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 A Sampling rate is less than Nyquist rate in some applications because of 

hardware limitations. Consequently, extensive researches have been 

conducted on frequency detection from sub-sampled signals. Previous studies 

on under-sampling frequency measurements have mostly discussed under-

sampling frequency detection in theory and suggested possible methods for 

fast under-sampling frequencies detection. This study examined few 

suggested methods on Field Programmable Gate Array (FPGA) for fast 

under-sampling frequencies measurement. Implementation of the suggested 

methods on FPGA has issues that make them improper for fast data 

processing. This study tastes and discusses different methods for frequency 

detection including Least Squares (LS), Direct State Space (DSS), Goertzel 

filter, Sliding DFT, Phase changes of Fast Furrier Transform (FFT), peak 

amplitude of FFT to conclude which one from these methods are suitable for 

fast under-sampling frequencies detection on FPGA. Moreover, our proposed 

approach for sub-sampling detection from real waveform has less 

complextity than previous approaches from complex waveform. 
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1. INTRODUCTION  

Because of hardware limits, the sampling rate should be below the Nyquist rate in some 

applications. In these cases, the input frequencies should be determined from their sub-sampled waveforms. 

The analog to digital converters (ADCs) and other processing parts can work at low sampling rates. Thus, the 

cost is low, and management and processing of the sampled data are easier [1], [2]. Determination of 

frequency from its multiple under-sampled waveforms has been considered for various applications, such as 

sensor networks [2], [3] and phase unwrapping [4]. In addition, it has been used in synthetic aperture radar 

(SAR) imaging of moving targets [5]. It has been used for wide frequency band, for which the available band 

frequency is greater than the sampling rate [6]. Many attempts have been made to use the Chinese reminder 

theorem that reconstructs a large integer from its remainder modules for under-sampling frequency  

detections [7-9]. The mentioned approaches discuss estimation frequencies from under-sampled complex 

waveforms. In an earlier work, we introduced a formula to determine frequencies from under-sampled real 

waveforms [1].  

For high-speed processing of signals, it is needed to use embedded systems like the FPGA. This 

study adopted the under-sampling frequency detection on the FPGA. Some experimental notes for 

implementation are discussed in this paper. In this work, different methods for realization of under-sampling 

frequency detection were tested on the FPGA and the most appropriate one was chosen. These notes can also 

be useful in other similar implementations, such as filter implementation on the FPGA. 
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2. PROBLEM STATEMENT 

Assume there is a signal with frequency
k

F , complex waveforms (  


tFj

kk

keAtS
2

)( ) or real 

waveforms ( )2cos()(   tFAtS
kkk

 [1], where 
k

A  is the amplitude of signal with frequency k
F

 and phase


. However, the proposed implementation of under-sampling frequencies detection on the FPGA is useful 

for both real waveforms [1] and complex waveforms [8]. Here, we present the formula for real waveforms. 

This signal is sampled with p  ADCs (sensors) at rate 
spss

fff ,...,,
21

that signal frequency may be less than 

all sampling frequencies, that is piFf
ksi

,...,1,2   (multiple sampling rates are below the Nyquist rate). 

If sampling frequencies are chosen properly, the unambiguous analog frequency estimation 
k

F̂ is achieved.  

 

0 fs/2 3fs/2fs 2fs …. (n-1)fs nfs

Under-sampled frequency

fs/2

F

 
Figure 1. Aliased frequency as a function of analog frequency after sampling at fs 

 

 

According to Figire 1, the relationship between frequency of under-sampled waveform 
u

f  (

ingundersampl
f ) and analog frequency F can be obtained as follows: 

 

su
mfFf   or 

su
nfFf 

       (1)
 

 

In (1), m and n  are integer numbers and 
s

f  is sampling frequency.  

This study aimed to understand how to implement sub-Nyquist frequency detection approach on the 

FPGA to find a frequency more than 1 GHz. Thus, we needed a high-speed processing approach (around 200 

MHz) with low use of FPGA resources. Usually, when a signal is processed, many parameters should be 

extracted, and frequency is among them. Hence, resources of FPGA should be reserved for other required 

processing (besides frequency measurement) on the received signal as much as possible. 

 

 

3. TESTING AND DISCUSSION OF DIFFERENT METHODS ON FPGA   

Frequency estimation plays an important role in many digital signals processing applications. There 

are different methods for frequency estimation, such as the Discrete Fourier Transform (DFT), the Least 

Squares (LS), and the Direct State Space (DSS) [10], [11] that are applied in sequential platforms like 

microprocessors. Different methods of under-sampling frequencies detection on the FPGA have not 

discussed in previous studies that we are tested and discussed below. 

 

3.1. Limitation of DSS and LS methods on FPGA 

The DSS and LS methods appear to work better than the DFT algorithm since the algorithm does 

not have discrete bin sizes. But the computational intensity creates a challenging practical real time; 

therefore, we did not use these two methods. 

 

3.2. Limitations of Goertzel filter and Sliding DFT on FPGA based on our testing 

Several properties of the DFT make it suitable for a parallel implementation. There are different 

kinds of DFT realization, such as the Goertzel filter, the Sliding DFT (SDFT) and the Fast Fourier Transform 

(FFT) and those related to the Fourier Transform. We compared several methods of Fourier Transform for 

extracting frequencies of signals, and chose the method that occupied small area in the FPGA (gates) and 

yielded an accurate frequency, while kept the processing speed high. 

The Goertzel filter is typically implemented as a second-order IIR band pass filter [12]. The 

Goertzel algorithm can extract arbitrary frequency components from a given signal. Transformation of the 

output response for the Goertzel algorithm is as: 
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The following Equations can be derived from (2): 

 

]1[][][

,...,1],2[]1[)/2cos(2][][
/2 
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nxenvny

NnnvnvNknxnv
Nkj
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    (3)

 

 

The Goertzel filter is impressive for fast processing implementation, because regardless of N, it 

requires a constant number of operations to compute a successive DFT output. The filter can be realized 

without input buffering, because each sample can be processed as received. We can relate the DFTs of two 

successive windowed sequences, each of length N as the Sliding DFT (SDFT). The SDFT is appropriate, 

because regardless of N, it requires a constant number of operations to compute a successive DFT output 

[13], two real adds and one complex multiply from the following Equation: 

 
Nkj

kk
enxNnxnyny /2)]()()1([)( 

     (4)
 

 

We tried to implement the SDFT and the Goertzel filter techniques (with similar structures) on the 

FPGA by the Xilinx ISE software. It seems that implementation of these two techniques requires small 

quantity of gates in the FPGA. However, we encountered some problems, solving of which increased usage 

of gates. Thus, amount of gates usage makes the SDFT or the Goertzel filter impractical. The following 

discusses problems in implementation of the SDFT or Goertzel filter on the FPGA. 

The quantization effects in digital filters realized with fixed-point arithmetic were analyzed by 

Beraldin and Steenaart (1989) [14]. Due to the coefficient quantization, the poles and zeros of the system 

function move from their ideal positions to the quantized positions in the z-plane. Therefore, for decreasing 

this effect, registers bits number should be increased. In simulation, it was found that for a tolerable error we 

should choose registers of sin and cos ( Nkje /2 ) more than 12 bits, and register of the previous value of SDFT 

( )1( ny
k

) should be more than 36 bits. We used the register with more bits since increased number of 

register bits will decrease error of quantization. Quantization effect of implementing the SDFT caused error; 

therefore, it was updated by non-recursive FFT output after some samples periodically. We used the FFT 

core with Radix-2 Lite, Burst I/O structure for updating the SDFT. The FFT with Radix-2 Lite type uses 

DSP48Es (gates) less than other types although the latency between input and calculation of FFT is longer 

than other structures. We had to rise bits of registers in the SDFT, thus we could not use (4) for 

implementation of the SDFT in high speed usage (more than 150 MHz). The reason was that we could not 

calculate the previous sample of SDFT )1( ny
k

 in one clock sampling. We had to use a modified  

Equation (5), which describes the relationship between the new sample that should be calculated and three 

previous samples of the SDFT. As such, we solved the problem of speed, but as a result, the number of used 

multipliers for the implementation raised. Therefore, we used another method to detect frequency. 

 

NkjNkj
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  (5)

 

 

3.3. Limitation of Phase Changes of FFT based on our Testing 

Moreover, we used the FFT for dividing total band in to a small sub-band (channelization of band), 

followed by phase changes of the Fourier transform output to detect frequencies [15]. The phase change for 

m sample(s) can be obtained from the following. If ][]}[{ kXnxF   is the k
th

 component of the discrete 

Fourier transform of x[n] with N point(s), then the DFT after m sample(s) is as: 

 

][]}[{ /2 kXemnxF Nkmj 
       (6) 
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This technique is similar to frequency estimation technique in time domain [16], but the difference 

is that it is also useful for multi sinusoidal signal. After we simulated this technique in the Xilinx ISE, the 

extracted frequency was not accurate, because quantization effects of the FFT output caused error in its phase 

output. The extracted frequency from the quantized phase was not accurate; thus, we used a different method. 

Problems associated with the mentioned approaches of frequency estimation on the FPGA 

persuaded us to use peak of FFT spectrum amplitude. This method has not shortcoming of previous methods. 

Thus, we described more this method in the next section.  

 

3.4. Peak of Power Amplitude of FFT Output for Fast Undersampling Frequency Detection 

In the previous parts, we practically tested different methods that seem to be usefull approaches for 

fast frequencies detection on FPGA. However, these approaches including, DSS, Goertzel filter, sliding DFT 

and phase changes of FFT have their own limitation for implementation on FPGA. Previous studies [2], [7-9] 

tried to extract input frequency from compex waveform. However, converting received signal to two parts 

Inphase (real) and Quadratire (imaginary) parts need extra equipment (See Figure 2 (a)). Since, complex 

waveform has two parts, inphase and quadrature; thus, two ADCs are needed for sampling at rate 
s

f .The 

proposed approach used undersampling real waveform to extract the frequency of input signal. Thus it needs 

one ADC per sampling frequency and no need extra equipment to convert received signal to complex 

waveform (See Figure 2 (b)).  
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Figure 2. Block diagram of undersampling frequency detection from (a) complex waveform of previous 

studies [2], [7-9] and (b) proposed approach from real waveform that 

 

 

Proposed frequency determination procedure for under-sampling real waveform: 

By considering Figure 2, the below procedure was proposed for frequency estimation in noisy under-sampled 

real waveform:  

Step1: Get the maximum range of input signal frequency
max

F  where ],0[
max

FF . 

Step2: Select the desired sampling frequency band as ],[
maxmin

fff
si
  which the frequencies 

min
f  and 

max
f  

are determined with respect to power limitation or processing limitation speed in FPGA, characteristic of 

under-sampling and other constrains that is important in practical implementation. 

Step3: Determination the number of ADC and find their sampling frequencies as: 

-Get the number of ADC, i.e. p then find the sampling frequencies that have maximum 
min

  [1] as follows:  
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Where 
max

  is the maximum tolerable error and  si

i fFk /
maxmax

 . 

The frequencies that have minimum distances between their reminders [1] satisfied following relation ships: 
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Where pNM   in which 
2

1
2

1

1
1

, G
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M
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G
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N

i
fIfI


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p

i
fII

1
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
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i
  and 

}2,...,2,1,0{
max

i

i
  in which i

max
 and i

max
  are the minimum integers that 

max

1

max
Ff G

si

i   and 

max

2
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Ff G

si
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A pseudo code for sampling frequencies selection is as follows: 

Choose the pif
si

,...,1;   such that ],[
maxmin

fff
si
  were 

min
f  and 

max
f

 are determined with respect to 

power limitationor processing limitation speed in FPGA, characteristic of under-sampling and other 

constrains that is important in practical implementation. 

Begin of code: 

min1
ff

s
  

while 
max1

ff
s
  

1;1
min11

 iffff
siss

 

while 
max2

ff
s
  

2;1
min22

 iffff
siss

 

  
while 

max)1(
ff

ps



 

1;1
min)1()1(




piffff
sipsps

 

 

 while 
max

ff
sp
  

1
spsp

ff  

Find the minimum value of (7) with respect to pif
si

,...,1;   and different value of 
i

k  in (7). Save the 

pif
si

,...,1;   that maximize the minimum distance (i.e. 
min

 ) as desired sampling frequency. 

End of code 

 

Or, get the variance (
2 ) of the noise that the proposed algorithm should be extract the desired frequency 

uniquely, i.e. by using of (7) and 
max
  calculate 

min
 and name it as needed 

min
 (i.e. 

)(min needed
 ). Also, 

name the maximum range of input signal frequency 
max

F  as 
)max(needed

F  and finally find the minimum number 

of ADC (number of frequency sampling) by considering the maximum tolerable variance of noise as (7). To 

do this, we start with three ADC, i.e. p=2. Since we have the sampling frequency band as ],[
maxmin

fff
si
  and 

range of input signal as ],0[
max

FF . Thus, we can calculate the minimum of 
min

 ’s in (7) with respect to 

different values of 
i

k , and compare it with 
)(min needed

 . If minimum value of 
min

 , from (7), is smaller than 
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)(min needed
 , in this case, the band of sampling frequencies, i.e. ],[

maxmin
fff

si
 , should be increased. To do this, 

it is possible to decrease the lower band (
min

f ). However, it changes the maximum range of input frequency 

[1] 
max

F that is obtained as follows: 
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    (9) 

 

If 
max

F  from (9) is smaller than 
)max(needed

F  then increase number of ADC (number of sampling frequencies) 

and calculate minimum of 
min

  in (7) and 
max

F  in (9), again. Repeat this step until minimum of 
min

  in (7) 

and 
max

F  from (9) to be bigger than 
)(min needed

  and 
)max(needed

F , respectively. Save the number of ADCs as 

needed number of ADCs. 

Or, get the minimum SNR that you want to extract the desired frequency unambiguity and obtain minimum 

of 
max
  that is needed for this from (10) [17] and (7) and named it as 

)(min needed
 .  
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      (10) 

 

The lower limit on frequency error for any unbiased estimation is given by the Cramer-Rao bound [17]. Here, 

f
 is the standard deviation in Hz, s

f is the sampling frequency of signal and s
N  is number of samples 

available for FFT estimation without compensating the frequency truncated to the nearest bins, causing the 

error of 
N

f
s

2
. 

Then, find the minimum number of ADC that can be used to satisfy this SNR value (or 
)(min needed

  value). This 

procedure is named as determining of the minimum number of ADC from desired noise variance.  

Step 4: Find the noisy under-sampled frequencies from output of 
p

 ADCs as Figure 2 (b) by N-Point FFT 

are pif
ui

,...,1;
~

 . and real frequency (input analog frequency) that should be extracted from these under 

samplings is F . 

Step5: Calculate the desired frequency from its under-sampled waveforms by following pseudo code: 

 

Extraction of the input frequency from its noisy under-sampled real waveform: 

A pseudo code for extraction of a real frequency from its noisy under-sampled frequencies is obtained in this 

part. 

Step5-1: calculate possible frequency in band, i.e. ],0[
max

Ff  , where its undersampled frequency is 
1

~
u

f  

when sampled with 
1s

f  and name it 
tF

1
ˆ  as follows: 
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   (11) 

 

Step5-2: Find under samplings of all 
tF

1
ˆ  when are sampled with sampling frequencies pif

si
,...,2;   and 

name these undersampled walues as pif t

ui
,...,2;ˆ  . Therefore, relationship between 

tF
1

ˆ  and its 

corresponded undersampled pif t

ui
,...,2;ˆ   are as: 
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t ffkFF
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        (12) 

 

Step5-3: Substitute pif t

ui
,...,2;ˆ   by their noisy undersampled pif

ui
,...,2;

~
  in Equation (12). Then 

calculate : 
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Note that t

i
k̂  and t

i
v̂  are related to choose of 1ˆ

i
k  and 1ˆ

i
v . 

Step5-5: After finding 
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v
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t

i

t

i
ffkF

t

i
~

)1(ˆ~ *
* ˆ

  then, input analog frequency can be determined as (15) FF ˆ . 
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4.  SIMULATIONS AND RESULTS  

4.1. Performance of Peak of FFT Spectrum Amplitude based on our Testing 
Different methods for sub-Nyquist frequency detection on the FPGA were tested in this research as 

discussed in the previous section. Finally, the direct FFT was selected for frequency estimation. The local 

maximum in the index bin of a n-point FFT was taken as frequency. Note that the FFT core [18], (available 

in the Xilinx ISE Tools) in the ISE environment. A Xilinx development board with XC5vsx95T, speed of 2 

and pakage FF1136 of Virtex 5 family were used for testing. We tested sub-Nyquist frequency detection by 

N = 2048 FFTs points and sampling frequency of 200 MHz on the FPGA. With a bin size of bs = 200 MHz/ 

2048 = 97.6 kHz, we hypothesized that the error would never exceed bs/2=48.8 kHz. We chose three 

sampling frequencies between 180-200 MHz, because managing and processing the data with the selected 

technology (e.g. FPGA and ADC) was possible up to 200 MHz. and the input signal band was between 0-2 

GHz. 
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Figure 3. Under-sampling frequency detection (a) previous studies [2], [7-9] need more ADC and 

Inphase/Quadrature equipments (b) proposed approach. 
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Suitable frequencies for sampling frequency are fs1 = 184, fs2 = 192, fs3 = 200 MHz according to 

Step3 of frequency estimation procedure in the previous section. We adopted sampling frequencies of 200 

MHz, 192 MHz and 184 MHz to maximize the minimum distance (
min

 ) of (7). As shown in Figure 3, we 

used the FFT with 2048 points to extract the input frequency. Then, we used the relationship between the 

reminders of analog signal frequency, i.e., 
1

~
u

f ,
2

~
u

f , and 
3

~
u

f to extract the real frequency of the analog signal 

( Ff
ana


log

).  

The quantity of consumed gates for implementation of 2048-point FFT is presented in Table 1. 

 

 

Table 1 Synthesis results of a 2048-point FFT core pipelined streaming I/O on XC5vsx95T used 

previous approaches [2], [7-9] and proposed approach (usages for both are same) 
FPGA resource Used Total in FPGA % Usage 

# of slice Register 4741 58880 8 

# of slice LUTs 3569 58880 6 

# of DSP48Es 60 640 9 

#of BRAMs 8 244 3 

 

 

For extracting analog frequency F from the reminders 
1

~
u

f ,
2

~
u

f , and 
3

~
u

f  the proposed algorithm in 

Step5-1 to 5-5 was used. 

We tested the implementation by input signal with frequency  2/)2)44((
321 sss

fff  

 184)192200(2  MHz968 and the have minimum distance based on (8) that is equal to 8 according to 

Equation (7). It may be detected incorrectly as  2/)2)44((
321

'

sss
fffF   184)192200(2  

MHz600  based on (8). It can be found from Equation (10) that good frequency estimation method (near the 

Cramer-Rao bound) allows correct detection of frequency by the proposed method until the point where 

deviation of frequency is below 
32

8
 (65 dB). The minimum distance between the reminders of each 

frequency in the band with respect to fs1=184, fs2=192, fs3=200 MHz are 8 MHz (7). Therefore, maximum 

tolerance of each frequency to detect frequency uniquely is 
32

8
 MHz. 

Results of testing for signals with different pulse widths and periods of repetition equal to 100 us 

were evaluated and the minimum power for frequency extraction uniquely (Fig. 4) was near -70 dBm for 

greater pulse width. It is shown that increased pulse width alters the minimum power of detectable pulse until 

the number of sample pulses is less than the FFT length. The simulation results in Fig.4 shows 

undersampling frequency detection for proposed approach and previous approach have same performance 

while proposed approach has less hardware in compared with the previous studies (see Figure 3 (a), 3(b) and 

Table 2). 

 

 

 
Fig 4. Minimum power detectable with new under-sampling frequency detection method on the 

FPGA for different pulse widths 



                ISSN: 2088-8708 

IJECE  Vol. 7, No. 3, June 2017 :  1316 – 1325 

1324 

Comparision between proposed and previous studies for undersampling frequency detection can be 

summarized as Table 2. As you can see number of used ADC per sampling frequencies for previous studies 

that used complex aveform (has Inphase and Quadrature parts) was double of proposed approach from real 

waveform. Furturemore, extra equipment was needed in previous studies to obtain complex waveform. Since 

implementation of FFT for complex and real numbers on FPGA is same and same core IP is used for them 

the average usage of resurces for both approaches are same. 

 

 

Table 2. Comparision between proposed and previous studies approaches 
Method No. ADC per 

samling 
frequencies 

Extra equipment Average FPGA 

Resouce usage on 
on XC5vsx95T 

Comlex waveform 

undersampling[2,7,8,9] 
 

 

2 Equipment for convert received signal to complex 

waveform 

8% 

Proposed method 1 No need 8% 

 

 

In sensor networks, energy consumption and cost of hardware implementation are important 

factores [19], [20]. Our proposed simple hardware can save cost and energy. Therefore, it is useful for 

sensors in sensor networks. 

 

 

5.  CONCLUSIONS  
This paper examined and discussed different methods for estimation of sub-sampled frequency on 

the FPGA. We implemented different methods on the FPGA for Sub-Sampling frequencies detection, 

including Least Squares, Direct State Space, Goertzel filter, Sliding DFT, Phase changes of FFT, peak 

amplitude of FFT. Shortcoming and advantages of each method during the implementation on FPGA were 

discussed and tested. Note that, shortcomings of these methods are not discussed specifically in previous 

studies. Finally, an appropriate method for under-sampling frequency detection on the FPGA was chosen. 

Implementation and modification of codes on the FPGA are time-consuming procedures and require 

knowledge of hardware. Therefore, this work can help choose an appropriate approach for implementation of 

sub-sampling frequency detection on the FPGA from Least Squares, Direct State Space, Goertzel filter, 

Sliding DFT, Phase changes of FFT, peak amplitude of FFT spectrum. After choosing an appropriate method 

that is Peak of FFT spectrum amplitude, it is possible to use usual ADCs, which usually work under 1 Giga 

sample/sec to detect frequencies much higher than its sampling rate. Detection of higher frequency by lower 

sampling rate has been applied to various areas, such as sensor networks and radars signal processing. Our 

proposed approach, undersampling frequency detection from real waveform, needs less ADC and no need 

equipment for converting received signal to complex waveform in the contrast with the previous studies for 

complex waveform. 

 

 

ACKNOWLEDGMENTS 

This work was supported by the Research Grant Scheme of University of Torbat Heydarieh. 

 

 

REFERENCES  
[1] Maroosi A, Bizaki H.K., “Digital Frequency Determination of Real Waveforms based on Multiple Sensors with 

Low Sampling Rates”, IEEE Sensors Journal, 2012; 12(5): 1483-1495  

[2] Xiao L, Xia X.G, Huo H, “New Conditions on Achieving the Maximal Possible Dynamic Range for a Generalized 

Chinese Remainder Theorem of Multiple Integers”, IEEE Signal Processing Letters, 2015; 22(12): 2199-2203.  

[3] Li W. C, Wang X. Z, Wang X. M, Moran B, “Distance Estimation using Wrapped Phase Measurements in Noise”, 

IEEE Trans. Signal Process, 2013; 61: 1676-1688.  

[4] Akhlaq A, McKilliam R, Subramanian R, “Basis Construction for Range Estimation by Phase Nwrapping”, IEEE 

Signal Process. Letter, 2015; 22: 2152-2156. 

[5] Marques P. A. C, Dias J. E. M. B, “Velocity Estimation of Fast Moving Targets using a Single SAR Sensor”, IEEE 

Trans. Aerosp Electron Syst, 2005; 41: 75–89.  

[6] Zoltowski M. D, Mathews C. P., “Real-Time Frequency and 2-D Angle Estimation with Sub-Nyquist Spatio-

Temporal Sampling”, IEEE Trans. Signal Process, 1994; 42: 2781–2791.  

[7] Xiao L, Xia X.-G., “A Generalized Chinese Remainder Theorem for Two Integers”, IEEE Signal Process. Lett, 

2014; 21: 55–59.  



IJECE  ISSN: 2088-8708  

 

High Speed Under-Sampling Frequency Measurements on FPGA (Seyed Ehsan Yasrebi Naeini) 

1325 

[8] Wang W, Li X. P, Xia X.-G, Wang W. J., “The Largest Dynamic Range of a Generalized Chinese Remainder 

Theorem for Two Integers”, IEEE Signal Process. Lett, 2015; 22: 254–258.  

[9] Xiao L, Xia X.G., “A New Robust Chinese Remainder Theorem with Improved Performance in Frequency 

Estimation from Undersampled Waveforms” Signal Processing, 2015; 117: 242-246.  

[10] Barbosa D, Monaro R.M, Coury D.V, Oleskovicz M, “Modified Least Mean Square Algorithm for Adaptive 

Frequency Estimation in Power Systems”, IEEE Power and Energy Society General Meeting 2008; pp.1-6.  

[11] Jing D, Jun W, Han C, Dalu L, Han W, “Estimating the Frequency in Power System based on State Space 

Recursive Least Squares”, ICIEA 2008, IEEE Conf on Industrial Electronics and Applications, 2008; 1444-1447.  

[12] Oppenheim A. V, Schafer R.W, Buck J. R., “Discrete-Time Signal Processing”, Pearson Education, Inc., 2nd 

edition, 1999.  

[13] Jacobsen E, Lyons R, “The Sliding DFT”, IEEE Signal Process Magazine, 2003; 20: 74-80.  

[14] Beraldin J, Steenaart W, “Overflow Analysis of a Fixed-Point Implementation of the Goertzel Algorithm, IEEE 

Tran. Circuits and Systems, 1989; 36: 322-324.  

[15] Brown, J. C, Puckette M.S., “A High Resolution Fundamental Frequency Determination based on Phase Changes 

of the Fourier Transform”, The Journal of the Acoustical Society of America, 1993; 94: 662-667.  

[16] Herselman P. L, Cilliers J. E., “A Digital Instantaneous Frequency Measurement Technique using High-Speed 

Analogue-to-Digital Converters and Field Programmable Gate Arrays”, South African Journal of Science, 2006; 

102: 345–348. 

[17] Holm S, “Optimum FFT-based Frequency Acquisition with Application to COSPAS-SARSAT”, IEEE Trans. 

Aerosp Electron Syst, 1993; 29: 468-475. 

[18] Emmert J, “An FFT Approximation Technique Suitable for on-Chip Generation and Analysis of Sinusoidal 

Signals”, In Proceedings of the 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI 

Systems, 2003.  

[19] Gupta S, Gupta G, “Simulation Time and Energy Test for Topology Construction Protocol in Wireless Sensor 

Networks”, Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 2015; 3: 89-92. 

[20] Manjunatha R.C, Rekha K.R, Nataraj K. R., “Implementation of Fuzzy based Simulation for Clone Detection in 

Wireless Sensor Networks”, International Journal of Electrical and Computer Engineering, 2016; 6: 1570-1576. 

 

 

BIOGRAPHIES OF AUTHORS  

 

 

Seyed Ehsan Yasrebi Naeini is a lecturer at University of Torbat Heydarieh. His reaserch areas 

include data proicessing, data mining, etc. 

 

 

 

 

  

 

Ali Maroosi is an assistant professor at University of Torbat Heydarieh. His raserch interests are 

data and signal processing, parallel processing, intelligent algorithms, etc. He has published 

many journal papers in refreed journals. 

 

 

 

 

 

 

 

 


