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 As the functionality in real-time embedded systems becoming complex, there 

has been a demand for higher computation capability, exploitation of 

parallelism and effective usage of the resources. Further, technological 

limitations in uniprocessor in terms of power consumption, saturation in 

instruction level parallelism, delay in access of memory blocks, etc. led to the 

emergence of multicore. Multicore design has its challenges as well. Increase 

in number of cores has raised the demand for proper load distribution, 

parallelizing existing sequential codes, enabling effective communication 

and synchronization between cores, memory and I / O devices. This paper 

had identified and compared the distribution schemes for task distribution in 

a multicore environment and also the algorithms suitable for decentralized 

task scheduling scheme. In addition, this paper had addressed the techniques 

of formulating parallel task blocks from sequential code. 
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1. INTRODUCTION 

With continuous improvement in semiconductor manufacturing technology, embedding many 

processing units on a single chip has become a feasible technological trend. Single embedded chip with many 

individual processing units is termed as multicore and its usage can be seen in many real time applications 

like nuclear power plants, automobile and aerospace industry. Embedded systems with multicore are 

developed with expectations to achieve higher performance and faster parallel execution; but the replacement 

of single core to a multicore hardware alone does not always guarantee the expected higher  

performance [1-3]. 

Although each core is an individual processing unit with capability to work independently, higher 

performance cannot be achieved unless there are steps to ensure proper load distribution and synchronization 

between cores, memory and Input-Output devices are taken into consideration. Load distribution is handled 

by a task distributor, which will be capable of avoiding priority inversion between tasks in different cores, 

longer waiting time and unneccesary missing of task deadlines.  

Roles of a task distributor can be divided into 2 levels. First on deciding which core should execute 

the task. Second is on deciding the time and order of the task execution. Former is termed as allocation 

activity; while the latter is termed as scheduling activity. 

After identifying the need for efficient task distributor and its role, next is to distinguish the type of 

tasks. Tasks can be broadly classified into two types namely sequential and parallel. Sequential tasks have to 

be executed undividedly and as per the program order. Violating this rule can more often lead to data 
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inconsistencies. Parallel tasks are independent code segments that can be executed in parallel among different 

cores. Handling of task types is elaborated in the Section 4.  

With a brief introduction to the basic terminologies (as depicted in Figure 1), this paper begins with 

an historical overview of the research activities in Section 2. Section 3 describes in detail the task allocation 

schemes suitable for multicore system.Parallel execution of task blocks using compiler and speculative 

hardware technique is discussed in Section 4. In addition, control flow and data dependencies that will arise 

with speculative hardware is also explained with suitable examples. Later, mathematical modeling of task 

allocation algorithms for decentralized task scheduling scheme is brought out. Finally, a consolidated review 

is presented in Section 5. 

 

 

 
 

HW – Hardware; 

 

Figure 1. Building Blocks Describing Steps that are Involved from Task Block Formation to Core Allocation 

 

 

2. RELATED WORK 

This Section brings out an overview of the research activities that were carried out with respect to 

the task scheduling and allocation, starting from single core and time lined to multicore scenario. 

Scheduling algorithms were of two types, namely timeline driven approach (also termed as timeline 

scheduling) and priority driven approach. In timeline scheduling [4], the time period was divided into slots of 

fixed length and tasks were statically allocated to a slot based on their frequency and execution time. 

Although timeline scheduling was straightforward to implement, it was fragile under overload  

conditions-where a task could exceed its predicted execution time and generate a domino kind of effect on 

the subsequent tasks to surpass their timeline. A solution to the difficulties of timeline driven approach was 

formulated in priority driven approach. In this approach, tasks were assigned a-prior and scheduler worked 

based on the priority value.  

Out of the many priority based approaches [5-7], the predominant were Rate Monotonic (RM) – 

where the priorities were statically assigned to the tasks and Earliest Deadline First (EDF) – where the 

priorities were dynamically assigned to the tasks, in achieving real time behavior for single core 

environment. In parallel, experiments on finding suitable and efficient algorithms for multicore environment 

had gained importance. Experiments combining priority based algorithms (RM and EDF) that were 

successful in single core was tried over multicore environment.  Major concerns in mapping such algorithms 

were complexity, lack of reusability and scheduling anomalies with respect to load distribution and 

synchronization between the cores [8-10]. 

In order to achieve effective load distribution, researchers had come up with various heuristic task 

scheduling techniques based on execution time, completion time of the task and also combinations of 

algorithms such as MIN–MAX duration algorithms, switching algorithm, sufferage algorithms etc., [11]. 

Another approach was to reduce the makespan by utilization of parallel task models. Combination of 

sequential and parallel task scheduling algorithms like MIN / MAX – Round Robin, MIN / MAX – Load 

Balance, MIN / MAX – Min Number of Task and MIN / MAX – NTWP was experimented [12]. Details of 

these algorithms are explained in Section 5 of this paper. 

Task scheduling algorithms, which were more or less a combination of single core algorithms, were 

assumed to bring in the required performance uplift to a multicore system. However the results were not 

fruitful. A strong supplement from effective task allocation scheme was need of the hour. Typically, the 

allocation schemes can be classified under global, partitioned or decentralized schemes. Section 4 of this 

paper focuses in detail about the task allocation schemes, their methods and their pros & cons. 
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Brandenburg [13] performed an experimental study between partitioned EDF and global EDF using 

LITMUS
RT

 - a derivative of Linux Kernel on 24-core Intel Xeon platform. His experiment showed that 

partitioned EDF would be more preferable for hard real-time system while global EDF would be more 

effective in a soft real-time system. Another extensive work in the priority based algorithm for multicore was 

done by Zapata & Alvarez [14], where RM and EDF algorithms were subjected to best known heuristic 

functions: worst fit (WF), first fit (FF), best fit (BF) and next fit (NF) for both partitioned and global scheme. 

Further static scheduling on partitioned scheme for single core and multicore procedure were  

demonstrated [15-16]. 

Meanwhile Lauzac et al., [17] had performed a comparative study of global RM and partitioned RM 

scheme. Their observation also showed that for soft real-time systems-global scheduling can perform better 

because overloaded processors can distribute tasks to under loaded processors dynamically, whereas in a 

partitioned scheme a task allocation was fixed. They had also pointed out the scheduling effects of RM with 

respect to delay seen in low priority tasks under global and partitioning scheme of a multicore environment.  

Lee et al., [18] had come up with three algorithms that operate on decentralized scheme namely 

Local scheduling, Internodes scheduling and Queue balancing. Each of their technique was evaluated in a 

clustered environment and their experimental results showed of throughput improvement using decentralized 

scheme. 

With growing importance for parallelism, which can bring in higher performance, real-time 

applications started to focus on parallel task models. Traditionally compiler and hardware speculation based 

approaches were used to divide sequential tasks; however it has become complicated for compiler to 

statically determine all the dependencies especially for programs with dynamic data structures. Control flow 

and data dependencies were also common to occur while partitioning a task based on speculation. In  

Section 2 of this paper, partitioning techniques and dependencies that would arise are explained in detail with 

examples. 

Diversification of task into parallel models and applying the traditional deadline algorithms were 

described in works of Li et al., [19]. Another approach in combining DAG direct acyclic graphs was 

described in works of Saifullah et al., [20]. These approaches could not handle dependencies that were 

dynamic in nature. 

In order to handle dynamic dependencies, hardware based approach using cache like  

structures-address resolution buffer (ARB) for centralized shared memory multiprocessor [21] and 

speculative versioning cache (SVC) for distributed shared memory multiprocessor [22] have been explored. 

In these techniques, each core buffered the value and value was written to main memory only when the 

operation was committed, else discarded by buffer flushing techniques. Extensive report on speculative 

multithread architecture can be seen in the works of Sohi and Vijaykumar [23]. Speculation for data to avoid 

dependency was also tried and the same can be seen in the works of Hammond et al., [24]. 

Of late, sequential program can be converted to parallel program using OpenMP Fork-join structure. 

Best and worst case scenarios of using this fork-join model were illustrated in the works of  

Lakshmanan et al., [25]. For better understanding of scheduling terminology, book by Labrosse [26] on  

µc-OS II and for topics on parallelism, book by Hennessy & Patterson [27] on Computer Architecture is 

recommended as they provide good insight. 

 

 

3. PARALLEL EXECUTION OF TASKS 

In order to improve the performance and to utilize the capability of multicore system, tasks are split 

into smaller blocks and made to execute simultaneously in more than one core. This Section addresses on 

techniques needed for parallel code execution.  

 

3.1. Task Types 

Tasks are broadly classified into two types namely, serial or sequential tasks and parallel or high 

performance computing tasks. Sequential tasks have to be executed undividedly and as per the program 

order. Violating this rule would lead to data inconsistencies. On the other hand, parallel tasks are code 

segments that are independent and as their name suggests, can be operated in parallel. Advantage of parallel 

task is reduction in overall execution time. The category under which a task falls purely depends on the 

system design.  

Based on dependency in coding, some Sections of serial task are divided into subtasks and each 

subtask is made to run in parallel among the cores. But who performs the breaking of tasks into subtasks? 

Subtasks, which are contiguous parts of instruction stream and are executed in parallel, is identified either by 

programmer during the design and coding phase or by compiler or by using a speculative hardware 

(Sohi&Vijaykumar (2009)). Details of each technique are elaborated in the following subSection. 



IJECE  ISSN: 2088-8708  

 

Trends in Task Allocation Techniques for Multicore System (Arun Kumar Sundar Rajan) 

3021 

Once the subtasks are identified, they can be allocated to one of multiple cores, either statically or 

dynamically, using the allocation schemes. Section 4 elaborates on the allocation scheme. Parallelism 

achieved by breaking a program into subtasks is often referred to as Thread level parallelism TLP and this 

technique is different from Instruction-level parallelism ILP, as each subtask in TLP can contain hundreds to 

millions of instructions that are executed in parallel with other subtasks. 

Architecture that uses threads or subtasks to execute a program in parallel is referred to Multithread 

Architecture. Eventually, this type of architecture can facilitate simultaneous execution of multiple tasks, as 

well as multiple subtasks / threads. Along with the benefits of faster execution due to parallelism in 

multithreaded architecture, certain overheads, namely resource contention-shared memory handling, 

synchronization and load imbalance follow. 

In the upcoming part, techniques using compiler and hardware to breakdown a serial task into 

parallel are discussed. 
 

3.2. Compiler Based Parallelism 

Formulation of subtasks using complier is static in nature. During compilation of a program, the 

complier identifies code sequences where same set of operations are applied to multiple data items and 

facilitates parallel operation to that code sequence . For example, consider iteration for adding „n‟ objects of 

an array.   

 

Let ‟A‟ be the Array of size „ n‟ , „e‟ be the execution time for 1 addition operation and the number 

of cores be „m‟ There will also be additional execution time for branching operation and this 

branching time is currently ignored for easy understanding of the underlying concept. 

 

In a sequential uniprocessor, the loop performing addition will iterate n times and the result will be 

available only after the duration of n * e and the same is demonstrated in Algorithm 1. 

 

 
Initialize  

m number of Cores(C) 

A array of ‘n’ elements 

Sum  result of addition operation 

 

m   = 1; uniprocessor/single cores 

Sum = 0; initial value  

i = 0;  

 

for every ‘i’ do until ‘i’ is equal to ‘n’ 

  Sum = Sum + A[i];  

  Increment i; 

end for 

 

Algorithm 1. Addition operation in single core sequential execution 

Complexity: n * e ; n- number of entries to add, e- execution  time for 1 addition operation 

 
 

In a multithreaded architecture with the support of compiler, the addition operation can be 

partitioned among the cores to complete in parallel. This technique would then consume    (n/m + m) * e 

execution time. Additional effort of m is included to indicate that results from m cores have to be 

merged/summed up together. In Algorithm 2, function for split, merge and add is shown for reference. 

 

Initialize  

m number of Cores(C) 

A array of ‘n’ elements 

Sum  result of addition operation 

Split the ‘n’ addition operations among ‘m’ cores, 

1              to n/m  for core P0 

[n/m + 1]      to 2n/m for core P1 

…. 
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…. 

[n(m-1)/m + 1] to n for core Pm 

 

add(start,end): 

i = start; 

count = count + 1; to identify the subtask number 

for every ‘i’ do until ‘i’ is equal to ‘end’ cores 

  Sum [count] = Sum [count] + A[i];  

  Increment i; 

 end for 

 

merge: 

for every ‘i’ do until ‘i’ is equal to ‘m’ cores 

  Result = Sum (Values calculated in each core); 

  Increment i; 

end for 

 

Algorithm 2. Addition operation in Multithreaded Architecture with complier optimization 

Complexity: (n/m + m) * e; n- number of entries to add, e- execution time for 1 addition operation, 

m-number of cores. 

 
 

3.3. Speculatively Multithreaded Architecture 
In Speculatively multithreaded architecture, hardware plays an important role in partitioning 

sequential program into subtasks. The hardware does the partitioning by speculating that the subtasks are 

independent. Each subtask is spawned from another subtask and made to proceed in parallel. The key idea in 

speculation is to allow out of order execution but forces the instructions to commit in order. Hierarchy of two 

level instruction commitment is required in this architecture: Instructions within each core (subtasks) must 

locally commit and the overall task among all cores must globally commit in given program order. 

Dependency hazards that would arise in a speculative approach and possible solutions for handling 

the dependency are discussed as follows. 

 

3.3.1. Dependency 

Though this architecture speculates that the subtasks are independent, in real time scenarios the 

subtasks can have control or/and data dependencies. Control dependencies will occur when a branch decision 

inside a subtask determines which subtask to be executed next. So similar to branch predictors seen in ILP, 

subtask level predictors are needed to predict the flow. Likewise data dependencies can also arise when a 

memory or register value calculated in one subtask is consumed in other subtasks. If the hardware detects 

control or data dependencies across the subtasks, then the hardware enforces the correct order of execution of 

dependent instructions among the subtasks. Hardware would be able to detect the dependency only during 

execution or early if ReOrder Buffers (ROB) – common to all cores is used in speculation. 

If there had been a violation of control-flow dependency due to misprediction or a data dependency 

where consumer had executed before its producer, then the hardware rolls back the offending subtasks and all 

subtasks in later program order [23]. As a general safety procedure all the subtasks following the offending 

subtasks are rolled back. Mechanisms to identify subtasks that are not affected, helps to reduce number of 

unwanted rollbacks. For example, consider the below code snippet which highlights the control flow 

dependency. 
 

Subtask A 

{ 

while(1) 

      { 

..... 

if (condition > 0) 

 ..... 

 spawn subtask B 

 ..... 

else 

 spawn subtask C 

       } 
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} 

 

Control flow of the program is partitioned into three subtasks namely A, B and C. Subtask A is a 

loop body where each iteration is an instance of the subtask. One instance of Subtask A is predicted correctly 

and spawns subtask B. Hardware predicts that next iteration will also choose subtask B and spawns another 

instance of subtask B. The second prediction is incorrect!! Now the roll back mechanism flushes the instance 

of subtask B and loads with subtask C. With better task level predictors, roll back cost can be averted. 

Similarly, data dependencies can also bring down the performance of multithreaded architecture. A 

key idea for detecting dependencies is to keep track of the program order among the subtasks. When one 

subtask execution determines the next, task prediction can be done correctly only if the next sequence in 

program order is known. Similarly, this ordering is critical in detecting and enforcing true register and 

memory dependencies. 

 

3.3.2. Hazards 

For example, consider the below code snippet which highlights on the data dependency 
 

mult   a,b,c;    here, a = b * c 

sub    x,y,z;    here, x = y - z 

mult   d,v,x;    here, d = v * x 

store  d,10(r1); here, d is stored in memory [10+R1] 

add    y,a,x;    here, y = a + x 

div    d,u,t;    here, d = u /t 

store  d,8(r2);  here, d is stored in memory [8+R2] 

     *R1 and R2 are registers of the controller. 

 

This sequential code block is divided into two subtasks A and B to facilitate parallel execution. 

Note: Subtasks must be contiguous code blocks. 

 

Subtask A      Subtask B 
mult  a,b,c;         add   y,a,x; 

sub   x,y,z;         div   d,u,t; 

mult  d,v,x;         store d,8(r2); 

store d,10(r1);  

 
 

There are 3 possible data inconsistencies that may rise from parallel execution of subtask A and 

subtask B namely, RAW (Read After Write) violation  if  add instruction of subtask B reads the source 'a' 

before  mult instruction of subtask A writes on to it. Subtask B will have old value of 'a', which is different 

from the actual program order. WAR (Write After Read) violation if sub instruction of subtask A reads 'y' 

from register after add instruction of subtask B writes to the same source 'y'. This results in 'x' to have 

incorrect value for subtask A. WAW (Write After Write) violation if store instruction of subtask A and 

subtask B interchange in execution order. Both instructions may store same value at both the memory 

locations which is incorrect. Div or mult result in subtasks will be totally lost and only the last executed 

result will be replicated in both the memories. 

 

 

3.3.3. Solution 

The key idea to achieve performance and at the same time to avoid hazards is to allow out of order 

execution for parallelism and to force the instructions to commit in program order. Hierarchy of two level 

instruction commit is required: Instructions within each core (subtasks) must locally commit and the overall 

task among all cores must globally commit in given program order. 

 

 

4. TASK ALLOCATION SCHEMES 

Having information on the possibilities of task formation next is to distribute tasks among the cores. 

The techniques for task allocation are classified as global scheme, partitioned scheme and decentralized 

scheme. This Section elaborates in detail on the benefits and drawbacks of each scheme. 
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4.1. Global Scheme 

In the Global scheme (Figure 2), a centralized scheduler manages task allocation to individual cores 

and controls the scheduling sequence globally. Being a centralized scheduler, it knows the status of tasks 

already allocated to the core, so whenever a high priority task is ready to execute, it can be immediately 

assigned the processing unit for execution. By this method, the occurrence of priority inversion is avoided. 

 

“Priority inversion is said to have occurred when a higher priority task is waiting in the ready 

queue of one core while a lower priority task is selected to execute on another core”. [12] 

 

 

  
 

n – number of tasks and Ti - i
th

 Task in the central queue 

 

Figure 2. Global Scheme with 3 cores and a centralized scheduler 

 

 

In this scheme, tasks are not always fixed to a particular core. Migration is a feature where tasks can 

be moved from one core to another and this feature is supported in this global scheme. Even during the task 

execution, tasks can be moved from one core to another. Scheduling static priority tasks under global scheme 

by extending uniprocessor RM algorithm experimented by Andersson et al., [11]. Consider a scenario 

wherein the task T1 running in Core1 is preempted by high priority task T2; now the centralized scheduler 

allocates T2 to Core1 and puts task T1 on hold until any core becomes available.  Once a core becomes 

available, say Core2 and if task T1 is currently the highest priority task in ready queue, then it is scheduled to 

resume its execution from Core2. 

This scheme may also be referred to as centralized scheme-as it maintains a centralized ready queue 

and it ensures that no same task is being executed at the same time, redundantly in multiple cores. Constraint 

of this scheme is scalability in sense of amount of tasks and cores-a single scheduler has to manage. 

 

4.2. Partitioned Scheme 

In the partitioned scheme (Figure 3), the tasks are allocated to individual cores statically by the 

system designer and henceforth the tasks are executed only in their respective designated cores. Scheduling is 

fixed in nature, where the partitioning has to be decided during the design or implementation phase. 

The partitioning scheme is preferred to global scheme, as scheduling for multicore can be seen as an 

algorithm for scheduling on single core, to which a great variety of scheduling algorithms already exist and 

tasks are executed only on the same designated core. Static scheduling under partitioned scheme was 

experimented in literature [12], [15-16]. 

Efficiency of allocation depends on the design of how the tasks are allocated across the cores. 

Accurately identifying which task runs at a given moment is not possible and this makes the scheme 

vulnerable to priority inversion. Hence it is the designer‟s responsibility to ensure that no two tasks are 

redundantly executed in different cores. 
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n,m,k – number of tasks allocated to each core and Ti - i
th

 Task of that core 

 

Figure 3. Partitioned Scheme with 3 cores and each core having an individual scheduler 

 

 

4.3. Distributed or Decentralized Scheme 

Decentralized scheme combines the advantages seen in global and partitioned scheme, thereby 

reducing priority inversion and at the same time improving the system performance. In the decentralized 

scheme (Figure 4), there are two levels of scheduler. Normally, the levels of scheduler are referred as L1 and 

L2. Level 1 scheduler (L1) is similar to the one in centralized scheme and its duty is to allocate the 

dynamically queued up tasks to one of the cores based on the availability.  Level 2 scheduler (L2) is specific 

to each core and it handles the tasks that are allocated to it by L1 [12], [18]. 

 

 

 
 

 

Figure 4. Decentralized Scheme with 3 L2 schedulers and 1 L1 scheduler 

 

 

To summarize, L1 performs the task allocation, like a master of all cores and L2 performs the 

management of assigned core. So, for a system with 3 cores, there will be 1-L1 and 3-L2 schedulers, as 

depicted in Figure 4. Scheduler L2 also maintains information about tasks pertaining to that core, like state of 

the tasks in that core, number of tasks in ready and wait queue and finally priority of the tasks. Since L1 is the 

master of all cores, it can access the status information via L2 before allocating a task to the core. In this 

decentralized scheme, efficient design of the L1 scheduler provides an effective solution for the task 

scheduling problem (Kim & Lee (2015)). The L1 scheduler should be able to efficiently distribute tasks 

among cores and with minimal overhead. 

 

 

5. TASK ALLOCATION ALGORITHMS 
With a clear view on the allocation schemes, techniques to handle sequential code in multithread 

architecture and implicit dependencies that would arise; next step is to understand the algorithms. This 
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Section begins with introduction to the terminologies used in mathematical representation of an algorithm, 

followed by the core allocation algorithms that can be used to distribute tasks between the cores.  

Consider a multicore system S with n cores and each core is denoted as Ci, for all i = 1 to n. Let‟s 

assume that this multicore system S organizes the program into m tasks and each task is denoted as Tj, for all 

j = 1 to m with corresponding execution time Ej and task priority Pj. Based on the execution time Ej, the 

expected remaining execution time [ERT] of the task on a particular core Ci and the expected start time [EST] 

of the new task that will be allocated by L1 to the core Ci can be calculated. 

 

5.1. Core allocation techniques 

In this part, algorithms for decentralized scheme with dynamic task inflow are presented (Figure 5). 

Role of these algorithms is to dynamically select a core and allocate tasks to the selected core. Various 

algorithms pertaining to the study are discussed as follows. 

 

 

 
    

LB - Load Balance; NTWP - Number of Tasks, Waiting time and Priority 

MNT - Minimum Number of Tasks; RR - Round Robin 

 

Figure 5. Allocation Scheme and Associated Algorithm 

 

 

5.1.1. Round Robin (RR) algorithm 

In Round Robin algorithm, every task is treated with equal priority and job of L1 scheduler is to 

distribute the tasks, as and when they arrive, to different cores one by one. Pseudo code for the RR algorithm 

is presented in Algorithm 3. For example, 

 

If task „Tj‟ arrives first, scheduler allocates this task to Core „Ci‟ followed by task „Tj+1‟to core 

„Ci+1‟ and so on. 

 

 
Initialize  

n number of Cores(C) 

m number of Tasks to be allocated(T) 

i core number 

for each task ‘j’ do until ‘j’ is equal to ‘m’ 

 if ('i' is less than or equal to 'n') do 

  assign Task ‘Tj’ to Core ‘Ci’ 

  increment ‘i’ to select next Core 

 elsedo 

  reinitialize ‘i’ to select first core 

end for 

 

Algorithm 3. The Round Robin algorithm for „m‟ tasks across „n‟cores. 

 
 

In this round robin fashion, allocation depends only on the arrival order of the tasks. Priority is 

ignored as all tasks are treated equal. 
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5.1.2. Minimum Number of Tasks (MNT) algorithm 

In MNT algorithm, job of the L1 scheduler is to distribute tasks to the core containing minimum 

number of tasks already allocated [12]. In this algorithm, allocation is based on the arrival order of tasks and 

priority is ignored. Pseudo code for the MNT algorithm is presented in Algorithm 4. For example, 

 

If Core „Ci‟ has 5 tasks, „Ci+1‟ has 7 tasks and „Ci+2‟ has 3 tasks. When task „Tx‟ arrives next, 

scheduler allocates this task to Core „Ci+2‟, which has minimum number of tasks. 

 

MNT algorithm does not consider about the variation in execution time of each task, which is 

common in real time systems.  

 

 
Initialize  

n number of Cores(C) 

m number of Tasks already allocated to each core 

i core number 

Tx new task that has arrived  

 

for each core ‘i’ do until ‘i’ is equal to ‘n’ 

 indexCore number corresponding to Min(mi) 

end for 

 
 assign Task ‘Tx’ to Core ‘Cindex’ 

 

Algorithm 4. MNT algorithm which works based on minimum number of allocated tasks on each 

core. 

 
 

5.1.3. Number of Tasks, Waiting time and Priority (NTWP) algorithm 

NTWP algorithm is an extension of MNT algorithm, with task priority being considered before the 

allotment is made. Since real time system, used in most applications, cannot treat all tasks to have equal 

priority – tasks with higher priority have to be given preference in execution [12]. Pseudo code for the 

NTWP algorithm is presented in Algorithm 5. 

In NTWP algorithm, job of the L1 scheduler is to check for minimum number of tasks assigned to 

each core, and then checks for cores with minimum ERT and finally chooses the core with minimum sum of 

task priorities. Core with minimum sum of priority also implies that this core contains many low priority 

tasks compared to other cores and there is a high possibility of reduced waiting time for high priority tasks in 

this core. NTWP algorithm was designed in order to reduce priority inversion. 

 

Initialize  

n number of Cores(C) 

mi number of Tasks already allocated to each core 

i core number 

Tx new task that has arrived  

Ei total execution time of mi tasks in each core 

Pi sum of priorities of mi tasks in each core 

for each core ‘i’ do until ‘i’ is equal to ‘n’ 

indexCore number corresponding to Min(mi) 

flag 0 

if there are multiple values for ‘index’ do 

   Ei = Sum (execution times of tasks mi)in core  

   index_1 = Compute Min(Ei) 

  flag   1 

if there are multiple values for ‘index_1’ do 

  Pi = Sum(priorities of task mi)in core  

   index_2 = Compute Min(Pi)      

   flag   2 

end for   
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if flag == 0 do 

  Assign task Tx to the Cindex 

else if flag == 1 do 

  Assign task Tx to the Cindex_1 

else do 

Assign task Tx to the Cindex_2 

 

 Algorithm 5. NTWP algorithmis based on number of tasks, waiting time and task priority. 

 
 

5.1.4. Load Balance (LB) algorithm 

In LB algorithm, first job of L1 scheduler is to calculate the total execution time of tasks already 

assigned on each core. Then the algorithm has to select a core which has the minimum total execution time 

for allocation of new task. Pseudo code for the LB algorithm is presented in Algorithm 6. In continuation 

with example for MNT algorithm, 

 

If Core „Ci‟ has 5 tasks and overall execution time „Ei‟ = 5ms, „Ci+1‟ has 7 tasks, with „Ei+1‟ = 4ms 

and „Ci+2‟ has 3 tasks, with „Ei+2‟ = 8ms. When task „Tx‟ arrives next, scheduler allocates this task 

to Core „Ci+1‟ which has minimum execution time; on contrary to core „Ci+2‟ from MNT algorithm. 

 

 
Initialize  

n number of Cores(C) 

m number of Tasks already allocated to each core 

i core number 

Tx new task that has arrived  

for each core ‘i’ do until ‘i’ is equal to ‘n’ 

  Ei = Sum (execution times of tasks mi) in core  

end for 

 index = min(Ei) 
 assign Task ‘Tx’ to Core ‘Cindex’ 

 

Algorithm 6. LB algorithmis based on minimum execution time and not on number of tasks 

 
 

Despite the number of tasks present, total execution time is considered before the new task is 

allocated. In this algorithm, allocation is based on the arrival order of tasks and priority is ignored. 

 

5.2. Comparison of Task Allocation Schemes 

Behavioral attributes of the 3 allocation schemes is summarized in the Table 1. 

 

 

Table 1. Summary of the Allocation Schemes 
 Global Scheme Partitioned Scheme Decentralized Scheme 

No of 

schedulers 

Only 1 scheduler is 

required 

"n" schedulers ;  here 'n' 

corresponds to number of cores 

"(n+1)" schedulers ; here 'n' corresponds to 

 number of cores  

Technique Dynamic allocation Static allocation Dynamic allocation 
Advantages No priority inversion, 

Migration is supported. 

Scalable to more cores,  

Handles concurrent task execution. 

 

Scalability, Reduced makespan,  

Reduced Priority inversion, 

Handles concurrent task execution. 
Drawbacks Scalability Priority inversion,  

Burden on the designer for 

appropriate partitioning.  

Complexity in handling more schedulers. 

Algorithms EDF and RM variants EDF and RM for Sequential 

 

MIN–MIN, OLB, MAX-MIN and 
Sufferage for concurrent tasks. 

EDF/RM with NTWP, MNT, RR and LB 

for sequential deadline oriented tasks. 

MIN/MAX ordering with NTWP, MNT, RR 
and LB for concurrent tasks. 
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6. CONCLUSION 

In this paper, three task allocation schemes that can be used in multicore system namely: global, 

partitioned and decentralized scheme are presented. Global scheme benefits in preventing priority inversion, 

duplication/redundant execution of tasks, and also facilitating migration feature. However, from our 

references it is evident that when the number of cores increases, performance from global scheme comes 

down – “scalability” issue. On the other hand, partitioned scheme – where individual cores are statically 

assigned a set of tasks, facilitates good performance with scalability. Drawback of the partitioned scheme is 

priority inversion, where a high priority task is waiting when low priority task is being executed in another 

core. Taking into consideration of the drawbacks from global and partitioned scheme, a new decentralized 

scheme is introduced. Appropriate task allocation algorithm combined with decentralized scheme reduces 

priority inversion and overall makespan.  

This paper has also presented four allocation algorithms used in decentralized scheme namely RR, 

MNT, NTWP and LB. Evaluation of the allocation algorithms in term of selection criteria, shows NTWP to 

have better performance in reducing priority inversion and makespan. This paper has also presented 

techniques for parallelism by partitioning a sequential task into subtasks that can be executed in parallel. 

Control flow and data dependencies that would arise from sequential task that are also addressed. Examples 

using traditional technique of exploiting compiler for ILP is extendable to achieve TLP; however to facilitate 

dynamism, hardware techniques using ARB and SVC are preferred.  

Major idea of this paper is to summarize the terminologies, major events and researches that had 

occurred with respect to multicore allocation and scheduling activity. Future work lies in evaluating the 

allocation and scheduling algorithms on project which has combination of serial and parallel code blocks on a 

multicore RTOS. 
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