
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 6, No. 6, December 2016, pp. 3018~3030

ISSN: 2088-8708, DOI: 10.11591/ijece.v6i6.10140  3018

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

Trends in Task Allocation Techniques for Multicore Systems

Arun Kumar Sundar Rajan
1
, Shriram K Vasudevan

2
, Nirmala Devi M

3

1,3Department of Electronics and Communication Engineering, Amrita School of Engineering Coimbatore,

Amrita Vishwa Vidyapeetham, Amrita University, India
2Department of Computer Science Engineering, Amrita School of Engineering Coimbatore,

Amrita Vishwa Vidyapeetham, Amrita University, India

Article Info ABSTRACT

Article history:

Received Feb 11, 2016

Revised Sep 7, 2016

Accepted Sep 21, 2016

 As the functionality in real-time embedded systems becoming complex, there

has been a demand for higher computation capability, exploitation of

parallelism and effective usage of the resources. Further, technological

limitations in uniprocessor in terms of power consumption, saturation in

instruction level parallelism, delay in access of memory blocks, etc. led to the

emergence of multicore. Multicore design has its challenges as well. Increase

in number of cores has raised the demand for proper load distribution,

parallelizing existing sequential codes, enabling effective communication

and synchronization between cores, memory and I / O devices. This paper

had identified and compared the distribution schemes for task distribution in

a multicore environment and also the algorithms suitable for decentralized

task scheduling scheme. In addition, this paper had addressed the techniques

of formulating parallel task blocks from sequential code.

Keyword:

Decentralized scheme

Global scheme

Hardware speculation

Partitioned scheme

Real time operating system

Scheduling algorithm

Thread level parallelism
Copyright © 2016 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Arun Kumar Sundar Rajan,

Department of Electronics and Communication Engineering,

Amrita School of Engineering Coimbatore,

Amrita Vishwa Vidyapeetham, Amrita University, India.

Email: s_arunkumar@cb.amrita.edu

1. INTRODUCTION

With continuous improvement in semiconductor manufacturing technology, embedding many

processing units on a single chip has become a feasible technological trend. Single embedded chip with many

individual processing units is termed as multicore and its usage can be seen in many real time applications

like nuclear power plants, automobile and aerospace industry. Embedded systems with multicore are

developed with expectations to achieve higher performance and faster parallel execution; but the replacement

of single core to a multicore hardware alone does not always guarantee the expected higher

performance [1-3].

Although each core is an individual processing unit with capability to work independently, higher

performance cannot be achieved unless there are steps to ensure proper load distribution and synchronization

between cores, memory and Input-Output devices are taken into consideration. Load distribution is handled

by a task distributor, which will be capable of avoiding priority inversion between tasks in different cores,

longer waiting time and unneccesary missing of task deadlines.

Roles of a task distributor can be divided into 2 levels. First on deciding which core should execute

the task. Second is on deciding the time and order of the task execution. Former is termed as allocation

activity; while the latter is termed as scheduling activity.

After identifying the need for efficient task distributor and its role, next is to distinguish the type of

tasks. Tasks can be broadly classified into two types namely sequential and parallel. Sequential tasks have to

be executed undividedly and as per the program order. Violating this rule can more often lead to data

mailto:s_arunkumar@cb.amrita.edu

IJECE ISSN: 2088-8708 

Trends in Task Allocation Techniques for Multicore System (Arun Kumar Sundar Rajan)

3019

inconsistencies. Parallel tasks are independent code segments that can be executed in parallel among different

cores. Handling of task types is elaborated in the Section 4.

With a brief introduction to the basic terminologies (as depicted in Figure 1), this paper begins with

an historical overview of the research activities in Section 2. Section 3 describes in detail the task allocation

schemes suitable for multicore system.Parallel execution of task blocks using compiler and speculative

hardware technique is discussed in Section 4. In addition, control flow and data dependencies that will arise

with speculative hardware is also explained with suitable examples. Later, mathematical modeling of task

allocation algorithms for decentralized task scheduling scheme is brought out. Finally, a consolidated review

is presented in Section 5.

HW – Hardware;

Figure 1. Building Blocks Describing Steps that are Involved from Task Block Formation to Core Allocation

2. RELATED WORK

This Section brings out an overview of the research activities that were carried out with respect to

the task scheduling and allocation, starting from single core and time lined to multicore scenario.

Scheduling algorithms were of two types, namely timeline driven approach (also termed as timeline

scheduling) and priority driven approach. In timeline scheduling [4], the time period was divided into slots of

fixed length and tasks were statically allocated to a slot based on their frequency and execution time.

Although timeline scheduling was straightforward to implement, it was fragile under overload

conditions-where a task could exceed its predicted execution time and generate a domino kind of effect on

the subsequent tasks to surpass their timeline. A solution to the difficulties of timeline driven approach was

formulated in priority driven approach. In this approach, tasks were assigned a-prior and scheduler worked

based on the priority value.

Out of the many priority based approaches [5-7], the predominant were Rate Monotonic (RM) –

where the priorities were statically assigned to the tasks and Earliest Deadline First (EDF) – where the

priorities were dynamically assigned to the tasks, in achieving real time behavior for single core

environment. In parallel, experiments on finding suitable and efficient algorithms for multicore environment

had gained importance. Experiments combining priority based algorithms (RM and EDF) that were

successful in single core was tried over multicore environment. Major concerns in mapping such algorithms

were complexity, lack of reusability and scheduling anomalies with respect to load distribution and

synchronization between the cores [8-10].

In order to achieve effective load distribution, researchers had come up with various heuristic task

scheduling techniques based on execution time, completion time of the task and also combinations of

algorithms such as MIN–MAX duration algorithms, switching algorithm, sufferage algorithms etc., [11].

Another approach was to reduce the makespan by utilization of parallel task models. Combination of

sequential and parallel task scheduling algorithms like MIN / MAX – Round Robin, MIN / MAX – Load

Balance, MIN / MAX – Min Number of Task and MIN / MAX – NTWP was experimented [12]. Details of

these algorithms are explained in Section 5 of this paper.

Task scheduling algorithms, which were more or less a combination of single core algorithms, were

assumed to bring in the required performance uplift to a multicore system. However the results were not

fruitful. A strong supplement from effective task allocation scheme was need of the hour. Typically, the

allocation schemes can be classified under global, partitioned or decentralized schemes. Section 4 of this

paper focuses in detail about the task allocation schemes, their methods and their pros & cons.

  ISSN: 2088-8708

IJECE Vol. 6, No. 6, December 2016 : 3018 – 3030

3020

Brandenburg [13] performed an experimental study between partitioned EDF and global EDF using

LITMUS
RT

 - a derivative of Linux Kernel on 24-core Intel Xeon platform. His experiment showed that

partitioned EDF would be more preferable for hard real-time system while global EDF would be more

effective in a soft real-time system. Another extensive work in the priority based algorithm for multicore was

done by Zapata & Alvarez [14], where RM and EDF algorithms were subjected to best known heuristic

functions: worst fit (WF), first fit (FF), best fit (BF) and next fit (NF) for both partitioned and global scheme.

Further static scheduling on partitioned scheme for single core and multicore procedure were

demonstrated [15-16].

Meanwhile Lauzac et al., [17] had performed a comparative study of global RM and partitioned RM

scheme. Their observation also showed that for soft real-time systems-global scheduling can perform better

because overloaded processors can distribute tasks to under loaded processors dynamically, whereas in a

partitioned scheme a task allocation was fixed. They had also pointed out the scheduling effects of RM with

respect to delay seen in low priority tasks under global and partitioning scheme of a multicore environment.

Lee et al., [18] had come up with three algorithms that operate on decentralized scheme namely

Local scheduling, Internodes scheduling and Queue balancing. Each of their technique was evaluated in a

clustered environment and their experimental results showed of throughput improvement using decentralized

scheme.

With growing importance for parallelism, which can bring in higher performance, real-time

applications started to focus on parallel task models. Traditionally compiler and hardware speculation based

approaches were used to divide sequential tasks; however it has become complicated for compiler to

statically determine all the dependencies especially for programs with dynamic data structures. Control flow

and data dependencies were also common to occur while partitioning a task based on speculation. In

Section 2 of this paper, partitioning techniques and dependencies that would arise are explained in detail with

examples.

Diversification of task into parallel models and applying the traditional deadline algorithms were

described in works of Li et al., [19]. Another approach in combining DAG direct acyclic graphs was

described in works of Saifullah et al., [20]. These approaches could not handle dependencies that were

dynamic in nature.

In order to handle dynamic dependencies, hardware based approach using cache like

structures-address resolution buffer (ARB) for centralized shared memory multiprocessor [21] and

speculative versioning cache (SVC) for distributed shared memory multiprocessor [22] have been explored.

In these techniques, each core buffered the value and value was written to main memory only when the

operation was committed, else discarded by buffer flushing techniques. Extensive report on speculative

multithread architecture can be seen in the works of Sohi and Vijaykumar [23]. Speculation for data to avoid

dependency was also tried and the same can be seen in the works of Hammond et al., [24].

Of late, sequential program can be converted to parallel program using OpenMP Fork-join structure.

Best and worst case scenarios of using this fork-join model were illustrated in the works of

Lakshmanan et al., [25]. For better understanding of scheduling terminology, book by Labrosse [26] on

µc-OS II and for topics on parallelism, book by Hennessy & Patterson [27] on Computer Architecture is

recommended as they provide good insight.

3. PARALLEL EXECUTION OF TASKS

In order to improve the performance and to utilize the capability of multicore system, tasks are split

into smaller blocks and made to execute simultaneously in more than one core. This Section addresses on

techniques needed for parallel code execution.

3.1. Task Types

Tasks are broadly classified into two types namely, serial or sequential tasks and parallel or high

performance computing tasks. Sequential tasks have to be executed undividedly and as per the program

order. Violating this rule would lead to data inconsistencies. On the other hand, parallel tasks are code

segments that are independent and as their name suggests, can be operated in parallel. Advantage of parallel

task is reduction in overall execution time. The category under which a task falls purely depends on the

system design.

Based on dependency in coding, some Sections of serial task are divided into subtasks and each

subtask is made to run in parallel among the cores. But who performs the breaking of tasks into subtasks?

Subtasks, which are contiguous parts of instruction stream and are executed in parallel, is identified either by

programmer during the design and coding phase or by compiler or by using a speculative hardware

(Sohi&Vijaykumar (2009)). Details of each technique are elaborated in the following subSection.

IJECE ISSN: 2088-8708 

Trends in Task Allocation Techniques for Multicore System (Arun Kumar Sundar Rajan)

3021

Once the subtasks are identified, they can be allocated to one of multiple cores, either statically or

dynamically, using the allocation schemes. Section 4 elaborates on the allocation scheme. Parallelism

achieved by breaking a program into subtasks is often referred to as Thread level parallelism TLP and this

technique is different from Instruction-level parallelism ILP, as each subtask in TLP can contain hundreds to

millions of instructions that are executed in parallel with other subtasks.

Architecture that uses threads or subtasks to execute a program in parallel is referred to Multithread

Architecture. Eventually, this type of architecture can facilitate simultaneous execution of multiple tasks, as

well as multiple subtasks / threads. Along with the benefits of faster execution due to parallelism in

multithreaded architecture, certain overheads, namely resource contention-shared memory handling,

synchronization and load imbalance follow.

In the upcoming part, techniques using compiler and hardware to breakdown a serial task into

parallel are discussed.

3.2. Compiler Based Parallelism

Formulation of subtasks using complier is static in nature. During compilation of a program, the

complier identifies code sequences where same set of operations are applied to multiple data items and

facilitates parallel operation to that code sequence . For example, consider iteration for adding „n‟ objects of

an array.

Let ‟A‟ be the Array of size „ n‟ , „e‟ be the execution time for 1 addition operation and the number

of cores be „m‟ There will also be additional execution time for branching operation and this

branching time is currently ignored for easy understanding of the underlying concept.

In a sequential uniprocessor, the loop performing addition will iterate n times and the result will be

available only after the duration of n * e and the same is demonstrated in Algorithm 1.

Initialize

m number of Cores(C)

A array of ‘n’ elements

Sum  result of addition operation

m = 1; uniprocessor/single cores

Sum = 0; initial value

i = 0;

for every ‘i’ do until ‘i’ is equal to ‘n’

 Sum = Sum + A[i];

 Increment i;

end for

Algorithm 1. Addition operation in single core sequential execution

Complexity: n * e ; n- number of entries to add, e- execution time for 1 addition operation

In a multithreaded architecture with the support of compiler, the addition operation can be

partitioned among the cores to complete in parallel. This technique would then consume (n/m + m) * e

execution time. Additional effort of m is included to indicate that results from m cores have to be

merged/summed up together. In Algorithm 2, function for split, merge and add is shown for reference.

Initialize

m number of Cores(C)

A array of ‘n’ elements

Sum  result of addition operation

Split the ‘n’ addition operations among ‘m’ cores,

1 to n/m for core P0

[n/m + 1] to 2n/m for core P1

….

  ISSN: 2088-8708

IJECE Vol. 6, No. 6, December 2016 : 3018 – 3030

3022

….

[n(m-1)/m + 1] to n for core Pm

add(start,end):

i = start;

count = count + 1; to identify the subtask number

for every ‘i’ do until ‘i’ is equal to ‘end’ cores

 Sum [count] = Sum [count] + A[i];

 Increment i;

 end for

merge:

for every ‘i’ do until ‘i’ is equal to ‘m’ cores

 Result = Sum (Values calculated in each core);

 Increment i;

end for

Algorithm 2. Addition operation in Multithreaded Architecture with complier optimization

Complexity: (n/m + m) * e; n- number of entries to add, e- execution time for 1 addition operation,

m-number of cores.

3.3. Speculatively Multithreaded Architecture
In Speculatively multithreaded architecture, hardware plays an important role in partitioning

sequential program into subtasks. The hardware does the partitioning by speculating that the subtasks are

independent. Each subtask is spawned from another subtask and made to proceed in parallel. The key idea in

speculation is to allow out of order execution but forces the instructions to commit in order. Hierarchy of two

level instruction commitment is required in this architecture: Instructions within each core (subtasks) must

locally commit and the overall task among all cores must globally commit in given program order.

Dependency hazards that would arise in a speculative approach and possible solutions for handling

the dependency are discussed as follows.

3.3.1. Dependency

Though this architecture speculates that the subtasks are independent, in real time scenarios the

subtasks can have control or/and data dependencies. Control dependencies will occur when a branch decision

inside a subtask determines which subtask to be executed next. So similar to branch predictors seen in ILP,

subtask level predictors are needed to predict the flow. Likewise data dependencies can also arise when a

memory or register value calculated in one subtask is consumed in other subtasks. If the hardware detects

control or data dependencies across the subtasks, then the hardware enforces the correct order of execution of

dependent instructions among the subtasks. Hardware would be able to detect the dependency only during

execution or early if ReOrder Buffers (ROB) – common to all cores is used in speculation.

If there had been a violation of control-flow dependency due to misprediction or a data dependency

where consumer had executed before its producer, then the hardware rolls back the offending subtasks and all

subtasks in later program order [23]. As a general safety procedure all the subtasks following the offending

subtasks are rolled back. Mechanisms to identify subtasks that are not affected, helps to reduce number of

unwanted rollbacks. For example, consider the below code snippet which highlights the control flow

dependency.

Subtask A

{

while(1)

 {

.....

if (condition > 0)

 spawn subtask B

else

 spawn subtask C

 }

IJECE ISSN: 2088-8708 

Trends in Task Allocation Techniques for Multicore System (Arun Kumar Sundar Rajan)

3023

}

Control flow of the program is partitioned into three subtasks namely A, B and C. Subtask A is a

loop body where each iteration is an instance of the subtask. One instance of Subtask A is predicted correctly

and spawns subtask B. Hardware predicts that next iteration will also choose subtask B and spawns another

instance of subtask B. The second prediction is incorrect!! Now the roll back mechanism flushes the instance

of subtask B and loads with subtask C. With better task level predictors, roll back cost can be averted.

Similarly, data dependencies can also bring down the performance of multithreaded architecture. A

key idea for detecting dependencies is to keep track of the program order among the subtasks. When one

subtask execution determines the next, task prediction can be done correctly only if the next sequence in

program order is known. Similarly, this ordering is critical in detecting and enforcing true register and

memory dependencies.

3.3.2. Hazards

For example, consider the below code snippet which highlights on the data dependency

mult a,b,c; here, a = b * c

sub x,y,z; here, x = y - z

mult d,v,x; here, d = v * x

store d,10(r1); here, d is stored in memory [10+R1]

add y,a,x; here, y = a + x

div d,u,t; here, d = u /t

store d,8(r2); here, d is stored in memory [8+R2]

 *R1 and R2 are registers of the controller.

This sequential code block is divided into two subtasks A and B to facilitate parallel execution.

Note: Subtasks must be contiguous code blocks.

Subtask A Subtask B
mult a,b,c; add y,a,x;

sub x,y,z; div d,u,t;

mult d,v,x; store d,8(r2);

store d,10(r1);

There are 3 possible data inconsistencies that may rise from parallel execution of subtask A and

subtask B namely, RAW (Read After Write) violation if add instruction of subtask B reads the source 'a'

before mult instruction of subtask A writes on to it. Subtask B will have old value of 'a', which is different

from the actual program order. WAR (Write After Read) violation if sub instruction of subtask A reads 'y'

from register after add instruction of subtask B writes to the same source 'y'. This results in 'x' to have

incorrect value for subtask A. WAW (Write After Write) violation if store instruction of subtask A and

subtask B interchange in execution order. Both instructions may store same value at both the memory

locations which is incorrect. Div or mult result in subtasks will be totally lost and only the last executed

result will be replicated in both the memories.

3.3.3. Solution

The key idea to achieve performance and at the same time to avoid hazards is to allow out of order

execution for parallelism and to force the instructions to commit in program order. Hierarchy of two level

instruction commit is required: Instructions within each core (subtasks) must locally commit and the overall

task among all cores must globally commit in given program order.

4. TASK ALLOCATION SCHEMES

Having information on the possibilities of task formation next is to distribute tasks among the cores.

The techniques for task allocation are classified as global scheme, partitioned scheme and decentralized

scheme. This Section elaborates in detail on the benefits and drawbacks of each scheme.

  ISSN: 2088-8708

IJECE Vol. 6, No. 6, December 2016 : 3018 – 3030

3024

4.1. Global Scheme

In the Global scheme (Figure 2), a centralized scheduler manages task allocation to individual cores

and controls the scheduling sequence globally. Being a centralized scheduler, it knows the status of tasks

already allocated to the core, so whenever a high priority task is ready to execute, it can be immediately

assigned the processing unit for execution. By this method, the occurrence of priority inversion is avoided.

“Priority inversion is said to have occurred when a higher priority task is waiting in the ready

queue of one core while a lower priority task is selected to execute on another core”. [12]

n – number of tasks and Ti - i
th

 Task in the central queue

Figure 2. Global Scheme with 3 cores and a centralized scheduler

In this scheme, tasks are not always fixed to a particular core. Migration is a feature where tasks can

be moved from one core to another and this feature is supported in this global scheme. Even during the task

execution, tasks can be moved from one core to another. Scheduling static priority tasks under global scheme

by extending uniprocessor RM algorithm experimented by Andersson et al., [11]. Consider a scenario

wherein the task T1 running in Core1 is preempted by high priority task T2; now the centralized scheduler

allocates T2 to Core1 and puts task T1 on hold until any core becomes available. Once a core becomes

available, say Core2 and if task T1 is currently the highest priority task in ready queue, then it is scheduled to

resume its execution from Core2.

This scheme may also be referred to as centralized scheme-as it maintains a centralized ready queue

and it ensures that no same task is being executed at the same time, redundantly in multiple cores. Constraint

of this scheme is scalability in sense of amount of tasks and cores-a single scheduler has to manage.

4.2. Partitioned Scheme

In the partitioned scheme (Figure 3), the tasks are allocated to individual cores statically by the

system designer and henceforth the tasks are executed only in their respective designated cores. Scheduling is

fixed in nature, where the partitioning has to be decided during the design or implementation phase.

The partitioning scheme is preferred to global scheme, as scheduling for multicore can be seen as an

algorithm for scheduling on single core, to which a great variety of scheduling algorithms already exist and

tasks are executed only on the same designated core. Static scheduling under partitioned scheme was

experimented in literature [12], [15-16].

Efficiency of allocation depends on the design of how the tasks are allocated across the cores.

Accurately identifying which task runs at a given moment is not possible and this makes the scheme

vulnerable to priority inversion. Hence it is the designer‟s responsibility to ensure that no two tasks are

redundantly executed in different cores.

IJECE ISSN: 2088-8708 

Trends in Task Allocation Techniques for Multicore System (Arun Kumar Sundar Rajan)

3025

n,m,k – number of tasks allocated to each core and Ti - i
th

 Task of that core

Figure 3. Partitioned Scheme with 3 cores and each core having an individual scheduler

4.3. Distributed or Decentralized Scheme

Decentralized scheme combines the advantages seen in global and partitioned scheme, thereby

reducing priority inversion and at the same time improving the system performance. In the decentralized

scheme (Figure 4), there are two levels of scheduler. Normally, the levels of scheduler are referred as L1 and

L2. Level 1 scheduler (L1) is similar to the one in centralized scheme and its duty is to allocate the

dynamically queued up tasks to one of the cores based on the availability. Level 2 scheduler (L2) is specific

to each core and it handles the tasks that are allocated to it by L1 [12], [18].

Figure 4. Decentralized Scheme with 3 L2 schedulers and 1 L1 scheduler

To summarize, L1 performs the task allocation, like a master of all cores and L2 performs the

management of assigned core. So, for a system with 3 cores, there will be 1-L1 and 3-L2 schedulers, as

depicted in Figure 4. Scheduler L2 also maintains information about tasks pertaining to that core, like state of

the tasks in that core, number of tasks in ready and wait queue and finally priority of the tasks. Since L1 is the

master of all cores, it can access the status information via L2 before allocating a task to the core. In this

decentralized scheme, efficient design of the L1 scheduler provides an effective solution for the task

scheduling problem (Kim & Lee (2015)). The L1 scheduler should be able to efficiently distribute tasks

among cores and with minimal overhead.

5. TASK ALLOCATION ALGORITHMS
With a clear view on the allocation schemes, techniques to handle sequential code in multithread

architecture and implicit dependencies that would arise; next step is to understand the algorithms. This

  ISSN: 2088-8708

IJECE Vol. 6, No. 6, December 2016 : 3018 – 3030

3026

Section begins with introduction to the terminologies used in mathematical representation of an algorithm,

followed by the core allocation algorithms that can be used to distribute tasks between the cores.

Consider a multicore system S with n cores and each core is denoted as Ci, for all i = 1 to n. Let‟s

assume that this multicore system S organizes the program into m tasks and each task is denoted as Tj, for all

j = 1 to m with corresponding execution time Ej and task priority Pj. Based on the execution time Ej, the

expected remaining execution time [ERT] of the task on a particular core Ci and the expected start time [EST]

of the new task that will be allocated by L1 to the core Ci can be calculated.

5.1. Core allocation techniques

In this part, algorithms for decentralized scheme with dynamic task inflow are presented (Figure 5).

Role of these algorithms is to dynamically select a core and allocate tasks to the selected core. Various

algorithms pertaining to the study are discussed as follows.

LB - Load Balance; NTWP - Number of Tasks, Waiting time and Priority

MNT - Minimum Number of Tasks; RR - Round Robin

Figure 5. Allocation Scheme and Associated Algorithm

5.1.1. Round Robin (RR) algorithm

In Round Robin algorithm, every task is treated with equal priority and job of L1 scheduler is to

distribute the tasks, as and when they arrive, to different cores one by one. Pseudo code for the RR algorithm

is presented in Algorithm 3. For example,

If task „Tj‟ arrives first, scheduler allocates this task to Core „Ci‟ followed by task „Tj+1‟to core

„Ci+1‟ and so on.

Initialize

n number of Cores(C)

m number of Tasks to be allocated(T)

i core number

for each task ‘j’ do until ‘j’ is equal to ‘m’

 if ('i' is less than or equal to 'n') do

 assign Task ‘Tj’ to Core ‘Ci’

 increment ‘i’ to select next Core

 elsedo

 reinitialize ‘i’ to select first core

end for

Algorithm 3. The Round Robin algorithm for „m‟ tasks across „n‟cores.

In this round robin fashion, allocation depends only on the arrival order of the tasks. Priority is

ignored as all tasks are treated equal.

IJECE ISSN: 2088-8708 

Trends in Task Allocation Techniques for Multicore System (Arun Kumar Sundar Rajan)

3027

5.1.2. Minimum Number of Tasks (MNT) algorithm

In MNT algorithm, job of the L1 scheduler is to distribute tasks to the core containing minimum

number of tasks already allocated [12]. In this algorithm, allocation is based on the arrival order of tasks and

priority is ignored. Pseudo code for the MNT algorithm is presented in Algorithm 4. For example,

If Core „Ci‟ has 5 tasks, „Ci+1‟ has 7 tasks and „Ci+2‟ has 3 tasks. When task „Tx‟ arrives next,

scheduler allocates this task to Core „Ci+2‟, which has minimum number of tasks.

MNT algorithm does not consider about the variation in execution time of each task, which is

common in real time systems.

Initialize

n number of Cores(C)

m number of Tasks already allocated to each core

i core number

Tx new task that has arrived

for each core ‘i’ do until ‘i’ is equal to ‘n’

 indexCore number corresponding to Min(mi)

end for

 assign Task ‘Tx’ to Core ‘Cindex’

Algorithm 4. MNT algorithm which works based on minimum number of allocated tasks on each

core.

5.1.3. Number of Tasks, Waiting time and Priority (NTWP) algorithm

NTWP algorithm is an extension of MNT algorithm, with task priority being considered before the

allotment is made. Since real time system, used in most applications, cannot treat all tasks to have equal

priority – tasks with higher priority have to be given preference in execution [12]. Pseudo code for the

NTWP algorithm is presented in Algorithm 5.

In NTWP algorithm, job of the L1 scheduler is to check for minimum number of tasks assigned to

each core, and then checks for cores with minimum ERT and finally chooses the core with minimum sum of

task priorities. Core with minimum sum of priority also implies that this core contains many low priority

tasks compared to other cores and there is a high possibility of reduced waiting time for high priority tasks in

this core. NTWP algorithm was designed in order to reduce priority inversion.

Initialize

n number of Cores(C)

mi number of Tasks already allocated to each core

i core number

Tx new task that has arrived

Ei total execution time of mi tasks in each core

Pi sum of priorities of mi tasks in each core

for each core ‘i’ do until ‘i’ is equal to ‘n’

indexCore number corresponding to Min(mi)

flag 0

if there are multiple values for ‘index’ do

 Ei = Sum (execution times of tasks mi)in core

 index_1 = Compute Min(Ei)

 flag  1

if there are multiple values for ‘index_1’ do

 Pi = Sum(priorities of task mi)in core

 index_2 = Compute Min(Pi)

 flag  2

end for

  ISSN: 2088-8708

IJECE Vol. 6, No. 6, December 2016 : 3018 – 3030

3028

if flag == 0 do

 Assign task Tx to the Cindex

else if flag == 1 do

 Assign task Tx to the Cindex_1

else do

Assign task Tx to the Cindex_2

 Algorithm 5. NTWP algorithmis based on number of tasks, waiting time and task priority.

5.1.4. Load Balance (LB) algorithm

In LB algorithm, first job of L1 scheduler is to calculate the total execution time of tasks already

assigned on each core. Then the algorithm has to select a core which has the minimum total execution time

for allocation of new task. Pseudo code for the LB algorithm is presented in Algorithm 6. In continuation

with example for MNT algorithm,

If Core „Ci‟ has 5 tasks and overall execution time „Ei‟ = 5ms, „Ci+1‟ has 7 tasks, with „Ei+1‟ = 4ms

and „Ci+2‟ has 3 tasks, with „Ei+2‟ = 8ms. When task „Tx‟ arrives next, scheduler allocates this task

to Core „Ci+1‟ which has minimum execution time; on contrary to core „Ci+2‟ from MNT algorithm.

Initialize

n number of Cores(C)

m number of Tasks already allocated to each core

i core number

Tx new task that has arrived

for each core ‘i’ do until ‘i’ is equal to ‘n’

 Ei = Sum (execution times of tasks mi) in core

end for

 index = min(Ei)
 assign Task ‘Tx’ to Core ‘Cindex’

Algorithm 6. LB algorithmis based on minimum execution time and not on number of tasks

Despite the number of tasks present, total execution time is considered before the new task is

allocated. In this algorithm, allocation is based on the arrival order of tasks and priority is ignored.

5.2. Comparison of Task Allocation Schemes

Behavioral attributes of the 3 allocation schemes is summarized in the Table 1.

Table 1. Summary of the Allocation Schemes
 Global Scheme Partitioned Scheme Decentralized Scheme

No of

schedulers

Only 1 scheduler is

required

"n" schedulers ; here 'n'

corresponds to number of cores

"(n+1)" schedulers ; here 'n' corresponds to

 number of cores

Technique Dynamic allocation Static allocation Dynamic allocation
Advantages No priority inversion,

Migration is supported.

Scalable to more cores,

Handles concurrent task execution.

Scalability, Reduced makespan,

Reduced Priority inversion,

Handles concurrent task execution.
Drawbacks Scalability Priority inversion,

Burden on the designer for

appropriate partitioning.

Complexity in handling more schedulers.

Algorithms EDF and RM variants EDF and RM for Sequential

MIN–MIN, OLB, MAX-MIN and
Sufferage for concurrent tasks.

EDF/RM with NTWP, MNT, RR and LB

for sequential deadline oriented tasks.

MIN/MAX ordering with NTWP, MNT, RR
and LB for concurrent tasks.

IJECE ISSN: 2088-8708 

Trends in Task Allocation Techniques for Multicore System (Arun Kumar Sundar Rajan)

3029

6. CONCLUSION

In this paper, three task allocation schemes that can be used in multicore system namely: global,

partitioned and decentralized scheme are presented. Global scheme benefits in preventing priority inversion,

duplication/redundant execution of tasks, and also facilitating migration feature. However, from our

references it is evident that when the number of cores increases, performance from global scheme comes

down – “scalability” issue. On the other hand, partitioned scheme – where individual cores are statically

assigned a set of tasks, facilitates good performance with scalability. Drawback of the partitioned scheme is

priority inversion, where a high priority task is waiting when low priority task is being executed in another

core. Taking into consideration of the drawbacks from global and partitioned scheme, a new decentralized

scheme is introduced. Appropriate task allocation algorithm combined with decentralized scheme reduces

priority inversion and overall makespan.

This paper has also presented four allocation algorithms used in decentralized scheme namely RR,

MNT, NTWP and LB. Evaluation of the allocation algorithms in term of selection criteria, shows NTWP to

have better performance in reducing priority inversion and makespan. This paper has also presented

techniques for parallelism by partitioning a sequential task into subtasks that can be executed in parallel.

Control flow and data dependencies that would arise from sequential task that are also addressed. Examples

using traditional technique of exploiting compiler for ILP is extendable to achieve TLP; however to facilitate

dynamism, hardware techniques using ARB and SVC are preferred.

Major idea of this paper is to summarize the terminologies, major events and researches that had

occurred with respect to multicore allocation and scheduling activity. Future work lies in evaluating the

allocation and scheduling algorithms on project which has combination of serial and parallel code blocks on a

multicore RTOS.

REFERENCES
[1] Rho S., et al., “Guest Editorial: Challenges of Embedded Systems as They Evolve into M2M, Internet of Things,”

[2] ACM Transactions on Embedded Computing Systems (TECS), vol/issue: 15(2), pp. 34, 2016.

[3] Biondi A., et al., “Moving From Single-Core to Multicore: Initial Findings on a Fuel Injection Case Study,” SAE

Technical Paper, 2016.

[4] Awadalla M. and Konsowa H., “Performance Enhancement of Multicore Architecture,” International Journal of

Electrical and Computer Engineering, vol/issue: 5(4), pp. 669, 2015.

[5] Jensen E. D., et al., “A Time-Driven Scheduling Model for Real-Time Operating Systems,” In RTSS, vol. 85, pp.

112-122, 1985.

[6] Liu C. L. and Layland J. W., “Scheduling algorithms for multiprogramming in a hard-real-time environment,”

Journal of the ACM (JACM), vol/issue: 20(1), pp. 46-61, 1973.

[7] Lehoczky J., et al., “The rate monotonic scheduling algorithm: Exact characterization and average case behaviour,”

In Real Time Systems Symposium, IEEE, pp. 166-171, 1989.

[8] Buttazzo G. C., “Rate monotonic vs. EDF: judgment day,” Real-Time Systems, vol/issue: 29(1), pp. 5-26, 2005.

[9] Baker T. P., “Multiprocessor EDF and deadline monotonic schedulability analysis,” Innull, IEEE, pp. 120, 2003.

[10] Goossens J., et al., “Priority-driven scheduling of periodic task systems on multiprocessors,” Real-time systems,

vol/issue: 25(2-3), pp. 187-205, 2003.

[11] Pillai A. S. and Isha T. B., “Ec-A: A task allocation algorithm for energy minimization in multiprocessor systems,”

Middle-East Journal of Scientific Research, vol/issue: 18(6), pp. 779-87, 2013.

[12] Chaturvedi A. K. and Sahu R., “New heuristic for scheduling of independent tasks in computational grid,”

International Journal of Grid and Distributed Computing, vol/issue: 4(3), pp. 25-36, 2011.

[13] Kim S. C. and Lee S., “Decentralized task scheduling for a fixed priority multicore embedded RTOS,” Computing,

vol/issue: 97(6), pp. 543-55, 2015.

[14] Brandenburg B. B., “Scheduling and locking in multiprocessor real-time operating systems,” Doctoral dissertation,

University of North Carolina at Chapel Hill.

[15] Zapata O. U. and Alvarez P. M., “Edf and rm multiprocessor scheduling algorithms: Survey and performance

evaluation,” Seccion de Computacion Av. IPN, pp. 2508, 2005.

[16] Andersson B., et al., “Static-priority scheduling on multiprocessors,” In Real-Time Systems Symposium,

2001.(RTSS 2001). Proceedings. 22nd IEEE, pp. 193-202, 2001.

[17] Crespo A., et al., “Static Scheduling Generation for Multicore Partitioned Systems,” In Information Science and

Applications (ICISA), pp. 511-522, 2016.

[18] Lauzac S., et al., “Comparison of global and partitioning schemes for scheduling rate monotonic tasks on a

multiprocessor,” In Real-Time Systems, 1998.Proceedings. 10th Euromicro Workshop, IEEE, pp. 188-195, 1998.

[19] Lee J., et al., “Decentralized dynamic scheduling across heterogeneous multi-core desktop grids,” In Parallel and

Distributed Processing, Workshops and Phd Forum (IPDPSW), IEEE International Symposium, pp. 1-9, 2010.

[20] Li J., et al., “Analysis of federated and global scheduling for parallel real-time tasks,” In Real-Time Systems

(ECRTS), 2014 26th Euromicro Conference, IEEE, pp. 85-96, 2014.

[21] Saifullah A., et al., “Multi-core real-time scheduling for generalized parallel task models,” Real-Time Systems,

vol/issue: 49(4), pp. 404-35, 2013.

  ISSN: 2088-8708

IJECE Vol. 6, No. 6, December 2016 : 3018 – 3030

3030

[22] Franklin M. and Sohi G. S., “ARB: A hardware mechanism for dynamic reordering of memory references,”

Computers, IEEE Transactions on, vol/issue: 45(5), pp. 552-71, 1996.

[23] Gopal S., et al., “Speculative versioning cache. InHigh-Performance Computer Architecture,” Proceedings, Fourth

International Symposium, IEEE, pp. 195-205, 1998.

[24] Sohi G. S. and Vijaykumar T. N., “Speculatively Multithreaded Architectures,” In Multicore Processors and

Systems, Springer US, pp. 111-143, 2009.

[25] Hammond L., et al., “Data speculation support for a chip multiprocessor,” ACM, 1998.

[26] Lakshmanan K., et al., “Scheduling parallel real-time tasks on multi-core processors,” In Real-Time Systems

Symposium (RTSS), IEEE 31st, pp. 259-268, 2010.

[27] Labrosse J. J., “MicroC/OS-II,” R & D Books, pp. 9, 1998.

[28] Hennessy J. L. and Patterson D. A., “Computer architecture: a quantitative approach,” Elsevier, 2011.

