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 A search engine usually returns a long list of web search results 
corresponding to a query from the user. Users must spend a lot of time for 
browsing and navigating the search results for the relevant results. Many 
research works applied the text clustering techniques, called web search 
results clustering, to handle the problem. Unfortunately, search result 
document returned from search engine is a very short text. It is difficult to 
cluster related documents into the same group because a short document has 
low informative content. In this paper, we proposed a method to cluster the 
web search results with high clustering quality using graph-based clustering 
with concept which extract from the external knowledge source. The main 
idea is to expand the original search results with some related concept terms. 
We applied the Wikipedia as the external knowledge source for concept 
extraction. We compared the clustering results of our proposed method with 
two well-known search results clustering techniques, Suffix Tree Clustering 
and Lingo. The experimental results showed that our proposed method 
significantly outperforms over the well-known clustering techniques. 
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1. INTRODUCTION 

A search engine usually returns a large number of web search results corresponding to a query from 
the user. Consequently, users must spend a lot of time to browse and navigating the search results for the 
most relevant information. Many researchers used text clustering techniques, called web search results 
clustering, to handle the problem [1]-[6]. Text clustering is the method for grouping the related documents 
into the same cluster. Unfortunately, search result document returned from search engine is a very short text. 
It is difficult to cluster related documents into the same group because a short document has low informative 
content. We assume that the short document can be extended with some suitable terms to join the related 
document into the same cluster. 

Many web search result clustering techniques used the “Bag of Words” model to convert a 
document into a term-vector and compute the similarity between 2 documents [2]. Some work used singular 
value decomposition model to generated cluster label first and then cluster the documents [4]. Some search 
result clustering techniques applied the suffix tree structure to maintain words or phrases [5]-[6]. The 
limitation of short document affect to these works encounters unsatisfactory clustering result. 

Many researchers applied the external knowledge source to expand the information of short 
document. Some work applied web taxonomy of Open Directory Project (ODP) to generate the concepts for 
text enrichment [7]. The work of Di Marco and Naigli [8] applied the ODP to cluster the web search results 
by using techniques of Word Sense Induction (WSI). Limitation of using ODP as an external information 
source is too small content of each category, low informative content and lack of links to related categories. 
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Recently, many research works use Wikipedia as an external knowledge for many aspects in data 
mining techniques [9]-[12]. Due to Wikipedia is the largest online free encyclopedia which covers every 
topics and contains numerous categories including a people stories, important events and etc. the articles in 
Wikipedia are provided by a lot of volunteers around the world.  Some research works applied Wikipedia to 
generate features for text categorization [11], annotate or identified document topics [12]-[13]. 
 In this paper, we try to improve the quality of search results clustering by using the concept terms 
generated from Wikipedia (the largest online encyclopedia) and also introduce a short text clustering method 
using graph-based construction to connect the related documents. We compared the clustering results of our 
proposed method with well-known search result clustering techniques, Suffix Tree Clustering [5] and Lingo 
[4]. Experimental results show that our proposed method significantly outperforms the well-known clustering 
techniques. 
     
 
2. RESEARCH METHOD 

In this section, the proposed method has 2 primary steps. The First is Concept Extraction step, the 
process of extracting the concepts from external knowledge source to produce the input for next step. The 
second is the step of search results clustering based on graph model.  

  
2.1. Concept Extraction 

In this section, we explain what the Wikipedia is, what is the information which used to as a concept 
term and how to extract the concepts from Wikipedia. 
 
2.1.1. Wikipedia 

Wikipedia is the largest online encyclopedia of the world. In English version, it contains over 300 
million words in nearly 5 million articles, contributed by over 160,000 volunteer editors. Wikipedia has 
several advantages. First, its articles are much cleaner than typical web pages. In the XML Wikipedia dump 
file, we can easily extract the parts of Wikipedia article by tracking with Wikipedia Tag contained in the 
article file. 

The Wikipedia article is a page that contains knowledge of each article in the encyclopedia. There 
are three main sections for each article. First, the Title section is the name or topic of an article. Second, the 
Content section, this section use to explain what the article is about, and also contain the relative terms that 
link to the related articles. Last section is Category, it contains the category terms which this article belong to 
i.e. the article “Puma” belong to the categories “Cat stubs” and “Felines”. 
  From our observation, we found that the category terms from the Category section seem to properly 
represent as the concepts of its article. Therefore, we apply these category terms be a representative as the 
concepts of the document which contains the Title of the articles within. 
 
2.1.2. Building the Wikipedia Corpus 

We download the Wikipedia article pages dumped as XML file that contains all of Wikipedia 
articles in English. For each the article consist of Title, Content and Category which are the three mainly 
components. We use only the useful Wikipedia pages by removing the useless pages with criteria as 
following: 

1) A title that contains only digits character such as "1944", "821" 
2) A single little title such as “A”, “B”, “X” or “Y”  
3) An article of years such as "1000s BC" or "500s BC (decade)" 
4) Administrative Pages, a page that has the title start with "Wikipedia:", "File:", "Portal:" 

,"Category:", "Special:" and "Template:" 
The Wikipedia corpus has been created by indexing all Wikipedia pages which can download from 

Wikipedia website by using Apache Lucene API. We index the Title section for searching with an input text 
and use the category terms in the Category section as the concepts in the concept extraction module. 
 
2.1.3. Extracting the Concepts 

After Wikipedia corpus has been created. We perform the concept extraction by searching an input 
text into the Wikipedia corpus to match the titles of Wikipedia article and determine the category terms and 
out-link terms of the matched articles as candidate concepts as following steps in Figure 1. 
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1. Search input document into the Wikipedia corpus by matching with the Title of Wikipedia article. 
2. Collect the returned Wikipedia articles search results 
3. Get all category terms from returned article 
4. Score each term by counting the number of occurrence 
5. Return the high score concept term 

If the score is more than 1 
Else, return all terms 

Figure 1. Concept extraction steps 
 
  
2.2. Graph-Based Concept Clustering 

In this paper, we proposed the clustering algorithm for short text, Graph-based concept clustering, 
which consists of 4 primary steps as following: 1) Feature extraction 2) Candidate Cluster Generation and 3) 
Sub graph detection and 4) Cluster scoring and labeling, that shown in Figure 2. 
 
 

 
 

Figure 2. The workflow of Graph-based Concept Clustering algorithm 
 
 
2.2.1. Feature Extraction 
 We separate this step into 2 parts. The first part is “Term Extraction”. We define the “Term” as the 
origin word or phrase that appears in the search results. We remove all stop-word and extract the terms with 
following rules that shown in Table 1. 
 
 

Table 1. The rules of term extraction 
Rules Description 

Punctuation Mark Term The terms that appear in punctuation marks such as double or single quotes, parenthesis, bracket, etc.  
Noun Phrase Term We detect the Noun phrase term by using Part-Of-Speech Tagger tools [14]  
Name Entity Term The term that start with capital letter such as “Batman Begins”  

 
 
 The second step, “Concept Extraction”, we explained this step in above section (2. CONCEPT 
EXTRACTION)   
 
2.2.2. Candidate Cluster Generation 

Let F = {f1, f2, …,fi} denote as a set of feature that generated from previous step, D = {d1, d2,.., 
dj}denote as a set of input document for clustering and CC = {cc1, cc2,…,cci} denote as a set of candidate 
cluster. We can explain the algorithm to generate the candidate cluster as shown in Figure 3. 
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Figure 3. Algorithm of candidate cluster generation 
 
 

We apply all features that returned by feature extraction step as candidate clusters (cc) and assign 
the document dj which contains the features to each candidate cluster 

 
2.2.3. Sub Graph Detection 

Let G is a weighted undirected acyclic graph, denote as G = (V, E). We denote V = {v1, v2, …, vi} is 
a set of vertices and E = {e12, e13,…, eij} is a set of weighted edges in G. First, we define candidate cluster cci 
as vi in V. We link vi and vj with the condition of cluster similarity which defined as simCluster(vi, vj). If the 
simCluster(vi, vj) is equal or greater than similarity threshold denote as sim_th, vi and vj will be linked with eij, 
with weighted by value of simCluster(vi, vj) that is defined as: 
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The goal of this step is to find the coherent groups of clusters that connected by high weighted. We 

observe that the coherent sub graph is connected by the candidate cluster which has related documents. We 
apply the well-known graph algorithm, breadth-first search to detect the sub graphs from the graph G. 
 
2.2.4. Cluster Scoring and Labeling 

We score all cluster (vertices in the graph G) with scoring function scoreCluster(ci) shown in (2). 
Then we sort by high score and select top N clusters as cluster results. 
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When Ei is a set of edge of ci, | |	is number of edges in Ei , w(e) is a weight of edge e, cij is a cluster 

that linked to ci, | | is number of document in cluster c and | | is number of all documents 
To display the cluster label for user’s exploring. We generate the label of each cluster results by 

selection the highest number of document of a cluster in sub graph then use the feature term as a cluster label. 
In case of the same number of document for many clusters in the same sub graph, we choose the concept 
term as a label first. 
 
 
3. RESULTS AND ANALYSIS 

In our experiments, we compare the results of our proposed clustering framework with well-known 
traditional web search results clustering algorithms. First, the suffix tree clustering (STC) by [5]-[6] and 
second, Lingo (singular value decomposition based algorithm). We setup the experiments for analyzing in 
three aspects as following: 

1) The experiment in order to proof that using knowledge from external source, concept term 
which generated in concept extraction step, can improve the quality of clustering. 
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2) Experiment to compare our proposed clustering algorithm with traditional ones. 
3) Experiment to tune up the quality of proposed algorithm by varying the key parameters, the 

similarity threshold (sim_th) in the graph construction step. 
 
3.1. Web Search Result Test Set 

We use the web search result data set called AMBIENT to evaluate the quality of clustering. The 
AMBIENT data set consists of 44 ambiguous queries (topics). For each query used to search into Yahoo 
search engine. The top 100 search results of each query were labeled by subtopics of each query. For 
instance, the query “jaguar” consists of many subtopics such as “Atari jaguar Video Game”, “Mammal”, 
“Jacksonville Jaguar American Football (NFL)” and etc.  This data set contains about 4,400 search results 
and widely used in many researches [1], [8] that related to document or short text clustering. 
 
3.2. Evaluation Method 

 In this paper, we use the Precision, Recall and average F-score, in many research works [3], [7], 
[15-17] called F-measure, to measure the quality of clustering. Precision is fraction of documents in cluster c 
that belong to class t and all documents in cluster c. Recall is fraction of documents in cluster c that belong to 
class t and all document in class t that are defined as:  
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F-score measurement is harmonic mean of precision and recall that defined as:  
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3.3. Experimental Results 

For each our experiment, we denote STC as suffix tree clustering, denote Lingo as Lingo clustering 
and our proposed algorithm, we denote as GC (graph-based clustering). We used the AMBIENT dataset for 
testing the quality of each clustering algorithms and evaluated them with the average F-score measurement. 

The results of evaluation in figure 4 show higher value of F-score for GC algorithm compare with 
STC and Lingo. For running the clustering algorithm without concept extraction, GC is 32.85% improved 
compare with STC and 50.25% improved compare with Lingo. For running with concept extraction, GC is 
27.63% improved compare with STC and 44.62% improved compare with Lingo and GC with concept is 
6.61% improved compare with GC without concept. 

For analyzing the effect of similarity threshold on the GC algorithm, we modified the similarity 
threshold for several values. The result of the similarity threshold modification has shown in Figure 5 and 6 

 
 

 
 

Figure 4. Clustering results comparison for each clustering algorithm  
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Figure 5. Clustering result of varying of Graph-based clustering’s similarity threshold with other algorithms 

 
 

 
 

Figure 6. Clustering result of varying similarity threshold of Graph-based clustering 
 
 

In Figure 7, we show the average number of sub graph that is generated from the sub graph 
detection step in the GC algorithm by changing the similarity threshold value. 
 
 

 
 

Figure 7. Average number of sub graphs by varying the similarity threshold value 
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For the search results exploring, users browse to each cluster results that generated by clustering 
algorithms. In figure 8, we show that the cluster result’s labels generated by STC, Lingo and our proposed 
method GCC which perform the clustering on input document from topic “Jaguar” in the AMBIENT dataset. 

 
 

 
 

Figure 8. Cluster Labels generated by clustering algorithms 
 
 

To improve the quality of cluster, we used phrase or term co-occurrence based with graph clustering 
algorithm by using the original terms from the input document and the extended concept terms which were 
generated from concept extraction step. The concept terms can help to group in the case of some related 
documents that do not share the same words but share the same concept. On the other hand, the concepts 
from the external knowledge source relieve the limitation of short text by increasing the informative data for 
effective clustering process. On the contrary, the concept extraction step consume a lot of processing time 
because its searching step need to access many times to the hard drive (I/O) into the Wikipedia corpus 
indexed files. 

Another key variable that can affect the performance of our clustering algorithm is the similarity 
threshold. This variable used to determine the relation of two candidate cluster on the sub graph detection 
step. When the similarity threshold is changed to higher value, two candidate clusters will be connected if 
and only if they have almost the same document members which affect to the number of sub graph will be 
increased but the performance of clustering will be decreased (see Figure 5 and 6). 

For the clustering result exploration, search results clustering algorithms need to provide the 
readable clustering result for users. Lingo algorithm worked on the description-come-first paradigm. It 
focused on the meaningful cluster label generation first and grouping the input document which similar to the 
label after. Likewise the STC algorithm, the phrase for the clustering result’s label, will be maintained on the 
suffix tree construction step and the number of word in that phrase will be calculated for clustering scoring 
step as well. 

For cluster label generation in our proposed algorithm, the label of each candidate cluster was 
generated in the candidate cluster generation step by using the terms that extract from original document or 
the concepts from concept extraction step. After the sub graph detection step, we select the cluster label by 
using the concept term first.  
 
 
4. CONCLUSION 

In this paper we have shown the achievement of web search result clustering by linking the related 
candidate cluster in graph-based model and reducing the variance of document within one cluster by finding 
the common words (concepts) for join all documents in the same cluster. We tested the document clustering 
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in the case of varying the value of similarity threshold. We found that the value between 0.4 – 0.5 that 
produced the high performance of clustering. 

The main reason for using the Wikipedia as the external knowledge source instance for other 
sources to extract the concept of document. Because, Wikipedia is a largest online encyclopedia that contains 
a lot of articles which cover most of topics in the world including technical terms or name entities and newly 
word these can not found in English lexicon database.  

In the future, we can improve the efficiency of extracting concept from Wikipedia corpus by finding 
the good feature selection techniques or combining the many external knowledge sources as a single corpus 
to extend information for the short document.   
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