DARE Algorithm: A New Security Protocol by Integration of Different Cryptographic Techniques

John Mark B. Espalmado, Edwin R. Arboleda
Department of Computer and Electronics Engineering, College of Engineering and Information Technology, Cavite State University - Indang, Cavite, Philippines

Article Info

Article history:

Received Nov 14, 2016
Revised Mar 8, 2017
Accepted Mar 25, 2017

Keyword:

AES algorithm
DES algorithm
Digital signature algorithm
Hybrid cryptography
RSA encryption

Abstract

Exchange of information between computer networks requires a secure communications channel to prevent and monitor unauthorized access, modification and denial of the computer network. To address this growing problem, security experts sought ways to advance the integrity of data transmission. Security Attacks compromises the security and hence hybrid cryptographic algorithms have been proposed to achieve safe service in the proper manner, such as user authentication and data confidentiality. Data security and authenticity are achieved using these algorithms. Moreover, to improve the strength and cover each algorithm's weaknesses, a new security algorithm can be designed using the combination of different cryptographic techniques. This design uses Digital Signature Algorithm (DSA) for authentic key generation, Data Encryption Standard (DES) for key scheduling, and Advanced Encryption Standard (AES) and Rivest-SchamirAdleman Algorithm (RSA) in encrypting data. This new security algorithm has been proposed for improved security and integrity by integration of these cryptographic techniques.

Copyright © 2017 Institute of Advanced Engineering and Science. All rights reserved.

Corresponding Author:

Edwin R. Arboleda,
Department of Computer and Electronics Engineering, College of Engineering and Information Technology, Cavite State University, Main, Indang, Cavite, Philippines.
Email: edwin.r.arboleda@cvsu.edu.ph

1. INTRODUCTION

The science of encrypting and decrypting data using mathematics is called cryptography. It enables users to store private information and send it across mediums susceptible to attacks of hackers thereby reducing the compromise in data security. This makes it hard for any unauthorized interference to garble with sensitive data.

Cryptography works with the use of algorithms. A cipher or cryptographic algorithm is a mathematical function used in the process of encryption and decryption process. To hide confidential information, data or message can be encrypted using keys generated from a word, a number, or a phrase. This plaintext is encrypted to different ciphertexts using different keys. The strength of the cryptographic algorithm and the secrecy of the key greatly affects the security of encrypted data [1].

However, there are still persisting threats due to the familiarity of these cryptographic techniques added with its simplicity to potential attackers. Present problems include Brute-force attacks, low encryption strength, and insufficient randomness in key generation [2]. Moreover, data privacy is challenged since passwords can be also be stolen especially when logged in an unsecure network. The system's vulnerability to attacks must be less probable as a function of the security parameter. In this paper, we address this matters
by proposing a mixed encryption algorithm by combining the presented cryptography techniques and utilize their strengths and as much as possible, reduce the weakness of one technique with that of another.

2. RESEARCH METHOD

2.1. Basic Principles involved in the Proposed Scheme

2.1.1. DSA (Digital Signature Algorithm)

Authentication and authenticity are ensued using Digital Signature Algorithm [3]. A parameter required is a secret key x such that it satisfies $0<\mathrm{x}<\mathrm{q}$ in computing the private and public keys for a single user. Get the public key using the formula: $y=g^{x} \bmod p$. To solve for the modular exponentiations $h^{(p-1)} / q$ $\bmod p$ and $g^{x} \bmod p$, exponentiation by squaring can be applied [4].

2.1.2. DES Key Scheduling

The key scheduling of the DES separates the 56-bit key is into two 28 -bit halves; wherein each half is treated separately. These halves are rotated left by one or two bits per each successive round as specified in Table 1. Then, 48 subkey bits are selected by Permuted Choice 2 (PC-2) - 24 bits from the left half, and 24 from the right. There are varying sets of bits in each subkey because of the rounds; each bit is used in about 14 out of the 16 subkeys [5].

Table 1. Shifts for each round in DES Key Scheduling

Round	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Shift	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

2.1.3. AES (Advanced Encryption Standard) Algorithm

AES algorithm is a symmetric block cipher, which offers better security and efficiency than DES [3] in message encryption, is a widely-used algorithm primarily executed using a software. It has low memory requirements making it appropriate for fast usage in some constrained environment. AES encryption process is operated in a $4 \times \mathrm{Nb}$ matrix (also known as state) where Nb is equivalent to the quotient of the data block length and 32 [6]. Encryption comprises the following steps [7], [8]:
a. AddRoundKey

Each byte in the state matrix is XORed with the Roundkey value is XORed.
b. SubBytes

In this stage, each byte is substituted with its equivalent byte as defined from a look-up table. Refer to Table 2(a) for the look-up table during encryption and Table 2(b) during decryption.

Table 2. AES SubByte Transformation Table (a) \& Inverse Subbyte Transformation (b) [3]

(a)

(b)
c. ShiftRows

With an incrementing number of rows, a cyclic shift to the left of each byte is operated in each column of the matrix.

d. Mixed Columns

Yielding a four-term polynomial by treating the matrix column by column and multiplying with another polynomial as stated in the standard of over GF $\left(2^{8}\right)$ comprises this step.

2.1.4. RSA

RSA algorithm is a public key encryption algorithm, utilizes a public key and a private key. The keys appear as pairs, and the corresponding key must be utilized for encryption and decryption operation [4], [9].
a) Confidential prime numbers p and q are chosen in the same order of magnitude.
b) Compute for $n=p \phi q, \phi(n)=(p-1)(q-1)$, where $\phi(n)$ is the Euler function value of n.
c) Pick an integer e to satisfy $1<e<\phi(n), \phi(n)$
d) Generate a decryption key d as follows: $(e \times d) \bmod \phi(n)=1$

Encryption $c=m^{e} \bmod n$
Decryption $\mathrm{m}=c^{d} \bmod n$
The encryption keys are e and n while d and n are the decryption keys. The ciphertext is m while c is the decrypted ciphertext. The public keys are (e, n) while (d, n) constitute the private key, prime numbers p and q should be discarded.

2.2. Proposed Hybrid Algorithm Architecture

It is desired to communicate data with high security. At present, various types of cryptographic algorithms provide high security to information on controlled networks. These algorithms are required to provide data security and users authenticity. This new security protocol has been designed for better security using a combination of DSA key generation and DES key scheduling with AES subByte Transformation and RSA encryption.

Figure 1. Block Diagram of Proposed Algorithm

As shown in Figure 1, the proposed algorithm requires a passphrase shared by both the sender and receiver to securely authenticate data exchange. The passphrase is encrypted using the first phase of Digital Signature Algorithm (DSA) in which different users in the system share the same algorithm parameters. In the encryption stage, the passphrase is encrypted to ensure that hackers may not intrude and interfere with the transmission. The encrypted public key (y) is then converted into binary and n keys are derived using DES key Scheduling. Those keys are XORed with the plain text, concealed using AES subByte Transformation, to securely hide the original plain text. The data is then complemented, converted to decimal and encrypted with RSA to get the ciphertext for more confidentiality. During the decryption stage, same steps are applied to the receiver in which they must also input passphrase, encrypted with DSA, key generate with DES to allow access to data. The keys will then be XORed to the decrypted ciphertext with RSA to gain the AES subByte equivalent. Plaintext will be recovered using the table for subByte Transformation.

This proposal, DARE (DSA/DES - AES - RSA Encryption) algorithm is composed of three components: Key generation which uses DSA and DES; data encryption and decryption which uses AES and RSA.

2.3. Key Generation

The Key generator works as follows:
a. Alice inputs a passphrase of up to n characters $\left(l_{1} l_{2} l_{3} \ldots l_{\mathrm{n}}\right.$) which is converted to its binary equivalent, bitwise XORed, gray coded, and converted to decimal form
b. Alice picks a perfect square not greater than the decimal and deducts it from the number such that its difference is an odd prime number. Let this difference be $p 1$.
c. Alice chooses a number q1 such that it is a prime factor of $p 1-1$ and a number h ' such that it is less than pl-1.
d. Alice computes $g=h '(p 1-1) / q 1(\bmod p)$
e. Alice chooses a private key x.
f. Alice computes $y=g^{x}(\bmod p 1)$.
g. Alice converts y to binary uses the table for round shifts in DES key scheduling which results to k_{0} up to k_{n}.

2.4. Encryption

The encryption algorithm works as follows: to encrypt a message m to Bob under Alice' public key (k_{0} up to k_{n}) Alice picks a prime number p 2 such that $\mathrm{p} 2>$ (largest ASCII equivalent of the message) and a random number q.
a. Alice calculates $\mathrm{n}=\mathrm{p} 2 * \mathrm{q} 2$ and $\phi(\mathrm{n})=(\mathrm{p} 2-1) *(\mathrm{q} 2-1)$.
b. Alice chooses e such that $(0<\mathrm{e}<\phi(\mathrm{n}))$.
c. Alice computes for d - the inverse modulo of e. using Euclidian Algorithm $\mathrm{e} * \mathrm{~d} \bmod \phi(\mathrm{n}))=1$
d. Alice publishes her public key (e, n) and (d, n)
e. Alice converts the message into its HEX equivalent.
f. Alice uses the table for SubByte Transformation in AES to hide the message and converts them into binary.
g. Alice uses her keys to bitwise XOR it with her binary message.
h. Alice computes its 1 's complement and converts it to decimal form. Let it be m.
i. Alice uses the $c=m e(\bmod n)$ to encrypt m.

2.5. Decryption

The decryption algorithm works as follows: to decrypt a ciphertext $\left\{\mathrm{c}_{1,}, \mathrm{c}_{2}, \mathrm{c}_{3} \ldots \mathrm{c}_{\mathrm{n}}\right\}$ with keys public keys ($k_{0}-\mathrm{k}_{\mathrm{n}, \mathrm{e}} \mathrm{e}, \mathrm{d}, \mathrm{n}$)
a. Bob inputs the same shared passphrase for authentication which allows him to access the ciphertext.
b. Using the public key d, Bob calculates the message: $\mathrm{m}=\mathrm{c}^{\mathrm{d}} \bmod \mathrm{n}$
c. Bob converts the m_{1} to m_{n} from decimal to binary form and get the 1 's complement of each.
d. Bob uses the keys k_{0} to $\mathrm{k}_{\mathrm{n} \text { in }}$ Bitwise XORing each of the 1 's complemented m .
e. Bob then uses the inverse SubByte Transformation table in AES to recover the hex equivalent of the message.
f. The hexes are then converted to ASCII equivalent to decrypt the plain text.

3. RESULTS AND ANALYSIS

In this section, we calculated the ciphertext produced when a user passphrase "dare" is used to encrypt a message "Waltz, nymph, for quick jigs vex Bud." to prove that this proposal is achievable.

3.1. Key generation

1. With this proposal, a user can now input a Passphrase for more secure key generation:

Example: dare
ASCII Equivalent
$\mathrm{d}=100 ; \quad \mathrm{a}=97: \mathrm{r}=114 ; \mathrm{e}=101$
2. XOR the binary equivalent of the ASCII passphrase and it will yield 00010010
3. Gray Code the XORed passphrase.

Answer $=00011101$
4. Convert it to decimal form.

Answer $=27$
5. Get the difference between the decimal with the perfect square not greater than the decimal as long as its difference is an odd number
Answer $=27-16=11 \quad$ In this case; 16 will be deducted from 27.
6. Using DSA key pair generation, let:

```
\(\mathrm{p}=11\)
prime number between 512 to 1024 bits long
\(\mathrm{p}-1=10\)
\(\mathrm{q}=5\)
\(\mathrm{h}^{\prime}=7 \quad\) such that \(\mathrm{h},<\mathrm{p}-1\)
\(\mathrm{g}=\mathrm{h}^{,(\mathrm{p}-1) / \mathrm{q}}(\bmod \mathrm{p})\)
\(=7^{10 / 5} \bmod 13\)
\(=5\)
\(\mathrm{x}=3 \quad\) private key
\(y=g^{x}(\bmod p)\)
\(=5^{3}(\bmod 13)\)
\(=4\)
```

7. Convert y to 8 bit binary

00001000
8. Using DES schedule for key shift in DES algorithm, find k 1 to kn .
$\mathrm{K} 1=\mathrm{K} 17=\mathrm{K} 33=00010000$
$\mathrm{K} 2=\mathrm{K} 18=\mathrm{K} 34=00100000$
$\mathrm{K} 3=\mathrm{K} 19=\mathrm{K} 35=10000000$
$\mathrm{K} 4=\mathrm{K} 20=\mathrm{K} 36=00000010$
$\mathrm{K} 5=\mathrm{K} 21=\mathrm{K} 37=00001000$
$\mathrm{K} 6=\mathrm{K} 22=\mathrm{K} 38=00100000$
$\mathrm{K} 7=\mathrm{K} 23=10000000$
$\mathrm{K} 8=\mathrm{K} 24=00000010$
$\mathrm{K} 9=\mathrm{K} 25=00000100$
$\mathrm{K} 10=\mathrm{K} 26=00010000$
$\mathrm{K} 11=\mathrm{K} 27=01000000$
$K 12=K 28=00000001$
$K 13=K 29=00000100$
$\mathrm{K} 14=\mathrm{K} 30=00010000$
$\mathrm{K} 15=\mathrm{K} 31=01000000$
$K 16=K 32=10000000$
9. RSA key generation
$\mathrm{p}=127 ; \quad$ such that $\mathrm{p}>\mathrm{m}$
$\mathrm{q}=5 \quad$ any prime number
$\mathrm{n}=\mathrm{p} * \mathrm{q}=127$ * $5=635$
$\phi(\mathrm{n})=(\mathrm{p}-1) *(\mathrm{q}-1)=126 * 5=504$
Let $\mathrm{e}=11 \quad(0<\mathrm{e}<\phi(\mathrm{n}))$
Let $\mathrm{d}=$ inverse modulo of e

To compute for d, using Euclidean Algorithm:
e * $d \bmod \phi(n))=1$
$5 * d \bmod 504=1$
$504+11 \mathrm{y}=1$
$504=45(11)+9 \quad[$ eq. 1$]$
$11=1(9)+2 \quad$ [eq.2]
$9=4(2)+1 \quad$ [eq.3]
Extended Euclidean Algorithm (Back Substitution)
$1=9-4(2)$
eq. (4): substitute eq. 3
$1=9-4[11-1(9)]$
eq. (5): substitute eq. 2
$1=9-4(11)+4(9)$
eq. (6): extending eq. 5
$1=5(9)-4(11)$ eq. (7): combining similar terms in eq. 6
$1=5[504-45(11)]-4(11)$ eq. (8)
$1=5(504)-5(45)(11)-4(11)$ eq. (9)
$1=5(504)-49(11)$ eq. (10)
$\mathrm{d}=-49 \bmod 504$
$\mathrm{d}=504-49$
d=455
Public keys $(\mathrm{e}, \mathrm{n})=(11,635)$
Private keys $(\mathrm{d}, \mathrm{n})=(383,635)$

Encryption

1. Convert the message into its ASCII equivalent

Letter	ASCII	Letter	ASCII
W	87	i	105
a	97	c	99
l	108	k	107
t	116	j	106
z	122	g	103
n	110	s	115
y	121	v	118
m	109	e	101
p	112	x	120
h	104	B	66
f	102	u	117
o	111	d	100
r	114	,	44
q	113	\cdot	46
u	117	(space)	32

2. Convert it to its HEX equivalent

Letter	ASCII	Hex	Letter	ASCII	Hex
W	87	57	i	105	69
a	97	61	c	99	63
l	108	6 C	k	107	6 B
t	116	74	j	106	6 A
z	122	7 A	g	103	67
n	110	6 E	s	115	73
y	121	79	v	118	76
m	109	6 D	e	101	65
p	112	70	x	120	78
h	104	68	B	66	42
f	102	66	u	117	75
o	111	6 E	d	100	64
r	114	72	,	44	2 C
q	113	71	\cdot	46	2 E
u	117	75	(space)	32	20

3. Using AES using SubByte transformation, take the first bit of the hex as the row and second (x) and the second bit as the column (y).
$\mathrm{W}=17=\mathrm{ml}$
$\mathrm{a}=\mathrm{ef}=\mathrm{m} 2$
$\mathrm{l}=50=\mathrm{m} 3$
$\mathrm{t}=92=\mathrm{m} 4$
$\mathrm{z}=\mathrm{da}=\mathrm{m} 5$
,=71 = $\mathrm{m} 6=\mathrm{ml} 3$
space $=\mathrm{b} 7=\mathrm{m} 7=\mathrm{m} 14=\mathrm{m} 18=\mathrm{m} 24=\mathrm{m} 29=\mathrm{m} 33$
$\mathrm{n}=9 \mathrm{f}=\mathrm{m} 8$
$\mathrm{y}=\mathrm{b} 6=\mathrm{m} 9$
$\mathrm{m}=3 \mathrm{c}=\mathrm{m} 10$
$\mathrm{p}=51=\mathrm{ml} 1$
$\mathrm{h}=45=\mathrm{m} 12$
$\mathrm{f}=33=\mathrm{m} 15$
$\mathrm{o}=9 \mathrm{f}=\mathrm{m} 16$
$\mathrm{r}=40=\mathrm{m} 17$
$\mathrm{q}=\mathrm{a} 3=\mathrm{m} 19$
$\mathrm{u}=9 \mathrm{~d}=\mathrm{m} 20=\mathrm{m} 35$
$\mathrm{i}=\mathrm{f} 9=\mathrm{m} 21$
$\mathrm{c}=\mathrm{fb}=\mathrm{m} 22$
$\mathrm{k}=7 \mathrm{~b}=\mathrm{m} 23$
$\mathrm{j}=02=\mathrm{m} 25$
$\mathrm{g}=85=\mathrm{m} 27$
$\mathrm{s}=8 \mathrm{f}=\mathrm{m} 28$
$\mathrm{v}=38=\mathrm{m} 30$
$\mathrm{e}=4 \mathrm{~d}=\mathrm{m} 31$
$\mathrm{x}=\mathrm{bc}=\mathrm{m} 32$
$\mathrm{B}=2 \mathrm{c}=\mathrm{m} 34$
$\mathrm{u}=9 \mathrm{~d}=\mathrm{m} 35=\mathrm{m} 20$
$\mathrm{d}=43=\mathrm{m} 36$
. $=31=\mathrm{m} 37$
The message is now in the form:
17 EF 5092 DA 71 B7 9F B6 3C 514571 B7 33 9F 40 B7 A3 9D F9 FB 7B B7 02 F9 85 8F B7 38 4D BC B7 2C 9D 4331
4. Convert each it into binary form

M1	00010111	M 20	10011101
M2	11101111	M 21	11111001
M3	01010000	M 22	11111011
M4	10010010	M 23	01111011
M5	11011010	M 24	10110111
M6	01110001	M 25	00000010
M7	10110111	M 26	11111001
M8	10011111	M 27	10000101
M9	10110110	M 28	10001111
M10	00111100	M 29	10110111
M11	01010001	M 30	00111000
M12	01000101	M 31	01001101
M13	01110001	M 33	10111100
M14	10110111	M 34	10110111
M15	00110011	M 35	00101100
M16	10011111	M 36	10011101
M17	01000000	M 37	01000011
M18	10110111		00110001
M19	10100011		

5. The message is now XORed with corresponding keys K 1 to KN . It will now become:

00000111	11001111	11010000	10010000	11010010	01010001
11110111	10011101	10110010	00101100	00010001	01000100
01110101	10100111	01110011	00011111	01010000	10010111
00100011	10011111	11110001	11011011	11111011	10110101

00000110	11101001	11000101	10001110	10110011	00101000
00001101	00111100	10100111	00001100	00011101	01000001
00111001					
Get the 1's complement					
11111000	00110000	00101111	01101111	00101101	10101110
00001000	01100010	01001101	11010011	11101110	10111011
10001010	01011000	10001100	11100000	10101111	01101000
11011100	01100000	00001110	00100100	00000100	01001010
11111001	00010110	00111010	01110001	01001100	1101011
11110010	11000011	01011000	11110011	11100010	10111110
11000110					

7. Convert it to decimal

$248=\mathrm{m} 1$	$30=\mathrm{m} 2$	$47=\mathrm{m} 3$	$111=\mathrm{m} 4$	$45=\mathrm{m} 5$
$174=\mathrm{m} 6$	$8=\mathrm{m} 7$	$98=\mathrm{m} 8$	$77=\mathrm{m} 9$	$211=\mathrm{m} 10$
$238=\mathrm{m} 11$	$187=\mathrm{m} 12$	$138=\mathrm{m} 13$	$88=\mathrm{m} 14$	$140=\mathrm{m} 15$
$224=\mathrm{m} 16$	$175=\mathrm{m} 17$	$104=\mathrm{m} 18$	$220=\mathrm{m} 19$	$48=\mathrm{m} 20$
$14=\mathrm{m} 21$	$36=\mathrm{m} 22$	$4=\mathrm{m} 23$	$74=\mathrm{m} 24$	$249=\mathrm{m} 25$
$22=\mathrm{m} 26$	$58=\mathrm{m} 27$	$113=\mathrm{m} 28$	$76=\mathrm{m} 29$	$215=\mathrm{m} 30$
$242=\mathrm{m} 31$	$195=\mathrm{m} 32$	$88=\mathrm{m} 33$	$243=\mathrm{m} 34$	$226=\mathrm{m} 35$
$190=\mathrm{m} 36$	$198=\mathrm{m} 37$			

8. The decimals will be encrypted using RSA

RSA: Encryption

1. Using formula $\mathbf{C}=\mathbf{m}^{\mathrm{e}}(\bmod \mathbf{n})$

C1	$248^{11} *(\bmod 635)=542$	C2	$30^{11} *(\bmod 635)=450$
C3	$47^{11} *(\bmod 635)=38$	C4	$111^{11} *(\bmod 635)=631$
C5	$45^{11} *(\bmod 635)=605$	C6	$174^{11} *(\bmod 635)=419$
C7	$8^{11} *(\bmod 635)=32$	C8	$98^{11} *(\bmod 635)=412$
C9	$77^{11} *(\bmod 635)=588$	C10	$211^{11} *(\bmod 635)=396$
C11	$238^{11} *(\bmod 635)=377$	C 12	$187^{11} *(\bmod 635)=88$
C13	$138^{11} *(\bmod 635)=62$	C 14	$88^{11} *(\bmod 635)=587$
C15	$140^{11} *(\bmod 635)=590$	C 16	$224^{11} *(\bmod 635)=435$
C17	$175^{11} *(\bmod 635)=55$	C 18	$104^{11} *(\bmod 635)=84$
C19	$220^{11} *(\bmod 635)=600$	C 20	$48^{11} *(\bmod 635)=182$
C21	$14^{11} *(\bmod 635)=459$	C22	$36^{11} *(\bmod 635)=521$
C23	$4^{11} *(\bmod 635)=129$	C24	$74^{11} *(\bmod 635)=314$
C25	$249^{11} *(\bmod 635)=454$	C26	$22^{11} *(\bmod 635)=103$
C27	$58^{11} *(\bmod 635)=12$	C28	$113^{11 *(\bmod 635)=557}$
C29	$76^{11} *(\bmod 635)=341$	C30	$215^{11} *(\bmod 635)=460$
C31	$242^{11} *(\bmod 635)=163$	C32	$195^{11} *(\bmod 635)=560$
C33	$88^{11} *(\bmod 635)=587$	C34	$243^{11} *(\bmod 635)=192$
C35	$226^{11} *(\bmod 635)=276$	C36	$190^{11} *(\bmod 635)=500$
C37	$198^{11} *(\bmod 635)=352$		

Decryption

1. Use RSA Decryption to get the value of \mathbf{m} using the formula: $\mathbf{m}=\mathbf{c}^{\mathbf{d}} \bmod \mathbf{n}$

248	30	47	111	45
174	8	98	77	211
238	187	138	88	140
224	175	104	220	48
14	36	4	74	249
22	58	113	76	215
242	195	88	243	226
190	198			

2. Convert each decrypted decimal into binary form and get its 1 's complement.

11111000	00110000	00101111	01101111	00101101	10101110
00001000	01100010	01001101	11010011	11101110	10111011
10001010	01011000	10001100	11100000	10101111	01101000
11011100	01100000	00001110	00100100	00000100	01001010
11111001	00010110	00111010	01110001	01001100	11010111
11110010	11000011	01011000	11110011	11100010	10111110

3. XOR the 1 's complement with corresponding keys K 1 to Kn and convert it to hex.

00000111	11001111	11010000	10010000	11010010	01010001
11110111	10011101	10110010	00101100	00010001	01000100
01110101	10100111	01110011	00011111	01010000	10010111
00100011	10011111	11110001	11011011	11111011	10110101
00000110	11101001	11000101	10001110	10110011	00101000
00001101	00111100	10100111	00001100	00011101	01000001
00111001					

4. Get the 1 's complement of the resulting bits in number 3 .

11111000	00110000	00101111	01101111	00101101	10101110
00001000	01100010	01001101	11010011	11101110	10111011
10001010	01011000	10001100	11100000	10101111	01101000
11011100	01100000	00001110	00100100	00000100	01001010
11111001	00010110	00111010	01110001	01001100	11010111
11110010	11000011	01011000	11110011	11100010	10111110
11000110					

5. Convert it to HEX

17 EF 5092 DA 71 B7 9F B6 3C 514571 B7 33 9F 40 B7 A3 9D F9 FB 7B B7 02 F9 85 8F B7 38 4D BC B7 2C 9D 4331
6. From the inverse S box, locate the two-bit HEX equivalent of the message and convert it back to ASCII. 5761 6c 74 7a 2c 20 6e 79 6d 7068 2c 2e 66 6e 722071756963 6b 20 6a 696773207665782042 7564 2e
7. Convert it to ASCII equivalent

879710811612244321101211091221044432102111114321131171059910732106105 10311532118101120326611710046
8. Convert it to equivalent message.

The original plaintext message is recovered to be:
Waltz, nymph, for quick jigs vex Bud.
Results show that the proposal is doable since the original message has been recovered from following the steps included in the section. In this proposal, both the sender and receiver must input a passphrase which undergoes encryption in DSA. The encrypted password is then shifted with rounds using DES key scheduling. Failure of inputting the correct passphrase would result in a different message since the keys used in encrypting and decrypting the message obtained from the passphrase. This functionality strengthens data authenticity of this proposal. Moreover, hiding data using the SubByte Transformation in AES reinforces the encryption strength of RSA.

4. CONCLUSION

In this paper, we proposed a robust protocol using DSA and DES for key generation and scheduling and AES and RSA for encryption and decryption of information. The combination of these different cryptography algorithms delivers a maximized efficiency, amending or compensating each other's deficiencies.

Moreover, it offers a more protected exchange of data since both ends have an encrypted passphrase required to decrypt the message. Therefore, it requires more effort to the hackers to discover the message itself because they have to decrypt the passphrase first. This new hybrid protocol yields a strong cryptosystem together with a secure key encryption management system ensuring all security goals.

ACKNOWLEDGEMENTS

The authors are grateful to Dr. Robles and Dr. Hosea Matel for the encouragement and financial support, especially in providing publication fees.

REFERENCES

[1] M. J. Dubal, et al., "Design of New Security Algorithm Using Hybrid Cryptography Architecture," IEEE, vol/issue: 3(11), pp. 99-101, 2011.
[2] D. Lazar, et al., "Why does cryptographic software fail? A case study and open problems," ACM, pp. 1-7, 2014.
[3] G. Mateescu and M. Vladescu, "A Hybrid Approach of System Security for Small and Medium Enterprises: combining different Cryptography techniques," 2013 Conference on Computer Science and Information Systems on IEEE, pp. 659-662, 2013.
[4] M. Y. Ree, "Internet Security: cryptographic principles, algorithms, and protocols, PO19 8SQ," England, John Wiley \& Sons Ltd, 2003.
[5] H. Yang, "Herong Yang," 2015. [Online]. Available: http://www.herongyang.com/Cryptography/DES-. [Accessed 1 November 2016].
[6] X. Mingyuan, "A Mixed Encryption Algorithm Used in Internet of Things Security Transmission System," IEEE, vol/issue: 6(15), pp. 62-65, 2015.
[7] A. M. Atteya and A. H. Madian, "A Hybrid Chaos-AES Encryption Algorithm and Its Implementation Based on FPGA," IEEE, vol/issue: 7(14), pp. 214-220, 2014.
[8] A. Nadjia and A. Mohamed, "AES IP for Hybrid Cryptosystem RSA-AES," 2015 12th International MultiConference on Systems, Signals \& Devices on IEEE, vol/issue: 7(15), pp. 1-6, 2015.
[9] X. H. Wu and X. J. Ming, "Research of the Database Encryption Technique Based on Hybrid Cryptography," 2010 International Symposium on Computational Intelligence and Design on IEEE, vol/issue: 3(10), pp. 86-71, 2010.

BIOGRAPHIES OF AUTHORS

John Mark B. Espalmado was born in Nabua, Camarines Sur, Philippines in 1996. He is currently studying BS Electronics and Communications Engineering in Cavte State University, Indang, Cavite, Philippines. He is a grantee of the RA 7687 DOST-SEI academic scholarship since 2012. He is a Board-of-Director of the Jr. Institute of Electronics and Communications Engineers of the Philippines - Cavite chapter since July 2016. He is currently the president of the Cavite State University League of Adamant DOST (Department of Science and Technology) Scholars. His research interests include cryptosystem development, and control and monitoring systems.

Edwin R. Arboleda was born in Indang, Philippines in 1979. He received the B.S. degree in Electronics and Communications Engineering in Polytechnique University of the Philippines, Sta. Mesa, Manila, and Meng degree in De La Salle University, Manila in 1995 and 2008 respectively. Since 2001, he has been a member of the faculty of Department of Computer and Electronics Engineering in Cavite State University in Indang, Cavite, Philippines where he is currently an assistant professor. His research interests include near infrared spectroscopy, fuzzy logic, robotics, mechatronics, network security and artificial neural networks.

