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 This paper presents a data processing system based on an architecture 

comprised of multiple stacked layers of computational processes that 

transforms Raw Binary Pollution Data coming directly from Two 

EUMETSAT MetOp satellites to our servers, into ready to interpret and 

visualise continuous data stream in near real time using techniques varying 

from task automation, data preprocessing and data analysis to machine 

learning using feedforward artificial neural networks. The proposed system 

handles the acquisition, cleaning, processing, normalizing, and predicting of 

Pollution Data in our area of interest of Morocco. 
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1. INTRODUCTION 

Over the last decade, Air Pollution environmental threats significantly increased [1]-[4], and 

Climate change effects became many and wide ranging [5]. There is no doubt that excessive levels of air 

pollution are causing a lot of damage to human and animal health as well as to the wider environment. For 

these reasons, careful scientific research and monitoring of air pollutants is a necessity that must be exercised 

with a great deal of attention and precision. 

Nowadays, as much as we want to quickly evaluate and conclude from existing pollution and 

climate data, most of the problems we face center around preparing, cleaning, processing, and transforming 

the large amounts of raw environmental data we receive from satellites in near real time. In our case, the raw 

data takes multiple primitive formats such as BUFR (Binary Universal Form for the Representation of 

meteorological data), GRIB 2, HRIT/LRIT, HRPT/LRPT. in this paper, we are going to present a system for 

processing BUFR based binary files coming directly from the satellite’s sensors and transform it into a data 

set that is ready for data analysis specific tasks likes inference and visualisation. 

The main source of the data we process is EUMETSAT. EUMETSAT is an intergovernmental 

operational satellite agency with a total of 30 European Member States. The organization’s mission statement 

is to gather accurate and reliable satellite data on weather, climate and the environment around the clock, and 

to deliver them to its member and cooperating states, international partners, and to users world-wide [6]. 

The data we are most interested in comes directly from a type of satellites named Metop. Metop is a 

series of three polar orbiting meteorological satellites, we currently get data from two of them, Metop-A and 

Metop-B, they both are in a lower polar orbit, at an altitude of approximately 817 kilometres, they provide 
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detailed observations of the global atmosphere, oceans and continents. The last satellite, Metop-C, is planned 

to be launched in 2018. 

The system transforms the data from its primitive BUFR format, which is a binary data format 

maintained by the world meteorological organization, to comma separated files (CSV). The BUFR format is 

a somewhat controversial and a hard-to-work-with data format because of the difficulty of manipulating and 

experimenting with its encoded values.  

Our proposed solution is a software system composed of multiple stacked layers. The first one 

decompresses and processes the BUFR binary data, decodes it, structures and combines its decoded messages 

under the CSV (comma separated values) format, and finally normalizes it. Because deep learning models are 

used in different climate related problems [7]-[9], we trained and measured the performance of an ANN 

based architecture when filling missing value points and interpolating new ones. The system produces a near 

continuous data stream on the 2-D surface of our area of interest. 

The software solution proposed by this paper is a system that can be directly plugged into the 

endpoints of the near real time data stream, it will allow for fast experimentation and visualization of already 

processed raw data points coming directly from the Metop-X satellites series, it will also result in space and 

time reduction and optimization since it focuses on interest areas, we look forward for our solution to further 

improve and accelerate the research process done on top of the EUMETCAST data stream pipeline. 

 

 

2. PROCEDURE 

2.1. Data Processing 

The following figure demonstrates the procedure taken to pre-process and normalize the data: 

 

 

 
 

Figure 1. Decoding BUFR Data to Comma separated merged messages 

 

 

In the first step, the system gets the raw tar files through the FTP protocol, after extracting the compressed 

files we get multiple Binary BUFR files which follow a strict naming convention in the following form 

(INSTRUMENT_ID-PRODUCT_TYPE-PROCESSING_LEVEL-SPACECRAFT_ID-SENSING_START-

SENSING_END-PROCESSING_MODE-DISPOSITION_MODE-PROCESSING_TIME) that corresponds 

to multiple important variables such as the instrument identifier, orbit, and time frame, the system filters the 

data down to get pollution files in the time the satellite is scanning the area of interest using regular 

expressions on the names of the extracted files (under the pollution code name of ”TRG”). What we finally 

get are multiple BUFR pollution files corresponding to the area of interest that are ready to be decoded. 

In the second step, the system uses a third party software solution named BUFRExtract [10] to 

decode the BUFR files into bulks of exported messages, each message containing a description of its 

columns and the values in each one in a text file format. In the third step, the system performs fast 

merge/selection techniques to combine all of the messages into two comma separated files corresponding to 

the scanning timeframe, one for the Metop-A satellite and the second for Metop-B. Both CSV files contain 

the following columns of interest: 
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Table 1. Extracted Features 
No. Feature Unit 

1 Year Integer 

2 Month Integer 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Day 

Hour 

Minute 

Second 

latitude 

Longitude 

CH4 Density 

CO2 Density 

N2O Density 

Integer 

Integer 

Integer 

Integer 

DEGREE 

DEGREE 

km.m-2 

km.m-2 

km.m-2 

 

 

After exporting the necessary values into multiple structured CSV files, the system groups rows by 

location points and the exact date (Year-Month-Day- Hour-Minute-Second) and applies the mean function on 

the pollutant values to take the average of possible redundant measurements. In the fourth step, the system 

deals with cleaning data points that are substantively unreasonable using logical conditions on data points of 

CH4, CO2 and N2O using Z-scores.Lastly, the system normalizes all pollution points into values in [−1, 1] to 

accelerate convergence in the training phases, using the following formula for all three numerical variables: 

 

𝑋
𝑖

𝑗 ←
𝑋𝑗

𝑖 − 𝑀𝑒𝑎𝑛(𝑋𝑗)

𝑀𝐴𝑋(𝑋𝑗)  −  𝑀𝐼𝑁(𝑋𝑗)
 ∀𝑗 ∈ {1,2,3}, 𝑖 ∈ {1, . . . , 𝑚} 

 

As a general description of the process, each half an hour, the system receives one compressed tar 

file through the servers’ end points, the system automatically decompresses the file into BUFR BIN, selects 

files corresponding to the area of interest, and decodes them using a third party library (BUFRextract) to the 

corresponding messages and turns them into two CSV files containing all of the values of interest in near real 

time, this results in a considerable reduction in the dimensionality of the data and the space it normally 

occupies. 

The second part of the system fills the missing values in the 2-D surface of interest and also 

generates new data points using algorithmic search and a neural network architecture to get a near continuous 

data stream output that is ready for exploration, visualisation, and interpretation. 

 

2.2. Intelligent Interpolation 

The prediction of missing values is based on three pre-trained Feed-Forward Fully Connected 

Neural network models fit to fill the missing values in the 2-D surface of our interest for the three pollutants 

(CO2, CH4, and N2O), and the general architecture of our ANNs is as shown in Figure 2. 

 

 

 
 

Figure 2. The ANN Architecture to predict missing values 

 

 

As an activation function for our model, we chose the rectifier function. The general process in 

which selected missing points are predicted (or not), is shown as Figure 3: 
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Figure 3. The Filling missing points Procedure 

 

 

The system predicts missing values following this procedure: 

1. Map all missing values with the nearest 100 neighbor values. 

2. Sort points in function of the number of neighboring missing points and the average distance, giving a 

new score for each missing point in the form of : 𝑆 =  𝑎𝑣𝑔 ∗  𝑛𝑢𝑚 

3. If the Top missing point’s average distance from all neighbor points is greater than 50 km, or if there is 

no top missing point, break the loop and finish the process. 

4. If the average distance is less than 50km, predict the missing point using the ANNs models and mark the 

point as done and loop back to step 2. 

The system automatically loops over these steps until all missing values are filled (for possible predictions), 

the system repeats this whole procedure for the three pollutants of interest. 

 

 

3. RESEARCH METHOD 

3.1. Data Description 

The first Dataset used in this study was collected in the form of bulks of BUFR message files 

coming directly from two satellites, Metop-A and Metop-B, and precisely from the Infrared atmospheric 

sounding interferometer (IASI) sensor, which is composed of a Fourier transform spectrometer and an 

associated integrated Imaging Subsystem (IIS). The Fourier transform spectrometer provides infrared spectra 

with high resolution between 645 and 2760cm-1 (3.6m to 15.5m). 

The main goal of IASI is to provide atmospheric emission spectra to derive temperature and 

humidity profiles with high vertical resolution and accuracy. Additionally it is used for the determination of 

trace gases such as ozone, nitrous oxide, and carbon dioxide, as well as land and sea surface temperature and 

emissivity and cloud properties. 

IASI measures in the infrared part of the electromagnetic spectrum at a horizontal resolution of 12 

km over a swath width of about 2, 200km. With 14 orbits in a sun-synchronous mid-morning orbit (9:30 

Local Solar Time equator crossing, descending node) global observations can be provided twice a day (every 

12 hours), the satellites take around 25 minutes to scan The area of interest, we get pollution data from points 

approximately 20 km apart from each other.We constructed the second dataset from already preprocessed 

data points in the goal of training, testing, and validating our neural network models and solve the problem of 

filling missing data points and interpolating new points in the selected area of interest. 

 

3.2.  Intelligent Interpolation  

We generated new empty points values in which all of the points in the area of interest are distanced 

from each other by 5km, the system then intelligently interpolate all empty points. 

 

3.2.1. Data Collection 

We collected 150 Gigabytes of preprocessed data or the equivalent of around 800 million data point 

to build an intelligent model capable of predicting missing pollutant values. After collecting the data set, we 

ran a general statistic on missing data points and we present the following results based on the sampled 

dataset as shown in Table 2. 
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Table 2. Missing Values in the Data Set 
No. Pollutant % of missing values 

1 N2O 0.003 % 

2 CO2 72 % 

3 CH4 71 % 

 

 

3.2.2. Training and testing data 

The data was transformed into a table where the features are the 50 nearest points and the target 

variable is the data point used to train the artificial neural network, the distance between the target point and 

the furthest point set to a maximum and the same conditions we applied when selecting valid missing points 

were applied when transforming the data. When training the model to predict new point values 

(Interpolation), the system adds new points (marked missing) so that every point has a point at least 5 km 

near the next one, after creating new grids of 2-D points, training sets were selected based on availability of 

the neighboring points. 

 

3.2.3. Training 

6 Models consisting of 3 fully connected hidden layers with 100, 50, and 25 neurons respectively 

were used, the first 3 models constructed to predict missing and corrupted values and the last 3 were trained 

to interpolate new point values, the training details are given as: 

a. All of the neurons parameters were randomly initialized using the uniform distribution between −0.1 and 

+0.1. 

b. The Mini-Batch gradient Descent was used to optimize the parameters. 

c. A learning rate of ε=0.001 was chosen. 

d. Batches of 1024 samples and 200 epochs were trained. 

 

3.2.4. Validation 

For the validation to be efficient, we used 10-fold cross validation technique, splitting the data set 

into multiple training and testing sets to verify the efficiency of the trained models and to avoid overfitting. 

 

3.2.5. Interpolation Method 

The system uses three pre-trained neural network models to predict newly generated points and 

interpolate the whole surface. The process is similar to the procedure of predicting missing values, however, 

the system doesn’t set a threshold on the average of distances in order to break the loop of predictions. It 

predicts and fills all new data points at a fixed neighbouring distance of 5km, the following graph 

demonstrates the process as shown in Figure 4. 

 

 

 
 

 

Figure 4. Interpolation by Feed-Forward Neural Networks 

The system predicts all points and updates the sorted list of missing points as it goes until filling all 

of the missing values, the only difference that this model have with the previous one is that it does not have a 

criteria for whether to predict a missing point or not. 

 

3.3. Benchmarking 
To measure the performance of our ANN-based interpolation system, we benchmark its predictions 

against two state of the art algorithmic methods of spatial interpolation, Kernel smoothing and Kriging. 
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3.3.1. Kernel Smoothing  

A kernel smoother is a statistical technique for estimating a real valued function f(X) (X ∈ Rp) by 

using its noisy observations, when no parametric model for this function is known. The estimated function is 

smooth, and the level of smoothness is set by a single parameter. To put it in mathematical terms, the idea of 

the nearest neighbor smoother is the following. For each point Xi, take N nearest neighbors and estimate the 

value of F(Xi) by averaging the values of these neighbors. This type of interpolation is most appropriate for 

low-dimensions (p < 3) (the dimensionality curse [11] is one reason for that). Actually, the kernel smoother 

represents the set of irregular data points as a smooth line or surface, in our case (2-D surface) this is a 

perfectly reasonable solution. One way to fill these points would be to use Scipy’s [12] (precisely 

scipy.interpolate.Rbf) implementation of Radial Basis Function interpolation which is intended for the 

smoothing/interpolation of scattered data. 

 

3.3.2. Gaussian Process Regression or Kriging 

Kriging or Gaussian process regression is a method of interpolation in which the interpolated values 

are modelled by a Gaussian process governed by prior covariances, as opposed to a piecewise-polynomial 

spline chosen to optimize smoothness of the fitted values. Under suitable assumptions on the priors, kriging 

gives the best linear unbiased prediction of the intermediate values. Interpolating methods based on other 

criteria such as smoothness may not yield the most likely intermediate values. The method is widely used in 

the domain of spatial analysis and computer experiments. The technique is also known as Wiener 

Kolmogorov prediction. We’ll compare the results of Kriging interpolation on the dataset using the Gaussian 

Process Regression implementation in the Python’s scikit-learn library. 

 

3.4. Hardware 

A Python implementation of the deep neural network architecture with hidden layers of 100, 50, 25 

number of neurons (respectively), Google’s TensorFlow [13] library was used to build and train the model. 

An NVIDIA Tesla K80 single GPU device, with 4992 CUDA cores, 24 GB of GDDR5 memory, and 480 

GB/s aggregate memory bandwidth was used to train the neural network models. 

 

 

4. RESULTS AND DISCUSSION 

The resulting solution is a system composed of three layers of processes, the first layer decompress, 

decode, and normalizes the data. the second layer is a three ANN stack to fill in the missing pollutant values, 

and lastly the final layer which is composed of another stack of neural network models to interpolate new 

data points in our area of interest. 

 

4.1. Data Processing 

The decompressing, decoding, merging, cleaning and normalizing of Raw BUFR data result in a 

considerable reduction in resources. Since our algorithm runs in linear time, and considering the volume of 

data the system processes at each step, a simple computer configuration (4 Gigabyte RAM, 4 cores with no 

parallelism) result in the following durations as shown in Figure 5. 

 

 

 
 

Figure 5. Average duration of the preprocessing stage 

 

 

These tests were conducted multiple times for each volume category, to ensure high precision. We 

conclude that the system scales pretty well and can process large volumes of data (up to terabytes per hour) 

in relatively short duration of time. 
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4.2. Intelligent Interpolation 

The resulting surface of interest is a 1887 by 1776 km2 rectangle, the system predicts a maximum 

number of 123,568 points, the following figures showcase examples of predictions in a fixed date, using 

kriging, smoothing and our neural network model as shown in Figures 6, 7, 8. 

 

 

 
 

Figure 6. Interpolation visualisations of N2O 

 

 

 
 

Figure 7. Interpolation visualisations of CH4 

 

 

 
 

Figure 8. Interpolation visualisations of CO2 

 

 

In the above figures, the rounded markers represent a known sample of pollution data points, and the 

interpolated surface represent the the resulting predictions. We got the following training results after cross 

validating the models as shown in Figures 9 and 10. As expected, the system produces better results when 

filling missing values, and generally worse results when filling in new data points. but when comparing 

interpolated data using the 3 methods, we find interesting results, the following graph showcases the results 

of comparisons. 
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Figure 9. Comparing the accuracy of different 

models using MSE 

 

Figure 10. Accuracy of the suggested Interpolation 

Methods 

 

 

4.3. Discussion 

As we can see from the results, the optimal interpolation technique is generally better than our 

trained neural network models, however, in the case of N2O and CH4 we can say that our model is 

competitive with the other two classical 2-D interpolation algorithms, and since we had 70% missing data, 

that opens the possibility of better performance with greater volumes of data, if trained on larger volumes of 

data, our system can make better predictions and therefore introduce an optimal solution and a competitor to 

the kriging or smoothing interpolation algorithms. 

 

 

5. CONCLUSION 

At the present time, the size, variety and complexity of raw data is huge and continues to increase 

every day. The use of data processing systems to store, process, and analyze data streams has changed how 

we discover and visualise big data in general. In this paper, we presented a software solution composed of 

multiple stacked layers of subsystems that transform and process considerable volumes of raw pollution data 

in near real time, taking the data from its native compressed format to a structured, cleaned, normalized, and 

continuous data stream that is light and easy to experiment with. 

In the future, significant challenges and problems concerning Big Environmental Data must be 

addressed by the industry and academia, current work on topics ranging from utilizing AI for plant 

monitoring [14], working on social awareness concerning climate change [15, 16], and the use of biological 

methods [17] to fight climate change is important. But new challenges to tackle are in the field of 

environmental data science, future work focused on how to build new environmental data learning 

paradigms, scientific computing environments, and an all around better infrastructure for pollution 

monitoring is a necessity for all of us. 
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