in local context and secondly in context of the entire query. Two level 

disambiguation is advantageous in terms of increasing the number of relevant documents retrieved against 

the user queries. This has been reported in Section 4 under experimental results. 

The rest of the paper is structured as follows: Section 2 briefly reviews the related work in selection-

based approaches for query translation disambiguation. Section 3 describes our two level disambiguation 

model, along with an example to demonstrate the working of proposed model. Section 4 presents the 

experimental results. Section 5 concludes this work. 

 

 

2. RELATED WORK 

The effectiveness of a dictionary based query translation depends highly on its competence in 

resolving ambiguity [15], [16]. To find the correct translation of a query term, researchers have tried 

exploiting the context of query in terms of co-occurrence statistics. Co-occurrence statistics emphasizes that 

the correct translations of individual query terms tend to co-occur in the target language corpus while 

incorrect translations do not. The good translation word is the one which has high coherence with the 

translations of other query words and is hence selected as the correct translation of the source query term.  

Ideally, the selection of a translation of a query term should depend only on the selected translations 

of other query terms. But to lower the computation cost, previous works using coherence model proposed an 

approximate greedy algorithm to select the best translation alternative, including both selected and unselected 

translations for all query terms. The approximate greedy algorithm is stated as follows: 

 

Greedy algorithm for disambiguation of translation candidates of query terms 

1. Source query is represented as a set {(e1, H1), (e2, H2),..... (en, Hn)}, where ei is the source query term and 

Hi=(hi1,hi2…..hij) is the list of translation candidates of ei obtained from bilingual dictionary.  

2. For each Hi, 

2.1. For each translation hij∈Hi, define the similarity measurement between the translation hij and a set 

Hk(k≠i). Cohesion of hij with respect to Hk is the maximum similarity of hij with every hkl ∈ Hk. So, 

 

sim (hij, Hk) =          ∈           (       )     (1)  

 

2.2. Compute coherence score for hij as  

  

Score (hij) = ∑                                   (2)                                                  

 

3. Select the translation h∈Hi with the highest Score. 

The set of selected terms h from each Hi, 1≤ i ≤n forms the final translated query. 

 

Similarity between the terms can be measured using either dice coefficient [10] or mutual 

information [13], [17] or its variants [16], [18]. Basically, the best sense for each term is chosen resulting in 

the final set of selected translations containing translations that are closely related with one another in the 

context of source query. 
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Many researchers have used greedy algorithm to disambiguate source language queries. Croft and 

Ballesteros experimented with Spanish-English language pair to select the translation with the highest 

coherence score and revealed that the method is very successful for language pairs with scarce resources 

[15]. Adriani approached the similar problem and used maximum similarity score between translation 

candidates for different query terms [10]. Later Gaoet al. claimed that increase in distance between two terms 

weakens the association between them. They refined the disambiguation algorithm by incorporating decaying 

factor with the mutual information statistics. This refinement easily outperformed the basic co-occurrence 

model [18]. 

Maeda et al. revisited the problem in a slightly different manner and instead of considering the co-

occurrence of consecutive terms they considered all pairs of possible translations of query terms [13]. Monz 

and Dorr, determined the solution by an iterative procedure, which is sensitive to the initialization of 

parameters or the stop criterion employed in the iterative procedure [19]. Zhou et al. viewed the co-

occurrence of possible translation terms within a given corpus as a graph and determined the importance of a 

translation using global information recursively drawn from the entire graph [20]. Giang et al. used mutual 

summary score based on word distribution in document collection to outperform basic model [12]. Andres 

Duque et al. technique combines both the dictionary and co-occurrence graph to select the most suitable 

translation from the dictionary and thereby disambiguating the query. The method relies on the hypothesis 

that words appearing in the same document tend to share related senses and thereby represent a coherent 

content. The co-occurrence graph is obtained by considering only those words that frequently co-occur in the 

same documents. They then use various algorithms to combine information from the two sources [21]. 

The greedy algorithm selects the best translation of individual query terms considering both selected 

and unselected translations of other query terms, thereby leading to translations being selected independently. 

Furthermore, the translation having maximum coherence is only selected as the final translation disregarding 

other translation alternatives of a query word. This binary decision is not acceptable where translation 

candidates have similar coherence scores. 

 

 

3. PROPOSED METHOD 

In this section we propose a relatively simple yet effective novel model named “Two level 

disambiguation model” to address the anomalies of existing approaches. Cross Lingual word sense 

disambiguation performs disambiguation of source language words while translating them to target language 

[22]. Consider a source query Q containing say, three terms   ,    and   . Let the target language translations 

for these terms be      ;      ,      and      ; and     and      for    ,    and    respectively. 

In Figure 1 each link between two translation candidates represents co-occurrence frequency of that 

pair of translation alternative. Co-occurrence frequency between translations of same query term is not 

considered, thereby leading to no links between them. 

 

 

      

  

 

 

 

 

 

 

                        

                                                                          

 

 

 

     
Figure 1. Co-occurrence graph for source query Q 

 

 

Suppose that      occurs more frequently with      than any other pair of translation candidates for    

and   . As a result       and      would be more ideal translations for    and   . On the other hand, let‟s 

assume that      and      do not co-occur with       at all, but      and      do. This raises a very valid question 
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as to select which pair of translation candidates i.e. (1)       and      or (2)      and     . To have a better 

understanding, consider the English source query-- “Security measures in railway coach” 

Dictionary translations for query terms are: 

Security = {सुरऺा, जमानत} 

Measure = {उपाय, राशि , मापदण्ड} 

Rail = {रेऱ} 

Coach = {कोच, प्रशिऺक } 

In the context of „rail‟, the pair { रेऱ, राशि}will be preferred over the pair { रेऱ, उपाय} and { रेऱ , 

मापदण्ड } but if we talk about the „security of railway coach‟ the combination { रेऱ , सुरऺा ,उपाय }is ideal 

than the combination { रेऱ, सुरऺा , राशि  }.This implies that disambiguation at local level only is not ideal, 

but the need to perform disambiguation globally considering the query as a single concept is required too. To 

address these anomalies of existing approaches, we propose a relatively simple yet effective novel model 

named “Two level disambiguation model” which performs disambiguation at two levels: First level 

disambiguation and Second level disambiguation. 

 

3.1. First level disambiguation 

We refer first level disambiguation as „local disambiguation‟. First level disambiguation deal with 

the translation candidates in pairs only. This is done with the aim to obtain partial data for the likelihood of a 

translation in the perspective of other query terms. For a given query word, instead of taking binary decision 

for its translation candidates, we calculate the importance factor of each of the candidates in the context of 

given query. This importance factor approximates the probability of a candidate to be selected as a final 

translation of a query word. Higher the importance factors more it is relevant in the context of the user query. 

A translation candidate is assigned a high importance factor if it is rational with the semantic meaning of the 

user query.  

Let the source query be Q =               
Step 1 

a) Find the translation candidates from bilingual dictionary. Let the translation candidates of query term    

be represented as a set                    . 
b) For each    , where 1<=i<=n and 1<=j<=m retrieve all example sentences for its synset, hypernyms and 

homonyms from Hindi WordNet. Example sentences from other sources are also added for    . Store them 

in a file. 

Step 2  

a) Assign a 2*2 usage matrix    for each query term   . The columns represent the translation candidates of 

query term    while rows represent the translation candidates of remaining query words   , where 

1<=k<=n and k≠i. Initialize the matrix with 0‟s. 

b) Count the usage of a translation candidate     of    in example sentences of translation candidates     of 

other query terms   , where 1<=k<=n and k≠i. The count is stored in matrix    .  

c) Repeat the same for all translation candidates of all query terms. 

d) Find the sum of column entries to obtain       the Usage Count of a particular translation candidate with 

respect to translation candidates of other query terms. 

e) Normalize      to obtain     , Importance factor of translation candidate    . 

 

3.2. Second level disambiguation 

We refer second level disambiguation as „global disambiguation‟. Global disambiguation aims at 

finding the most suitable translation for the given query. This resolves the problem of translations being 

selected independently from selected and unselected translations of remaining query terms. This step 

computes the coherence between all possible combinations of translation candidates of query terms. To give 

due regard to most preferred translation candidates , the algorithm combines dice coefficient score with the 

importance factor for word pairs to obtain Weighted Summary Dice Coefficient (WSDC) for every 

combination obtained by including one translation candidate for each source query term   . The motivation 

behind using Dice coefficient for measuring association strength between two terms is that the value of the 

Dice coefficient ranges between 0 and 1 (where 1 is perfect co-occurrence), whereas mutual information has 

no upper bound [19]. 

Step 3 

a) Find all combinations C= {             } where    is a translation candidate of   . 
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b) Compute WSDC for each combination C as 

 

WSDC(C) = ∑                ∈                   where 1<=i<=n, 1<=j<=n and i≠j (3) 

  

and, 

 

Dice Coefficient,   (     ) = 
             

                 
      (4)          

                                                            

        = the number of occurrences of term    in training corpus 

        = the number of occurrences of term    in training corpus 

           = co-occurrence frequency of terms    and    in a sentence in documents. 

      

c) Select the combination with highest WSDC score as the target language query    of the source query Q. 

 

                          (5)                                                                                    

 

3.3. Example of disambiguation using proposed model 

Reconsider the English source query “Security measures in railway coach”. Performing first level 

disambiguation we obtain     , Importance factor of translation candidate     as follows. Table 1 represents 

the result of first level disambiguation of the proposed model. The result suggest translation set {सुरऺा, राशि, 

रेऱ, कोच} as the most appropriate translation of given English query, depending upon the highest value 

obtained by the translation candidate of respective query terms. 

 

 

Table 1. Importance Factor of Translation Candidates Estimated using First Level Disambiguation 
S.No. Source query term Translation Candidates Importance Factor 

1 
Security 

सुरऺा 0.835 

2 जमानत 0.164 

3 
Coach 

कोच 0.666 

4 प्रशिऺक 0.444 

5 

Measure 

राशि 0.527 

6 उपाय 0.444 

7 मापदण्ड 0.027 

8 Rail रेऱ 1.0 

    

 

3.4. After second level disambiguation 

Figure 2 and Figure 3 represent computation of Weighted Summary Dice Coefficient (WSDC) for 

translation sets {सुरऺा, राशि, रेऱ, कोच} and {सुरऺा, उपाय, रेऱ, कोच}. WSDC {सुरऺा, राशि, रेऱ, कोच} and 

WSDC {सुरऺा, उपाय, रेऱ, कोच} are 0.651 and 0.713 respectively. Depending upon Weighted Summary Dice 

Coefficient, after second level disambiguation, translation set {सुरऺा, उपाय, रेऱ, कोच} is selected as the final 

translation for the given example query “Security measures in railway coach”. This is because in first level 

disambiguation, translation candidates are considered in pairs while in second level disambiguation the two 

translations „राशि‟ and „उपाय‟ when treated in the context of entire query, „उपाय‟ turns out to be correct 

translation for English query term „measure‟. 
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Figure 2. Computation of WSDC for translation set {सुरक्षा, राशि, रेऱ, कोच} 
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Figure 3. Computation of WSDC for translation set {सुरक्षा, उपाय, रेऱ, कोच} 

 

          

4. EXPERIMENT 

In this section we discuss our evaluation of the „two level disambiguation‟ model described above. 

We first present the set-up of our experiment followed by the experimental results. 

 

4.1. Experimental setting 

For training our model, we developed a Hindi corpus that contains 5000 articles in UTF-8 encoding, 

published in leading Hindi newspapers Dainik Jagran, Amar Ujala and Web Dunia with an average size of 25 

KB each. The document collection consists of articles across the domains such as politics, sports, science, 

entertainment, social science and criminal, motivated by the heterogeneous nature of user queries. We create 

a set of 50 English queries as per the CLEF & TREC guidelines to evaluate the performance of the proposed 

model. The test queries are able to capture the nature of the query posed by web user. We use publicly 

available online bilingual English to Hindi dictionary „Shabdanjali‟ developed in IIIT, Hyderabad and 

containing 28K Hindi words to translate English queries to Hindi language queries [23]. The dictionary 

required conversion from ISCII to UTF-8 encoding and some basic normalization. We use an English stop 

word list of 507 English words to remove stop words from the queries formulated for evaluation. Porter 

stemming algorithm is used to reduce inflected English query words to base form [24]. Hindi WordNet 

provided by the Linguistic Data Consortium
 
is a lexical database for Hindi and developed by IIT Bombay 

[25]. It is used for first level disambiguation. It contains 103438 unique Hindi words and 39271 number of 

synset. We use it to fetch example sentences for all the senses, hypernyms and homonyms of a translation 

candidate. 

The proposed model is evaluated at actual web documents using Google indexed database. Web 

search engines contain huge volume of documents covering varied domains and periodically update their 

index. Thus the set of documents retrieved for each disambiguated query can give good judgment of the 

efficiency of proposed two level disambiguation model. The relevance judgments for the Hindi documents 

obtained with respect to English queries is established with the help of three Hindi speaking volunteers from 

Indian Institute of Technology (Banaras Hindu University). Document which is judged as relevant by all the 
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three volunteers is marked as relevant else treated as irrelevant. In this way we collected the set of relevant 

Hindi documents for each English test query. 

 

4.2. Evaluation method 

The following methods are compared to investigate the effectiveness of our model for query 

translation and disambiguation: 

a. Monolingual: retrieval using the Hindi queries translated manually by Hindi language expert. 

Monolingual run provides unreachable performance ceiling for any cross lingual information system as 

translation process is inherently noisy.  

b. Simple translation: retrieval using query translation by taking the first translation from the bilingual 

dictionary. The first translation for any term in bilingual dictionary is generally the most frequent 

translation for that term according to World Wide Web. 

c. Base approach: retrieval using basic Greedy algorithm to find best translation, as described in section II. 

We use the same training document collection to estimate cohesion scores, which is prepared to train our 

model.   

d. Proposed model: retrieval using the proposed two level disambiguation model. 

 

4.3. Experimental results 

The test query set consists of two types of queries. The first is termed as short queries and the other 

as long queries. Short query comprises of 2 to 4 keywords whereas long query is formed as natural sentence 

with average length of 7.12 terms. Short queries are the actual representation of most queries posed by users, 

particularly the web queries which tend to have few terms.  Thus we chose to have major number of queries 

in our test query set as short queries.  

We have used standard evaluation measure, Mean Average Precision (MAP) to evaluate our 

proposed model with monolingual, simple and base approach. The evaluation has been done on first 50 Hindi 

documents retrieved using Google search engine. Table 2 describes our experimental results. For each 

method, we give average values of P@k with k= 10, 20, and 50. 

 

 

Table 2. Run Statistics for short Queries 
 

Experimental Run 

Mean 

Average 

Precision 

(MAP) 

Percentage 

Monolingual 

Monolingual 0.518 -- 

Simple translation 0.200 38.61% 

Base Approach 0.325 62.74% 
Two level 

Disambiguation 
0.412 79.53% 

 

 

Table 3 compares the MAP value of simple translation, base approach and proposed method with 

baseline method i.e. monolingual run for short queries. The performance of these runs is 38.61%, 62.74% and 

79.53% respectively of monolingual run. The proposed approach shows an improvement of 21.11% over the 

base approach. 

 

 

Table 3. Average Retrieval Precision of Experimental Runs for Short Queries 
 

Experimental Run P@10 P@20 P@50 

Monolingual 0.483 0.420 0.309 

Simple translation 0.145 0.112 0.089 

Base Approach 0.316 0.270 0.184 
Two level Disambiguation 0.383 0.336 0.240 

 

 

Table 4. Average retrieval precision of experimental runs for long queries 
 

Experimental Run 
Mean Average 

Precision (MAP) 
Percentage 

Monolingual 

Monolingual 0.600 -- 

Simple translation 0.263 43.83% 

Base Approach 0.414 69.00% 
Two level Disambiguation 0.501 83.50% 
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Table 4 compares the MAP value of simple translation, base approach and proposed method with 

baseline method i.e. monolingual run for long queries. The performance of these runs is 43.83%, 69.0%and 

83.50% respectively of monolingual run. The proposed approach shows an improvement of 17.36% over the 

base approach. 

 

4.4. Analysis 

The greedy approach used to disambiguate query words treats all translation alternatives equally. 

But there exists a significant variance in the priority across different Hindi words, as demonstrated in  

Figure 4. 

 

 

 जीवन आयु काययकाऱ जोि 

Life 0.249 0.247 0.248 0.256 

     

 हमऱा वार दौरा चढ़ाई 

Attack 0.262 0.23 0.337 0.171 

     

 उपाय राशि मापदण्ड  

Measure 0.444 0.527 0.027  

 

Figure 4. Examples of Importance factor estimated by first level disambiguation 

 

 

The first example in the Figure 4 shows an almost uniform distribution over all translation 

alternatives, while the third one is a skewed distribution. In between, the second example is a case which is 

neither uniform nor skewed. These three examples illustrate why we measure the importance of each of the 

candidates in the context of given query. 

The base approach which also exploits word co-occurrence statistics for query translation 

disambiguation shows a performance drop of 21.11% over the proposed approach. Consider a query 

“Security measure in railway coach”. The base approach makes incorrect translation selection for the term 

„measure‟ as „राशि‟. The correct Hindi translation is „उपाय‟ instead of „राशि‟. This is because greedy 

algorithms do not consider the query as a single concept and disambiguate the query terms independently in 

pairs. The translation candidate „राशि‟ for term „measure‟ is more consistent with either of the query terms 

„रेऱ‟, „कोच‟ and „सुरऺा‟as compared to translation alternative „उपाय‟, thereby leading it to be selected as the 

final Hindi translation for „measure‟. 

The proposed approach achieves 79.53% of monolingual run in terms of MAP. The reason behind it 

is the treatment of some words by the dictionary used for bilingual translation of source query words. For 

instance, for source query “Indian animation industry films”, the term „animation‟ is translated as  „उत्साह‟, 

„जीवंतता‟, „जीव-संचारण‟, „जीवंतता‟ etc. by dictionary. These translations provided by the translation 

dictionary are inappropriate in the given context. The documents retrieved against these translations describe 

journey of Indian film industry instead of role of animation industry in Indian cinema. 

The simple translation run shows the worst performance among all the runs. In simple translation we 

take the first translation from the bilingual dictionary for each query term. The first translation for any term 

in bilingual dictionary is generally the most frequent translation for that term according to World Wide Web. 

The context of the query is not exploited at all for disambiguation and thereby leading to maximum 

degradation in performance as compared to monolingual run. To fully examine the effectiveness of our 

proposed model, we test it against both the long English queries and the short English queries. The results 

show that the use of the proposed query translation scheme is more effective with longer queries than with 

shorter queries. This is expected because longer queries provide multiple contextual words which can 

contribute to better disambiguation. This result confirms our intuitive assumption that natural sentence based 

queries are less ambiguous than keyword based queries. Proposed approach does not show much significant 

improvement over base approach for longer queries. This is convinced as both approaches depend on context 

of query for disambiguation. Rich context of long queries help both approaches in successful disambiguation 

http://www.shabdkosh.com/translate/%E0%A4%B9%E0%A4%AE%E0%A4%B2%E0%A4%BE/%E0%A4%B9%E0%A4%AE%E0%A4%B2%E0%A4%BE-meaning-in-Hindi-English
http://www.shabdkosh.com/translate/%E0%A4%B5%E0%A4%BE%E0%A4%B0/%E0%A4%B5%E0%A4%BE%E0%A4%B0-meaning-in-Hindi-English
http://www.shabdkosh.com/translate/%E0%A4%A6%E0%A5%8C%E0%A4%B0%E0%A4%BE/%E0%A4%A6%E0%A5%8C%E0%A4%B0%E0%A4%BE-meaning-in-Hindi-English
http://www.shabdkosh.com/translate/%E0%A4%9A%E0%A5%9D%E0%A4%BE%E0%A4%88/%E0%A4%9A%E0%A5%9D%E0%A4%BE%E0%A4%88-meaning-in-Hindi-English
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of source query words.  

Figure 5 shows the MAP score comparison of the four experimental runs for both short queries and 

long queries.Our approach can easily be implemented for other pair of Indian languages. The approach is 

simple and uses only a lexical database, bilingual dictionary and a monolingual corpus for query translation 

and disambiguation. However the success rate for other languages may vary due to the unavailability of 

resources in a particular language. 

        

 

 
 

Figure 5. MAP score comparison of various experimental runs 

   

 

5. CONCLUSION 

In this paper, we propose a new model for cross language information retrieval system, named “two 

level disambiguation model”. Compared to previous selection based approaches, the merits of our model are 

(a) proper distribution of importance factor for translation candidates which indicates their relevancy in the 

given context, (b) estimation of translations of all query words simultaneously. The results demonstrate 

effective retrieval by achieving 79.53% for short queries and 83.50% for long queries of the monolingual 

result. The proposed model shows an improvement of about 20% over the base approach. The results also 

confirm the general pattern that disambiguation of long natural language sentence query is more effective 

than short queries. Our method can easily be extended to other language pairs. 

The proposed model for cross language information retrieval relies heavily on the coverage of the 

dictionary and the quality of lexicon used. So, we plan to work on other generic approaches for query 

translation and disambiguation like using web etc in future. 
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