An Approach for Big Data to Evolve the Auspicious Information from Cross-Domains

Preeti Arora¹, Deepali Virmani², P. S. Kulkarni³

^{1.2}Departement of Computer Science Engineering, BhagwanParshuram Institute of Technology, New Delhi, India ³Departement of Mathematics, College of Engineering Roorkee, Roorkee, India

Article Info	ABSTRACT
<i>Article history:</i> Received Oct 10, 2016 Revised Feb 19, 2017 Accepted Mar 8, 2017	Sentiment analysis is the pre-eminent technology to extract the relevant information from the data domain. In this paper cross domain sentimental classification approach Cross_BOMEST is proposed. Proposed approach will extract †ve words using existing BOMEST technique, with the help of Ms Word Introp, Cross_BOMEST determines †ve words and replaces all its
<i>Keyword:</i> Bag-of-words Feature extraction Labelled words Opinion mining	synonyms to escalate the polarity and blends two different domains and detects all the self-sufficient words. Proposed Algorithm is executed on Amazon datasets where two different domains are trained to analyze sentiments of the reviews of the other remaining domain. Proposed approach contributes propitious results in the cross domain analysis and accuracy of 92 % is obtained. Precision and Recall of BOMEST is improved by 16% and 7% respectively by the Cross_BOMEST.
Sentimental classification Corresponding Author:	Copyright © 2017 Institute of Advanced Engineering and Science. All rights reserved.

Preeti Arora, Departement of Computer Science Engineering, GGSIPU, Bhagwan Parshuram Institute of Technology, New Delhi, India. Email: erpreetiarora07@gmail.com

1. INTRODUCTION

Sentimental Analysis is a way to process different blogs, reviews such as movie, beauty, online shopping sites, and-etc to indicate their sentiments as positive or negative. Customer expresses their views related to product or facility they avail. By analyzing those views consumers can effectively improve their decision making. Classification of Sentiment has been applied in various areas such as analysis of market [1], opinion mining [2], opinion summarization [3]. There are various levels to express the sentiments i.e. Document-level, Sentence-level, and Aspect-level. In this paper, sentiment is used to determine the sentence in term of subjective or objective. If sentence is subjective then check the expression of sentence as positive or negative sentiments. In single-domain analysis, all the sentiments related to a specific domain only- This training data might not produce an ample scope for different domains. So, there is a need of a solution for cross domain analysis [4] which trains the classifier from one or more domains known as source domains and utilizes the trained classifier in a different domain known as target domain. While a review express †ve polarity in one domain may be act as –ve polarity in another domain therefore a classifier is needed to transfer the expertise in different domains for a better performance. In this paper an approach is proposed to reveal domain dependent words and infer independent words.

A virtuous approach and Cross BOMEST algorithm for the cross-domain sentiment classification is proposed to boast the cross-domain data, to minimize the gap between domains. This algorithm is the modified version of BOMEST [5] which works efficiently on single domain with the accuracy of 78 %. For the cross-domain analysis reviews for various products (Baby, Beauty, Electronics, and Health products) are gathered from Amazon. Our proposed Cross_Boms classifier is used to model the relationship between domain-specifics and self-sufficient words by various phases explained in detail in further Section.

The paper is organized as, Section 2 comprises the literature and study conducted. Section 3 and 4, elaborate our proposed approach and Cross BOMEST Algorithm for Amazon dataset. Finally, the results of our experiments are validated in Section 5 and Section 6 defines the future scope of the work.

2. LITERATURE REVIEW

Hu and Liu [1] introduced feature based target extraction on consumer electronics reviews treated as the first work of Target Extraction. They proposed an approach on a statistical analysis of the review terms based on association mining. Manually selected subset of product features yields a precision of 0.72 and a recall of 0.80. Blitzer et al. [4] focuses on cross domain classification and focuses on the challenges of training a classifier from source domains and applying the trained classifier in a target domain as identification of feature selection and the learning framework to find the significance of source and target domain features. Pan and Ni [6] proposed a method for sentiment classification to bridge the gap between the domains, using spectral feature alignment (SFA) algorithm to *align* domain-specific words from different domains into unified clusters. These clusters can be used to reduce the gap between domain-specific words from the two domains, hence enhance the sentiment classifier.

3. CROSS_BOMEST

3.1. Proposed Approch

In this paper we propose an approach for Cross Domain Analysis. Till date, the existing approaches for the cross domain deal with single source domain and a classifier to predict target domain. The block diagram for Cross_BOMEST is shown in Figure. 1 is consists of two phases, detailed explanation of each phase is as follows:

Phase 1 deals with forming of Lexical_Boms_Dictionary and used this dictionary to increase the †ve polarity reviews. Number of steps involved and the output of all these steps are shown Section 4. The first step of our proposed approach Cross_BOMEST starts with gathering all the reviews. The Dataset used for implementation is Amazon data set http://jmcauley.ucsd.edu/data/amazon/. Used data set contains **1,60,792** reviews of Baby product , **1,98,502** reviews of Beauty product, **3,46,355** reviews of Health product and **16,89,188** reviews of Electronics product from May 1996 to July 2014, for the analysis. Then Junk data such as hyperlinks, <div>, ,
 etc are removed. Also all the repetitive words, stop words, images, url, videos and audios which do not contribute to the meaning of the sentence are removed. After that the Porter Stemming Algorithm is used to remove the suffix from the words and bring it to the root. After stemming, reviews are tokenized using BOW (Bag of words). Then BOMEST [5] is called for the POS tagging which effectively identify the nouns, verbs, adverbs and adjectives that have effect on the text. Therefore this module is capable of creating an indexed data, assign the score to it and store it into the trained dictionary [7].

In the last step, word is taken from the list created in above step and identified all synonyms of that word available in the reviews using Ms Word Introp. All the synonyms were replaced with the word and total occurrence of the word is calculated. For example, dataset contain "Even" as †ve, "Bad" as –ve polarity with their number of occurrences as shown in Table 1.

Table 1. †ve, –ve word with synonyms & occurrences					ces
Polarity	Word	Synonyms	Polarity	Word	Synonyms
†ve	Even	Still(22085),	-ve	Bad	Awful(576),
(45,182)	(20854)	Smooth(1516),	(6057)	(4053)	Evil(31),
		Constant(556),			Serious(378),
		Equal(171)			Poor(1019)

"Even" is matched with its synonyms and all the synonyms are replaced with the word. Total count is evaluated as shown in Figure 2(b). Similarly "Bad" is compared to its synonyms and count is generated as shown in Figure 2(b).

Phase 2 is the vital part of an approach consists of following steps: Here, different combinations of domains are considered as the source domain such as Baby & Beauty, Beauty & Electronics and etc. Now merge all the †ve, -ve Lexical_Boms_Dictionary for the source domains and fetch all the self-sufficient words using Self-sufficient word collector. For the cross domain analysis Cross_Boms classifier is used to predict the †ve, -ve polarity of the target domain i.e. any domain except source. Domain-dependent words are used solely and monotonously in the document. Some of them do not contribute to the sentiments [8] for a domain therefore elimination of these words from the dataset will enhance the performance of classifier. In

sentimental Classification, targets are the frequent words, POS, phrases or terms that have great effect on the opinion [9] to shows \dagger ve, -ve polarity. Selection of proper target yields higher accuracy in classification by reducing the extensity of a text. These features are passed to Cross_Boms Classifier [10] to discover and eliminate unessential, inappropriate and redundant aspects from data that do not contribute to the accuracy. Therefore with the help of these features, in cross domain analysis precision, recall and accuracy is calculated as shown in result Section. The salient feature of Cross_Boms Classifier is the *WSR* (weight synonym replacement) scheme in place of the term frequency [11] of each word. The WSR focuses on reducing the weight of "very bad" class of source domain data and promote the weight of "very-good" class to generate more accurate results in target domain. At last classifier is trained on source domain and used to predict the \dagger ve, -ve polarity reviews of target domain using steps mentioned in algorithm in next Section.

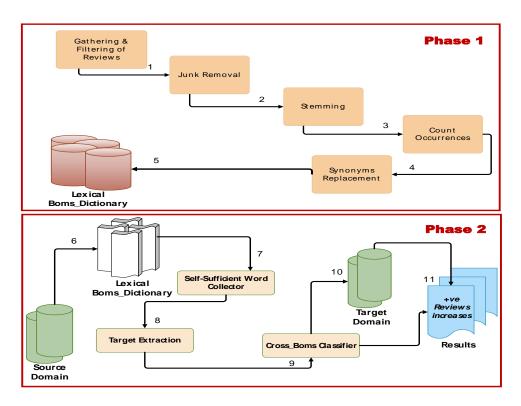


Figure 1. Block Diagram for Cross Domain Analysis

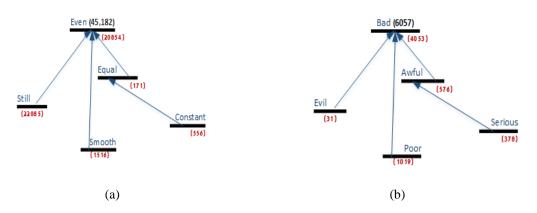
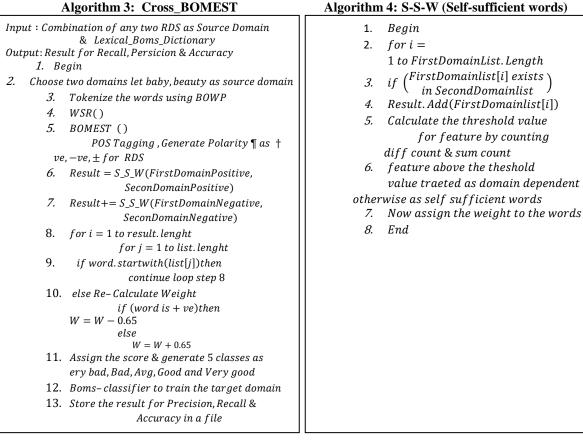


Figure 2. (a) †ve Synonym Replacement, (b) -ve Synonym Replacement

3.2. Proposed Algorithm


Cross_BOMEST the, designed algorithm, which takes input as Amazon Reviews [12] datasets of Baby, Beauty, Health and Electronics products and gives better efficiency than BOMEST, which work on

An Approach for Big Data to Evolve the Auspicious Information from Cross-Domains (Preeti Arora)

single domain. Expression of user's views are different in different domains, so to analyzing different domains is a time consuming and costly process as classifier has to be trained each time for a domain. Therefore there is a need of novel approach that can be work efficiently on the cross domain. Hence, Boms Classifier is used to enhance the accuracy of the existing method by the combing two different source domains and predict the results of the target domain by the steps defined in algorithm.

	Algorithm 1: BOMEST on Cross Domain	Algorithm 2: WSR
•	nut : – RDS1, RDS2, RDS3 & RD4 Review DataSet of Beauty, Baby, Health & Electronics tput: –Analysis of all RDS in terms of Accuracy Begin Filtering of Reviews Read the JSON to fetch review text from the raw data.	Input : ¶ as † ve, -ve for each RDS Output : Lexical_Boms_Dictionary 1. Begin 2. Using Linq we group the data and prepare † ve, -ve array 3. For i = 1 to len(groups) a. Get all synonyms using Ms Word Introp
З.	Junk Removal of the reviews Stop word Removal Images, video, audio, url, symbols & hashtags	b. Let Count := Currentgroup. Count c. For i = 1 to len (Synonyms) d. If (Synonym) exists in groups
4.	Apply Porter Stemmer for stemming the data	{
5. 6.	Tokenization of the data using BOW BOMEST ()	Count = count + Synonym group.Count }
<i>7.</i>	POS Tagging ,Generate Polarity ¶ as † ve,-ve,± for each RDS Assign the score to the trained Dictionary WSR()	e. Insert current group.name, total count into Result File 4. Return the Result File as Lexical_Boms_Dictionary 5. End
8. 9. 10. 11.	Prepare † ve, -ve & ± Lexical_Boms_Dictionary Cross_BOMEST() Print the result for Precision, Recall & Accuracy End	5. Ena

Algorithm 3: Cross_BOMEST

4. EXPERIMENT SETUP

The implementation of above algorithm is done by using C#.Net. Each phase is implemented by combination of user defined and inbuilt functions. Code and results of each step of phase 1 and phase 2 are provided below.

Step 1: Filtering of Reviews

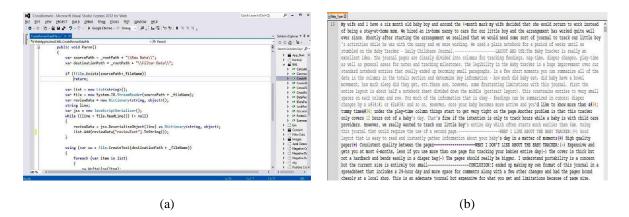


Figure 3. (a) Filter of JSON Reviews, (b) Raw Data of Reviews after Filtering

Step 2: Junk Removal

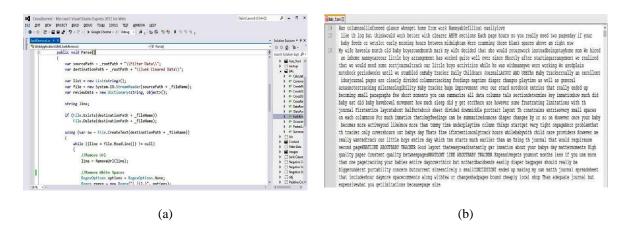


Figure 4. (a) Junk Removal from Reviews, (b) Reviews after Junk Removal

Step 3: Stemming using Porter Algorithm

1	Input:-
2	wanted love th but was pretty expensive only few months worth calendar pages ended up buying regular weekly planmer
	OFF Planner that x has all seven days on right page left page has room write To Lt Goals found th be more
	helpful because could mark each days eating sleeping blocks n also see m side by side could see her patterns more easily
	with weekly view Th planner was cute just not what wanted
3	
4	output:-
5	output:- want love th but it was pretty expension i a few month worth calendar page endup buy a regular week planner off the planner that x has all seven way on right page left page has room write a To Lt goal found th be more helpful
	planner that x has all seven day on right page left page has room write a To Lt goal found th be more helpful
	becaus could mark each day eat sleep block n also see m side by side could see her pattern more easy with a week view Th
	planner was cute just not what want)
	Figure 5. Result of Stemming

An Approach for Big Data to Evolve the Auspicious Information from Cross-Domains (Preeti Arora)

Step 4: Count Occurrence

Costionest - Moment Visual Studie Govers 2012 for Well	1040 P . 0 M	1 but, 76315	BO5,37018	obe,30618	QUL, 3772.8
pr yes your and your may your the years you		2 still,20065	doesnt,18474	back,17697	some,17657
0 8-484 5-0- + Septemer 0 Mag - 3, 56 00 1334.		1 any,85289	dovm, 14403	small,14974	cant,11854
nfeite v Casteration totals Asternals	· Intelaine · FX	1000,11096	set,12012	bard, 20712	pretty,1049
Related Sk. Calabellar - 19 had	000 0.	5 through, 3324	open, 8292	light,10962	same, 9769
public void Parse()	t best totale fair P-	6 last, 1200	bad, 6093	less, 6303	wont, 5745
1	b Banber in	1 under, SEN	dry, 5530	close, 5266	smaller, (4)
<pre>string[] postist = { };</pre>	b Chate	8 regular, 1990	warm, 4960	base, 4109	such, 4154
<pre>var path = _rootPath = "\/" = "PositivesRecovered.txt";</pre>	1 6 M	3 beavy, 3942	sboct,17462	tight, 3581	bate,5105
if (File.txists(peth))	B In Caluate	10 pain, 2910	wet,2540	cold,2831	147,2673
<pre>posiint + File.AudAllines(path).Select(s +> s.ToiowerDowariant()).Tokeray();</pre>	A IP Creek	11 solid,13363	suck, 2410	potty,2325	dirty,2206
)	B @ Gwedt B @ Gwedt	1. 008,57611	128,02712	love, H2H	7227,41511
and the state of the state	a processor	1 great, (1975	vel1,1083	eary, 20402	015,17971
string[] megList = { };) # bale	1 fit.2001	good, 62349	still_00187	regular, (600
path + _restPath + "\\" + "NepativesRecovered.txt";	F P Derfe F P berfer	1 100.4111	recomend, 11615	NB22, 1771	enough_15555
14 (Fille.Exists(path))	+ P Door	1 clean (\$808)	better, 54070	ama21.14974	big.(1942)
1	3 in Junual	(sade.1197)	perfect, 19047	right_Antois	3mg.11046
<pre>seglist = File.Read4lkines(path).Select(s => s.TolowerDowrient()).Toleray();</pre>	F P Server F 12 Ser	1 set. 12121	pretty, SHAD	cute, intell	love pt. Ploy
1	8 Ceter	1 quality, 3130	bert, SHAT	far, 3016	sev, SHS
			,	(L)	
(a)			((b)	

Figure 6. (a) Count Occurrence for †ve, -ve polarity, (b) †ve, -ve Count Occurrence

Step 5: Synonyms Replacement

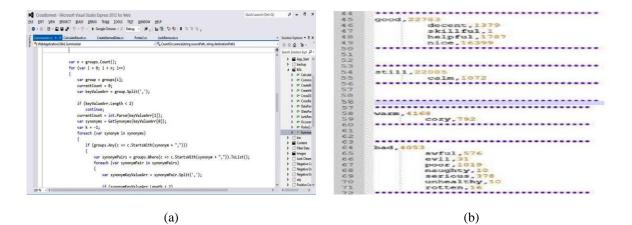


Figure 7. (a) Finding of Synonyms & Replacement, (b) † ve, – ve Synonyms Occurrences for †ve, –ve polarity

5. **RESULT ANALYSIS**

To generate the results for Cross_BOMEST approach for the cross domain sentiment analysis different product reviews from Amazon are used. For the implementation, randomly 1500 †ve and 1500 -ve polarity reviews are selected from each domain, out of which 1000 reviews of each polarity are used for training of classifier, the remainder is used for testing of classifier. In experiment, randomly combination of two domains act as source domain, remaining domain out of data set acts as the target domain such as **Beauty** + **Baby**-**Electronics**, **Beauty** + **Electronics** -**Health**, **Electronics** + **Health** -**Beauty** and **Beauty** + **Health** -**Beaby** is called as A, B, C and D respectively for calculating the precision, recall and accuracy metric. The estimation metric is Cross_Boms classifier which effectively predicts the reviews of target domain correctly by determining domain-independent words from the source domain. It is clearly shown that the recall and precision metric increases for the Cross_BOMEST as compared to BOMEST. Using the features of TN+BOW 66% of precision is obtained whereas, **STN+BM** provides 77.25% of precision. Similarly **TN+BOWN+BM** provides 82.5% of recall whereas, **BM+WSR+CBM** shows 93.25% of recall. Also the Precision-Recall Graph for BOMEST and Cross_BOMEST is shown in Figure 8. and Figure 9. respectively.

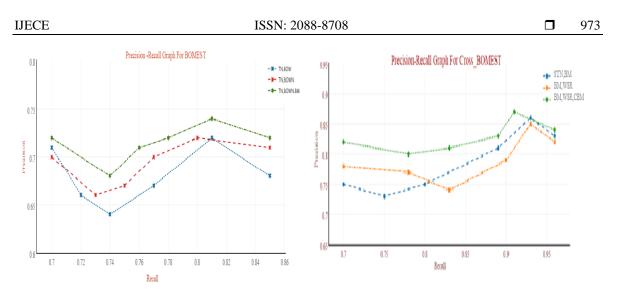


Figure 9. Precision-Recall Graph

Here, Table 2 & 3 presents the accuracy result for the BOMEST, Cross_BOMEST as shown in Figure 10 & Figure 11 respectively. By the result it is cleared that Boms_Classifier Using the *BM+WSR+CBM* provides the maximum accuracy of 92% which is higher than the BOMEST i.e. 81%.

	Table 2. l	BOMES	ST Aco	curacy	
		BOMES			
Targ	get Extraction			curacy C	D
TN,B	OW	A 75	<u>В</u> 75	71	77
N,BC		78	79	74	80
	OWN,BM	83	81	79	85
	A	ccuracy For E	BOMEST		
					85
	85 -				
				83	
	81 -			81	
	01		80		
Accuracy	78 77 77	78	79	79	B C D
	75-	74			
	7171				
	TN,BOW	TN,BO	WN	TN,BOWN,B	á
		Target Ex	traction		

Table 3 Cross_BOMEST Accuracy				
Cross_BOMEST				
Tonget Extraction		Accu	racy	
Target Extraction	Α	В	С	D
STN,BM	78	84	80	83
BM,WSR	86	85	89	90
BM,WSR,CBM	91	89	92	95

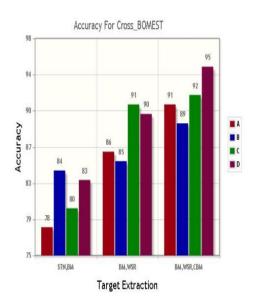


Figure 10. Accuracy Graph for BOMEST

Figure 11. Accuracy Graph for Cross_BOMEST

Figure 12(A) shows the result for †ve reviews of different dataset in the single domain using BOMEST, Cross_BOMEST. Whereas Figure 12(B) shows the comparison results of Cross_BOMEST which effectively increases the number †ve polarity reviews when tested for cross domain analysis.

An Approach for Big Data to Evolve the Auspicious Information from Cross-Domains (Preeti Arora)

1 BOMEST			r_5.json 🗵 🔚 Beauty_5.json 🗵 🔚 Cross_Health_and_Personal_Care_5.json 🗵
2 ***************	*******	1	********
3 Baby		2	Baby
	125910	3	Positive Reviews : 125910
	18910		
6 Neutral Reviews	18082	4	Negative Reviews : 18910
8	*****	5	Neutral Reviews : 18082
G *****	*****	6	*******
0 Beauty		7	
	145910		
12 Negative Reviews	26110	8	*******************
13 Neutral Reviews	26482	9	Beauty
14 *************	*********	10	Positive Reviews : 145910
15 16 Cross BOMEST		11	Negative Reviews : 26110
17 **********************		12	Neutral Reviews : 26482
18 Baby		13	************************************
	172914		******
	15092	14	
21 Neutral Reviews	12086	15	********
22 ***********	*******	16	Health Cross BOMEST
23		17	Positive Reviews : 288413
24 *************			
25 Baby		18	Negative Reviews : 25619
	: 188513 : 9619	19	Neutral Reviews : 15323
-	: 9619 : 12303	20	******
		20	
29 ************	****		

Figure 12. (a) BOMEST, Cross_BOMEST, (b) Cross_BOMEST on target domain results on single Domain

6. CONCLUSION

In this paper, cross domain sentimental classification approach Cross_BOMEST is proposed. The proposed approach, works in two phases. Phase 1, is used to form Lexical_Boms_Dictionary. The dictionary is used to increase the †ve polarity reviews by filtering of reviews after junk removal and stemming. These reviews are then tokenized using BOW and BOMEST which is used for the POS tagging. Total count of the polarity of the reviews as †ve, and –ve, is stored in the indexed list, which is further used to replace all the synonyms with the matched word to escalate the polarity. In phase 2, two different source domains are trained to extract the reviews of the other remaining target domain. After that Cross-BOMEST approach is used to discover all the self-sufficient words that are used to bridge the gap between the sentences in different domains. With the help of, BM, WSR, CBM target extraction Cross_boms Classifier discover and eliminate unessential, inappropriate and redundant aspects from data that do not contribute to the accuracy. The accuracy of 92% is obtained by proposed Cross_BOMEST algorithm when applied to cross domains. Precision and Recall of BOMEST is improved by 16% and 7% respectively in single domain. Results, demonstrate that Cross_BOMEST shows 5% refinement in the precision and accuracy when compared to other existing techniques.

REFERENCES

- [1] Hu M. and Liu B., "Mining and summarizing customer reviews," in KDD, pp. 168–177, 2004.
- [2] Pang B. and Lee L., "Opinion mining and sentiment analysis," *Foundations and Trends in Information Retrieval*, pp. 1–135, 2008.
- [3] Lu Y., et al., "Rated aspect summarization of short comments," in WWW, pp. 131–140, 2009.
- [4] Blitzer J., et al., "Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification," in Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, Prague, Czech Republic, pp. 440–447, 2007.
- [5] Jain V., *et al.*, "BOMEST a Vital Approach to Extract the Propitious Information from the Big Data," LNNS Springer's, 2016.
- [6] Pan S., et al., "Cross Domain Sentiment Classification via Spectral Features," in WWW 2010, Raleigh, North Carolina, USA. ACM, pp. 751–760, 2010.
- [7] Fang H., "A re-examination of query expansion using lexical resources," in ACL, pp. 139–147, 2008.
- [8] Bollegala D., et al., "Cross-Domain Sentiment Classification Using a Sentiment Sensitive Thesaurus," IEEE transactions on knowledge and data engineering, 2013.
- [9] Chen B., et al., "Extracting discriminative concepts for domain adaptation in text mining," in Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, New York, NY, USA, ACM, pp. 179–188, 2009.
- [10] David B. S., et al., "Analysis of representations for domain adaptation," in Annual Conference on Neural Information Processing Systems 19, Cambridge, MA, MIT Press., pp. 137–144, 2007.
- [11] Xie S., *et al.*, "Latent space domain transfer between high dimensional overlapping distributions," in *18th International World Wide Web Conference*, pp. 91–100, 2009.
- [12] J. Mcauely, 2016. http://jmcauley.ucsd.edu/data/amazon/2016.