
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 7, No. 2, April 2017, pp. 1012~1022

ISSN: 2088-8708, DOI: 10.11591/ijece.v7i2.pp1012-1022  1012

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

Design of Pervasive Discovery, Service and Control for Smart

Home Appliances: An Integration of Raspberry Pi,

UPnP Protocols and Xbee

Sabriansyah Rizqika Akbar, Maystia Tri Handono, Achmad Basuki
Faculty of Computer Science, University Of Brawijaya, Indonesia

Article Info ABSTRACT

Article history:

Received Sep 16, 2016

Revised Jan 6, 2017

Accepted Jan 20, 2017

 Pervasive technology is an important feature in smart home appliances

control. With pervasive technology, the user is able to discover and control

every device and each service without initialization configuration and setup.

Since single-board computer often used in smart home appliances,

combining pervasive technology and microcomputer/single-board computer

will be important to be applied and make a possibility to create a smart home

system based on the requirement of it users that will be beneficial for the

smart home users and the developers. This paper proposed a design of

pervasive discovery, service, and control system for smart home appliances

by integrating Raspberry Pi, UPnP protocols, and Xbee that able to control

an RGB LED services such as switching, dimming, change color and read a

temperature sensor as an example in smart home appliances. This paper

enriched the raspberry Pi GPIO function to be able to control via TCP/IP

network with UPnP protocol and receive information from a temperature

sensor node via Xbee communication. Service control time is measured with

UPnP round trip time by subtracting HTTP response arrival with HTTP

request time. GPIO processing time measured at the application level by

counting a timer that starts before GPIO process and ended after GPIO

successfully executed.

Keyword:

Pervasive discovery

Service discovery

Smart home

UPnP

Xbee

Copyright © 2017 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Sabriansyah Rizqika Akbar

Faculty of Computer Science,

University Of Brawijaya,

Indonesia.

Email: sabrian@ub.ac.id

1. INTRODUCTION

The Smart home system is one of the various applications in the Internet of Things (IOT) field. IOT

contribute as a supporting technology in the everyday life of its users and has covered a variety of areas such

as transport and logistics, health, smart environment, as well as the domain of personal and social [1], [2].

Internet Society defines IOT as a scenario where network and computing capabilities were implemented in a

wide range of objects such as sensors and everyday equipment that is able to produce, exchange and process

data with the minimum human intervention [3]. IOT has also been applied to Smart Home technologies to

improve the quality of human life by implanting objects (things) that are able to communicate with each

other and elaborating the information from the environment. One of the main issues in a smart home system

is people have different needs. With the complex and unclear requirement, the smart home development that

not following functional classifications by it users will be very costly and refused by the users [4]. Since the

commercial smart home system is usually expensive, it is possible now to build a smart home system with

various kind of single-board computer known as Do-it-Yourself (DIY) home automation.With DiY home

IJECE ISSN: 2088-8708 

Design of Pervasive Discovery, Service and Control for Smart Home (Sabriansyah Rizqika Akbar)

1013

automation, it is possible to create a smart home system based on the requirement of it users and will be

beneficial for the smart home users and the developers [5].

Smart home technologies are now leaving interactions with conventional and manually configured

electronic equipment by connecting all the electronic devices in the home through the smart or intelligent

devices. Smart home appliances and it services will be automatically discovered by a pervasive technology

that now is considered as essential features of a smart home system to face the user friendliness feature as

one of the main challenges in smart home appliances [6]. Several types of research had been conducted to

add pervasive features in the smart home such as pervasive surveillance system [7], sensor [8], and

healthcare [9]. Pervasive technology will make users not need to be bothered with the smart home appliances

configuration and setup of the control mechanism. The Pervasive system will handle all the device interaction

with emphasis to the three main components, the registration of the service, the service discovery and

interaction [10]. In the TCP/IP network, There are several numbers of protocol that able to recognize device

pervasively such as Jini (now called Apache River) [11], UPnP [12], Alljoyn [13], etc. In this paper, the

system use UPnP since it has auto IP and use a standard protocol such as HTTP, XML, and SOAP for device

discovery, device description, and control. UPnP protocol is well designed for small computing environments

such as a small home or office networks [10]. There is also possibility smart home system communication

interface is using other communication protocols outside TCP/IP network, such as Xbee [14], Bluetooth [15],

etc. Xbee is now considered as communication protocol enhancement from 802.15.4 protocol that has

essential features such as fast and reliable communication, automatic channel select, and addressing [16].

This paper focuses on the design of a pervasive system in the smart home by integrating pervasive

protocol in TCP/IP network and a sensor network to be able to recognize by the smart home user with

minimum human intervention and provide control to the smart home appliances. This paper presents a

pervasive system design for home appliance by integrating microcomputer device Raspberry Pi with UPnP

protocol to control a smart home appliance with smart lamp features and sensor reading as an example. The

smart lamp control provided via TCP/IP network. The sensor data will send via Xbee communication and

will be pervasively connected to the user that request sensor information. We integrate a GUPnP [17] (UPnP

framework based on C Programming) with Raspberry Pi GPIO (General Purpose Input Output) [18] that able

to switch the lamp, changing color by RGB, dimmer functions and read temperature sensor.

2. RESEARCH METHOD

UPnP is one of the popular pervasive protocol built on top of UDP, TCP/IP, HTTP, and XML.

UPnP made the communication standard between a controller (control point) and the devices. UPnP Protocol

described five-step of communication consist of discovery, description, control, and eventing. The discovery

and description process made devices advertised their existence to the control point via a network and made

control point able to recognize the device description and service information. Control and eventing process

regulate how the control point sent control data to the device based on the information in description process

and received an updated status for each service to any control point that subscribed to the service

provided [12]. and service description UPnP Standard [19] in XML format. The framework of device

description is written in XML format and presented in Figure 1.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

11.

12.

13.

14.

15.

16.

.

<?xml version="1.0"?>

<root xmlns="...">

...

 <specVersion>

 <device>

 ...

 <serviceList>

 <service>

 <serviceType> …… </serviceType>

 <serviceId> …… </serviceId>

 <SCPDURL> …… </SCPDURL>

 <controlURL> …… </controlURL>

 <eventSubURL> …… </eventSubURL>

 </service>

 </serviceList>

 </device>

</root>
.

Figure 1. Device Description Template

  ISSN: 2088-8708

IJECE Vol. 7, No. 2, April 2017 : 1012 – 1022

1014

The device & service list description read service description files that specifically explained the

service action. The service description files are written in XML format showed in Figure 2, we designed the

service description files (Following UPnP Standard [20]) for each service which is switching, dimming,

change RGB colors and read the sensor temperature.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

11.

12.

13.

14.

15.

16.

<?xml version="1.0"?>

<scpd xmlns="urn:schemas-upnp-org:service-1-0">

 <specVersion>

 <major>1</major>

 <minor>0</minor>

 </specVersion>

 ….

</scpd>

<scpd>

 …

 <actionList>

 <action>

 <name> … </name>

 <argumentList>…</argumentList>

 </action>

 ……

 </actionList>

<scpd>

Figure 2. Service Description Template

2.1. System Design

We propose our system design presented in Figure 3. Our System focuses on the system device

development based on Raspberry Pi single-board computer system that able to found and control pervasively

by UPnP Client or known as the control point. We use Generic UPnP Client such as UPnP Spy developed by

Intel to control all of our system features such as switching lamp, dimming, change color, and read sensor

information via Xbee modules. The RGB LED put in GPIO pin 4 for the Red Color and use 68 Ohm

Resistor, the blue color put in GPIO pin 5, while Green Color is in GPIO 6 along with 5.6 Ohm Resistor. The

RGB led [21] have a 1.9 V forward voltage for the red color, 3.3 V for the blue color, and 3.2 V for the green

color with 20 mA forward current test condition. The GPIO voltage are 3.3V [18] and to make the RGB led

live longer we need to limit the current flow from GPIO to RGB led. The resistor measurement is using

Ohm’s Law. Since 70 Ohm and 5 Ohm resistor are not able to find in the market, we use the closest value

which is 68 Ohm and 5.6 Ohm.

Figure 3. System Design

Our system also equipped with Xbee USB connected to a USB port in Raspberry Pi to read the

temperature sensor value wirelessly from a sensor node. We use 1AAA PAN ID (Personal Area Network ID)

IJECE ISSN: 2088-8708 

Design of Pervasive Discovery, Service and Control for Smart Home (Sabriansyah Rizqika Akbar)

1015

in Xbee network and communicate each other using broadcast method. The Device system connected with

Wireless local area network using USB WI-FI dongle and located in the same network with the control point.

The sensor DHT 11 will be able to be recognized by the UPnP control point.

There are two main parts of the system software. The first part is UpnP modules (UPnP handler) that

contain an advertising service, control and event function for UPnP protocol, and the second part is the

hardware modules (Hardware Handler) containing GPIO function to manage the smart lamp & temperature

sensor features. The device description is filled with device and service list entities shown in Table and

Table 2. The device description listed the device type, friendly name, manufacturer and model name. For the

service list, we define there is four main service list represent smart home control that is switching (binary

output on and off), Dimmer (analog output control), RGB (analog output control) and temperature sensor

information (analog input).

Table 1. Device Description
Elemen Tipe Data Nama

deviceType Single URI urn:schemas-upnp-org:device:BinaryLight:1

friendlyName String LUPnP

manufacturer String Computer Engineering FILKOM UB
modelName String MTH Smart Lamp Version 1.0

UDN Single URI uuid:cc93d8e6-6b8b-4f60-87ca-228c36b5b0e8

Table 2. Switching, Dimming, Color Change, and Temperature Reading Service List
Service Name Element Value

Switching Service serviceType urn:schemas-upnp-org:service:SwitchPower:1

serviceID urn:upnp-org:serviceId:SwitchPower:1
SCPDURL Resource/SwitchPower1.xml

controlURL Resource/SwitchPower/Control

eventSubURL Resource/SwitchPower/Event

Dimming Service serviceType urn:schemas-upnp-org:service:Dimming:1

serviceID urn:upnp-org:serviceId:Dimming:1

SCPDURL Resource/Dimming1.xml
controlURL Resource/Dimming/Control

eventSubURL Resource/Dimming/Event

Change Color
Service

serviceType urn:schemas-upnp-org:service:ColorChange:1
serviceID urn:upnp-org:serviceId:ColorChange:1

SCPDURL Resource/ColorChange1.xml

controlURL Resource/ColorChange/Control
eventSubURL Resource/ColorChange/Event

Sensor Status Service Service Type urn:schemas-upnp-org:service:SensorLm:1

Service ID urn:upnp-org:serviceId:SensorLm:1
SCPDURL Resource/SensorLm1.xml

controlURL Resource/SensorLm/Control

eventSubURL Resource/SensorLm/Event

2.2. Switching, Dimming, and Change Color Service Structure

Switching service list is created for switching purpose. we provide a Boolean data type since it has

only two action which is switch on and switch off, details for this services presented in Table. setTarget

action list used when there is an action from control point to change the switch status off to on or vice versa.

GetStatus action list handled when there is a request from control point to ask the current switch status.

Switching services had a status and target variables wich default set to 0 (turn off) to handle the data shown

in Table 4.

Next Service created is dimming functions. This action list defined LoadLevelTarget and

LoadLevelStatus action list. This Action List will be able to handle the Pulse Width Modulator input which

has a 0 – 255 value and gives a status to control point. To control dimming function in RGB Led, we use

Pulse Width Modulation technique and create it as a function in Raspberry Pi with 8-bit value (0-255) and

convert it to duty cycle 0-100%. The equation is shown in Equation :

Equation 1 Pulse Width Modulation Equation

() ()

()

  ISSN: 2088-8708

IJECE Vol. 7, No. 2, April 2017 : 1012 – 1022

1016

 ()
 ()
 ()
 ()
 ()

Details dimming service list and the data type presented in Table and Table 6 SetLoadLevelTarget

action used when there is a control point want to change the lamp dimmer. GetLoadLevelStatus action used

when control point requests the current status for lamp dimmer.

Change Color Services list and data type as stated in Table 7 and Table 8, consist of two action list

which is setColorChangeTarget and GetColorChange Status. SetColorChangeTarget used when control point

sends a value to change the lamp color. Control point needs to give three value to change the lamp color

which is red value, a green value, and the blue value. SetColorChangeTarget will bring the three color value

to the device and GetColorChangeStatus will inform control point information about the current color lamp.

Red, green and blue value have a 1 Byte data type which is 0-255. For example, we want to change the Lamp

color to white, the control point must be sent 255 value for red, 255 value for green, and 255 value for blue.

Since the value is 1 Byte, we declare the datatype for ColorRedTarget, ColorGreenTarget, and

ColorBlueTarget with ui1 that has 1 Byte data from 0 to 255.

Table 3. Switching Service List

ActionList
ArgumentList

Name Related StateVariable Direction

SetTarget newTargetValue Target in

GetStatus ResultStatus Status out

Table 4. Switching Data Type
serviceStateTable Data Type Default value event

Target boolean 0 No
Status boolean 0 Yes

Table 5. Dimming Service List

actionList
argumentList

Nama relatedStateVariable direction

SetLoadLevelTarget newLoadlevelTarget LoadLevelTarget in

GetLoadLevelStatus retLoadlevelStatus LoadLevelStatus out

Table 6. Dimming Data Type

serviceStateTable
Tipe
data

Default
value

Allowed value
event

Minimum maximum

LoadLevelTarget ui1 0 0 255 No

LoadLevelStatus ui1 0 0 255 Yes

Table 7. Change Color Service List

actionList
argumentList

Nama relatedStateVariable direction

SetColorChangeTarget newRedTarget ColorRedTarget in
newGreenTarget ColorGreenTarget in

newBlueTarget ColorBlueTarget in

GetColorChangeStatus RedStatus ColorRedStatus out
GreenStatus ColorGreenStatus out

BlueStatus ColorBlueStatus out

IJECE ISSN: 2088-8708 

Design of Pervasive Discovery, Service and Control for Smart Home (Sabriansyah Rizqika Akbar)

1017

Table 8. Change Color Data Type

serviceStateTable
Tipe
data

Default
value

Allowed value
event

Minimum maximum

ColorRedTarget ui1 0 0 255 No

ColorGreenTarget ui1 0 0 255 No

ColorBlueTarget ui1 0 0 255 No
ColorRedStatus ui1 0 0 255 Yes

ColorGreenStatus ui1 0 0 255 Yes

ColorBlueStatus ui1 0 0 255 Yes

2.3. Temperature Sensor Service Structure

We designed sensor action list only have one GetTempStatus action list since sensor only able to

bring its information to the control point. We use DHT 11 [22] Temperature sensor for the prototype and

DHT 11 sensor have measurement range between 0 – 50 degree Celsius . GetTempStatus will inform control

point when the control point requests the current temperature measurement. Sensor service lists and the data

type presented in Table 9 and Table 10.

Table 9. Sensor Service List

actionList
argumentList

Name relatedStateVariable Direction

GetTempStatus ResultStatus Status Out

Table 10. Sensor Data Type

serviceStateTable
Tipe

data

Default

value

Allowed value
event

Minimum maximum

StatusTemp ui1 0 0 50 No

The Sensor will communicate with a device using Xbee communication protocol based on Zigbee.

When sensor finished data acquisition, the sensor will send the data to the device and the device will keep the

data inside a file. When Control point asks to the current temperature sensor, the device will read the current

data from the file and inform current temperature sensor to control point.

2.4. System Implementation

We use GUPnP framework [17] for implementing UPnP protocol to Raspberry Pi Devices and since

GUPnP is an event triggered framework, we create a model based on State Chart diagram shown in Table 4.

Inside the loop, we declare there is 5 state which are Idle State, Dimming Control State, Switch Control State,

Color RGB Control and Sensor Status. Idle State created to make system waiting for an event to be called by

Control Point. Idle State will move to Switch Control State if there is event on_set_target and call a

GUPnP_service_action_get(target) to get the value based on what control point needed. Switchcontrol(target)

is an action to pass the target value to hardware handler part filled with an application to activate the GPIO in

Raspberry Pi. After On_set_target event finished, Gupnp_service_notify will be called and the Raspberry Pi

will send a notification to the control point declared that the Switch has been turned on. While control point

received the notification, the switch control state turned back to idle state. The System will turn from idle

state to dimming control state, if there is an event on_set_load_level_target() function was called. This event

occurred if there is an action request from the control point that wants to change the lamp dimmer,

gupnp_service_action_get (newLoadlevelTarget) will execute to get the value of dimmer value and execute

dimmingControl (loadlevel) to give a control command to change the GPIO value in Raspberry Pi. The

dimmer value will be filled in all Red, Green, Blue parameters and sent it to GPIO as shown in Table 5.

Color RGB Control state is triggered if there is a system event called on_set_color_target. This

event will get Red, Green, and Blue value and pass it to colorcontrol() function. The colorcontrol() function

is a hardware handler function to proceed Red, Green, and Blue value to GPIO. The Color RGB control state

will be changed back to idle state after UPnP handler application sent gupnp_service_notify() to control

point. Sensor reading state triggered when a control point requests a sensor information. Control point

request will recognize from on_get_temp_status() function and the hardware handler will read a text file and

get the newest line in the file which is filled with a temperature data from the sensor node. Sensor reading

state will back to idle state when gupnp_service_action_return(action) function is sent the sensor value to

control point.

  ISSN: 2088-8708

IJECE Vol. 7, No. 2, April 2017 : 1012 – 1022

1018

Figure 5 present the hardware handler flowchart contain switch GPIO control, Dimmer GPIO

control, Change Color GPIO control, and sensor reading. It described a Raspberry Pi function after receiving

a service request from the control point and then executed the GPIO. The switching GPIO flowchart

described a process after the Raspberry Pi received UPnP message contain change the switching status. If the

Boolean switching status is changed to 1 the GPIO will turn on the lamp and if the switching status is change

to 0 GPIO will turn off the lamp. The dimmer flowchart described the process after the Raspberry Pi received

a change dimming value (0-255) from the UPnP message. The dimmer value will setup the PWM duty cycle

and write the PWM value to GPIO and setup the brightness level in the lamp. The change color flowchart

described a process after the Raspberry Pi received a change value in RGB from the UPnP message (0-255

RGB value) and write to the GPIO process. Sensor reading flowchart described that the Raspberry Pi

received a sensor value periodically and write it to the Sensor.txt file, if control point requests the sensor

value, the Raspberry Pi will read the newest line to the txt files. For all services, Raspberry Pi will send a

notification feedback to the UPnP control point to make the user know that the change or request for each

service has successfully proceeded.

Figure 4. StateChart Diagram Control services For UPnP Handler Application

This paper conducted several validation scenarios, which is functional testing to test whether

Raspberry Pi is able to find and control pervasively by control point device. After the Raspberry Pi turned on,

the raspberry will broadcast its presence to the network. When the broadcast message are received by the

control point, the control point will recognize the device and service description which have the switch,

dimming, color RGB, and sensor reading services. Non-functional test conducted to know the performance in

round-trip time and GPIO processing in the Raspberry Pi. For response time test, we measure time consumed

when Raspberry Pi is processing control via UPnP protocols and forward to GPIO. We use general control

point UPnP Spy created by Intel to find and control the Raspberry Pi GPIO, and measure the service response

time using Wireshark packet sniffer.

IJECE ISSN: 2088-8708 

Design of Pervasive Discovery, Service and Control for Smart Home (Sabriansyah Rizqika Akbar)

1019

Figure 5. Hardware Handler Application

3. RESULTS AND ANALYSIS

The smart home functions are classified into entertainment, home security, and home automation. In

home automation function, a smart home user is having attitude negatively related to cost and want to have a

simple system that able to control the appliances [4]. The attitude negatively related to cost is caused by

commercial smart home system that usually expensive, and since our system is built on top of single-board

computer that has a DiY features, it is possible to create a smart home system based on the user requirement

so user and developer are able to adjust the cost of the system based on what user really need. This paper also

able to enrich the features of the smart home in automation functions wich makes the smart home control

simpler since the appliances will be able to recognize pervasively by the user control device, so the user will

be able to focus on the control rather than configuring IP address for each of the appliance devices. The

device is able to recognize pervasively by the UPnP Spy application shown in Figure 6.

Figure 1. UPnP Spy Generic Control Point

  ISSN: 2088-8708

IJECE Vol. 7, No. 2, April 2017 : 1012 – 1022

1020

3.1. Round-Trip Time Performance

Service response time is measured by marking Round Trip Time Packet from HTTP request sent by

UPnP Spy control point application and HTTP response from the Raspberry Pi. Round Trip Time is

measured by subtracting time in HTTP response with HTTP request. An Example of service control packet

and Round Trip Time presented in Table 1. Packet number 1554 identified as HTTP Request packet with

POST method sent by UPnP Spy control point to remotely switch the GPIO in Raspberry Pi. Packet number

1560 identified as HTTP Response with 200 OK Response Code from Raspberry Pi. Time difference

between packet is calculated as Round Trip Time in (ms) as stated in Table 1. Round-trip time measurement

is conducted in every service in the system which is switching, dimming, RGB, and sensor reading services.

Table 1. Service Control Packet
Packet

Number
Time Source IP Destination IP Protocol Length Info

Round Trip

Time (ms)

1554 273.100403 192.168.137.123 192.168.137.87 HTTP/XML 607

POST

/Resource/Switc
hPower/Control

HTTP/1.1

0.06071
1560 273.161113 192.168.137.87 192.168.137.123 HTTP/XML 325

HTTP/1.1 200
OK

Figure 2 present each service round trip time. The average service round trip time for switching

services is 0.1208056 ms, dimmer service is 0.072821 ms, change color service is 0.102671 ms, and

0.620716 ms for sensor services.

Figure 2. Service Response Time

3.2. General Purpose Input Output Processing Time

The GPIO processing time measured in an application based on clock timer function shown in

Figure 3. When control point call a dimmer function, function on_set_load_level_target() is called and the

clock start to count. Dimmingcontrol() function will execute the GPIO processing at raspberry Pi and right

after the UPnP handler sent service_action_return() is called the timer will stop and print the time spent by

the services. GPIO processing time measure all lamp services in switching, dimming and RGB services.

Figure 3. GPIO Processing Measurement Metho

G_MODULE_EXPORT

void on_set_load_level_target(GUPnPService *service,

GUPnPServiceAction *action, gpointer user_data){

double timeSpent;

begin = clock();//Time begin

gupnp_service_action_get(action, "newLoadlevelTarget",

G_TYPE_UINT, &loadLevel, NULL);

IJECE ISSN: 2088-8708 

Design of Pervasive Discovery, Service and Control for Smart Home (Sabriansyah Rizqika Akbar)

1021

GPIO processing time result presented in Figure 9 showed that switching services average

processing time is 0.00090878 ms, dimming service 0.00122508 ms, and RGB switching service

0.00154826.

Figure 4. GPIO Service Processing Time

4. CONCLUSION

This paper presented a smart home system design with a single-board computer system that

enriching automation features by adding pervasive device and service discovery protocol. Our system

combined UPnP protocol, Raspberry Pi and Xbee to create a pervasive system device in smart home

appliance with RGB LED control and sensor reading as an applications example. The system uses UPnP

protocol to make device pervasively recognized by the control point, and able to control the RGB LED

features such as switching, dimming, and change color via GPIO control in Raspberry Pi. Control point also

able to find and read the temperature sensor data via Xbee communication connected to a sensor system with

DHT 11 as a temperature sensor. UPnP Processing time is measured with UPnP round trip time by

subtracting HTTP response arrival with HTTP request time. GPIO processing time measured at the

application level by counting a timer that starts before GPIO process and ended after GPIO successfully

executed. The Result showed that in a wireless network, the average service round trip time for switching

services is 0.1208056 ms, dimmer service is 0.072821ms, change color service is 0.102671 ms, and 0.620716

ms for sensor services. GPIO processing time for switching services is 0.00090878 ms, dimming service

0.00122508, RGB switching service 0.00154826 ms, and sensor reading is 0.00099738 ms.

REFERENCES
[1] L. Atzori, et al., “The Internet of Things: A survey,” Computer Networks, vol/issue: IV(54), pp. 2787-2805, 2010.

[2] C. Ryu and C. W. Hur, “A Monitoring System for Integrated Management of IoT-based Home Network,”

International Journal of Electrical and Computer Engineering (IJECE), 2016.

[3] K. Rose, et al., “The Internet of Things: An Overview Understanding the Issues and Challenges of a More

Connected World,” The Internet Society (ISOC), 2015.

[4] T. Luor, H.-P. Lu, H. Yu e Y. Lu, “Exploring the critical quality attributes and models of smart homes,” Maturitas,

vol. 82, pp. 377-386, 2015.

[5] V. Vujovic and M. Maksimovic, “Raspberry Pi as a Sensor Web node for home automation,” Computers and

Electrical Engineering, vol. 44, pp. 153-171, 2015.

[6] T. Adiono, et al., “Rapid Prototyping Methodology of Lightweight Electronic Drivers for Smart Home

Appliances,” International Journal of Electrical and Computer Engineering (IJECE), 2016.

[7] A. Longheu, et al., “An Intelligent and Pervasive Surveillance System for Home Security,” International Journal of

Computers Communications & Control, pp. 312-324, 2012.

[8] G. Stratogiannis, et al., “User and home appliances pervasive interaction in a sensor driven smart home

environment: The SandS approach,” em Semantic and Social Media Adaptation and Personalization (SMAP),

Trento, 2015.

[9] H. Medjahed, et al., “A pervasive multi-sensor data fusion for smart home healthcare monitoring,” em Fuzzy

Systems (FUZZ), Taipei, 2011.

[10] N. Bhatti, et al., “Service discovery protocols in Pervasive Computing: A review,” em Multi-Topic Conference

(INMIC), 2014 IEEE 17th International , Karachi, 2014.

[11] Apache Software Foundation, “Jini Architecture Specification,” [Online]. Available:

https://river.apache.org/about.html. [Accessed 05 May 2016].

[12] Open Connectivity Foundation, “About UPnP,” [Online]. Available: http://openconnectivity.org/upnp. [Accessed 2

May 2016].

  ISSN: 2088-8708

IJECE Vol. 7, No. 2, April 2017 : 1012 – 1022

1022

[13] A. Alliance, “AllJoyn Documentation,” [Online]. Available: https://allseenalliance.org/framework/documentation.

[Accessed 2 May 2016].

[14] S. P. Lim and G. H. Yeap, “Centralised Smart Home Control System via XBee,” em IEEE Colloquium on

Humanities, Science and Engineering Research (CHUSER), Penang, 2011.

[15] Z. Yufeng and J. Ruqiao, “Design and Realization of the Smart Home Control System Based on the Bluetooth,” em

Intelligent Transportation, Big Data and Smart City (ICITBS), Halong Bay.

[16] Digi, “Xbee,” Digi, [Online]. Available: http://www.digi.com/lp/xbee. [Accessed 10 August 2016].

[17] Gnome Developer, “GUPNP Reference Manual,” 2009. [Online]. Available:

https://developer.gnome.org/gupnp/unstable/. [Accessed 9 August 2014].

[18] Raspberry Pi Foundation, “GPIO: Raspberry Pi Models A and B An introduction to GPIO and physical computing

on the Raspberry Pi,” Raspberry Pi Foundation, [Online]. Available:

https://www.raspberrypi.org/documentation/usage/gpio/README.md. [Accessed 22 04 2016].

[19] Open Connectivity Foundation, “BinaryLight:1 Device Template Version 1.01,” Open Connectivity Foundation

UPnP, 2003.

[20] Open Connectivity Foundation, “SwitchPower:1 Service Template Version 1.02,” Open Connectivity Foundation

UPnP, 2011.

[21] Kingbright, “T-1 3/4 (5mm) FULL COLOR LED LAMP DATA SHEET,” Kingbright, 2010.

[22] Sunrom Technologies, “DHT-11 Humidity and Temperature Sensor,” Sunrom Technologies, 2012.

