
International Journal of Electrical and Computer Engineering (IJECE)
Vol. 5, No. 4, August 2015, pp. 772~781
ISSN: 2088-8708 772

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

A Path-Compression Approach for Improving Shortest-Path
Algorithms

Nabil Arman*, Faisal Khamayseh**
* Department of Computer Science and Engineering, Palestine Polytechnic University, Palestine

** Department of Information Technology, Palestine Polytechnic University, Palestine

Article Info ABSTRACT

Article history:

Received Mar 2, 2015
Revised Apr 23, 2015
Accepted May 18, 2015

 Given a weighted directed graph G=(V;E;w), where w is non-negative
weight function, G’ is a graph obtained from G by an application of path
compression. Path compression reduces the graph G to a critical set of
vertices and edges that affect the generation of shortest trees. The main
contribution of this paper is finding shortest path between two selected
vertices by applying a new algorithm that reduces number of nodes that
needs to be traversed in the graph while preserving all graph properties. The
main method of the algorithm is restructuring the graph in a way that only
critical/relevant nodes are considered while all other neutral vertices and
weights are preserved as sub paths' properties. Our algorithm can compress
the graph paths into considerable improved percentage especially when the
graph is sparse and hence improves performance significantly.

Keyword:

Communication network
Graph Representation
Path Compression
Reverse Representation
Shortest Path Copyright © 2015 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Faisal T. Khamayseh,
Departement of Information Technology,
College of InformationTechnology and Cimputer Engineering
Palestine Polytechnic University,
Hebron, Palestine.
Email: faisal@ppu.edu

1. INTRODUCTION

Efficient approach of the single source shortest path problem on communication or transportation
networks is extremely important requirement for real-world applications.

Since finding shortest paths over network topology is expensive, it is worthy to consider various
techniques and heuristics that can help in improving the existing algorithms. The most well-known algorithm
for finding a single-source shortest path is Dijkstra's algorithm [1]. A large variety approaches have been
proposed attempting to improve the performance of shortest path algorithms using different assumptions and
graph representations [2]-[10]. This paper addresses the value of the graph representation - in the form of
compression graph- to improve the performance of the shortest path algorithm.

Finding the shortest path varies in time complexity upon the constraints is to be applied. Such
examples are finding the single-source shortest path, single-source shortest path with the possibility of
negative weights, k-shortest paths, single-pair using heuristics, all-pairs shortest paths, etc. These
assumptions and constraints may require applying simple minimum spanning tree procedures to effectively
find the shortest path, while other assumptions may require advanced algorithms such as Dijkstra's algorithm.
Some variations and improvements based on tree structures have been presented in the literature. Example of
such variations is the running time based on Fibonacci-heap min-priority queue which is O(|V|log|V|+|E|)
assuming that w(e) is a nonnegative weight [1].

 Recent research attempt to improve shortest path algorithm based on search strategy by introducing
a constraint function with weighted value and ignoring the large number of irrelevant nodes during shortest
path finding [11]. Some researchers have focused more on overcoming the network structure rather than the

 ISSN: 2088-8708

IJECE Vol. 5, No. 4, August 2015 : 772 – 781

773

algorithm itself. References [12]-[14] presented an algorithm to find the shortest path through graph
partitioning. They took an advantage of road network features to improve the search. The main feature is the
possibility of partitioning the graph into a set of components or clusters. They focused on simplifying the
detailed graph by clustering nodes that are near each other. In the final generated graph, the search is
conducted near the start of the destination of the path and among the components on the transit edges.

 The first section of this paper describes an existing technique of graph representation and how
this technique works on path existence in directed weighted graphs [2]. The remaining sections present our
algorithm and its improvements. This work presents a new improved variation of finding single source-
destination shortest path by focusing on compression graph.

 Let G=(V;E;w) be a directed graph, and G'=(V; E';w) the compressed graph which formed from
G, where V is a set of vertices, E is a set of edges , E' a set of edges formed using compression function and
w is the weight function, where w(e) > 0 for each edge e E. Let each edge e has a non-negative weight.
Assume <s> and <t> are given vertices where <s> and <t>V, <s> is the source vertex and <t> is the
destination. The single pair source-destination shortest path is to find the path with the minimum cost sum of
edges from source <s> to destination <t>.

Figure 1. Graph G=(V;E;w)

IJECE ISSN: 2088-8708

A Path-Compression Approach for Improving Shortest-Path Algorithms (Nabil Arman)

774

2. REPRESENTATION AND DATA STRUCTURE
A graph G=(V;E;w) consisting of a set of |V| non-repeatable vertices, requires two matrices with

maximum |V|2 elements to represent the graph in normal and reverse representations [2]. Figure 1 depicts
graph G=(V;E;w) which is represented in the matrix structure and linear array as shown in Table 1 and Table
3 respectively. These representations were used in developing parallel algorithms for the generalized same
generation queries in deductive databases [4].

Table 1. Graph Matrix Representation for Graph G
-- 0 1 2 3 4 5 6 7 8 9 10

0 v1 v2 v4 v10 v12 v18 v51 v52 v54

1 v55 v59 v60

2 v5 v6 v11 0,4

3 v20 v19 v27 v35 v58 1,9

4 v34 3,9

5 v53 3,8

6 v22 v21 v26 v28 v31 v33

7 v29 v30 v32 6,9

8 3,7

9 v7 v8 v9 v23

10 v24 v25

11 v3 0,2

12 v37 v38 v14 v13 v17 v50 v49 v56 v57 1,8

13 v36 v39 v43 v15 12,5

14 v40 v41 v45 v46 v48

15 v16 v47 12,7

16 14,5

17 v42 v44 13,3

18 15,4

The reverse matrix representation of the graph G is depicted in Table 2. This structure helps in
finding all possible ancestor vertices starting from a destination node <ti>. For example, vertex <v60> is
reachable from node <v1> via <v2, v4, v5, v6, v11, v20, v19, v53, v35, v34, v58>.

For efficient implementation and to save storage, the matrix can also be represented as a linear array
with |E| entries.

The advantage of representing the graph in graph matrix is storing all paths from every possible
vertex to all reachable vertices in the graph. This way of representation provides a set of benefits. It takes a
linear time to check the path existence. It also helps in finding simple sub baths of vertices of in-degree and
out-degree of 1. This representation also shows all graph roots and paths' ends in reference to a given source
vertex is. Zero in-degree vertices are shown in the first column (the sources column). Paths are represented in
as a depth first search traversal order while common parts of the paths are stored only once using array
indexing to avoid duplications of subpaths. For example, if paths p1 is represented as vertices
<v1,v2,vi,…,vn-1,vn> and p2 is <v1,v2,..,vi,..,vm>, P1 and P2 are present in the graph, then p2 is stored in
the next row of p1 starting from the column (i+1) representing the rest of the p2 as <vi+1, vi+2, …> with
empty i+1 entries.

 ISSN: 2088-8708

IJECE Vol. 5, No. 4, August 2015 : 772 – 781

775

Table 2. Reverse Matrix Representation for Graph
-- 0 1 2 3 4 5 6 7 8 9 10 11

0 v23 v9 v8 v7 v2 v1

1 v25 v24 0,1

2 v33 v31 v28 v26 v21 v22 v6 v5
0,4

3 v32 v30 v29 2,3

4 v48 v16 v44 v42 v40 v36

5 v45 v41 4,4

6 v46 5,2

7 v54 v52 v51 v18 v12 v10 v4 0,4

8 v3 0,5

9 v11 2,6

10 v60 v58 v34 v35 v53 v19 v20
9,5

11 v27 10,5

12 2,4

13 10,3

14 v59 v55 7,2

15 v57 v56 v49 v50 v17 v13 v14 v38 v37 0,5

16 v15 v43 v39 4,5

17 4,2

18 v47 4,1

Table 3. Linear array representation for graph
Node Reference Node Reference Node Reference

0,0 v1 5,8 3,8 12,6 v50

0,1 v2 6.4 v22 12,7 v49

0,2 v4 6.5 v21 12,8 v56

0,3 v10 6.6 v26 12,9 v57

0,4 v12 6.7 v28 12,10 1,8

0,5 v18 6.8 v31 13,0 v36

:
:

:
:

:
:

:
:

:
:

:
:

4,8 v34 12,3 v14 18,4 15,4

4,9 3,9 12,4 v13

5,7 v53 12,5 v17

IJECE ISSN: 2088-8708

A Path-Compression Approach for Improving Shortest-Path Algorithms (Nabil Arman)

776

Table 4. Compressed-weighted graph representation
-- 0 1 2 3 4 5 6 7 8 9 10

0 v1 - v2 5 v4 v10 v12 v18 v51 v52 v54

 v1

1 v55 v59 v60

2 v5 v6 15 v11 16 0,4

 v2 v5 v6

3 v20 20 v19 22 v27 26 v35 28 v58 33 1,9 37

 v11 v20 v19 v27 v35 v58

4 v34 3,9

5 v53 3,8

6 v22 v21 v26 v28 v31 v33

7 v29 v30 v32 6,9

8 3,7

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

18 15,4

3. PATH COMPRESSION
Figure 2 shows the compressed graph G’=(V,E,w') after doing some processing/compression on

graph G=(V,E,w) to reduce the number of nodes and edges needed to be considered in computing paths as
shown table 4. For example, the shortest path from vertex <v1> to vertex <v60> on Graph G in Figure 1 is 37
and the path is <v1, v2, v5, v6, v11, v20, v19, v27, v35, v58, v60>. And also the shortest path from vertex
<v1> to vertex <v60> on G' is 37 but the path is compressed as <v1, v2, v6, v11, v19, v35, v60>.

4. SHORTEST PATH USING COMPRESSION
This optimized technique may exclude huge parts of the graph and hence saves the cost and

improves performance of the graphs. The technique is summarized as:
1) Construct the matrix to represent the graph with inner structure that includes the Vertex, Dist, Pred

Node, DirectPath that have a 0/1 flag, GoalNode, and accumulated weights from Direct Path. Dist[v]
maintains the minimum distance to <v> via Pred Node.

2) Traverse the graph G to store direct paths for nodes where outDegree[Node] equal 1 and inDegree[Node]
equal 1 as:

 Store the Node parent, where outDegree[parent] equal 1.
 Find the GoalNode, the first node we reached it that has outDegree[Node] not equal 1 in the same

path.
 Store Direct Path between the parent and the GoalNode, and the accumulated weight.

3) Construct the Reverse Matrix to represent the graph rooted with destinations.

 ISSN: 2088-8708

IJECE Vol. 5, No. 4, August 2015 : 772 – 781

777

Figure 2. Compressed graph

4) Traverse the graph G starting by the given destination to mark all candidate nodes in the main matrix
representation. This is possible using Reverse Matrix marking all candidate nodes as discussed in the
algorithm. This is also possible in different ways as preferred by the programmer, e.g., copying the
candidate nodes to a different reduced matrix, having a mark flag in the node structure, or by changing
the weights of the excluded nodes to infinity in the main graph matrix. The preferred way is to have a 0/1
flag in a corresponding coordinate linear array representation.

5) After marking the candidate subgraph in the main matrix, and starting from the given source s, the
algorithm check if there exist a DirectPath.

If there exists a Direct Path, we directly take the direct paths; else we add all neighbor edges by
visiting all nodes listed in the next column (breadth fashion) of the current node (vertex). In this case, we
always accumulate the subpath weight by adding the current vertex weight to accumulated path weight (dist).

Whenever we read the coordinates (i,j) of any vertex, it means that we revisit the node using another
edge e with new weight w(e). In this case we directly jump to coordinates' pointer (i,j) in the main graph
matrix as represented in Table 1 and compare the new weights and hence we keep the minimum path distance
with updated predecessor nodes.

The algorithm Shortest Path Using Path Compression finds the shortest path based on reducing the
number of edges and nodes that make the search take less time than searching in the entire graph. This
efficient procedure saves much work comparing to the functionality of known conventional algorithms.

IJECE ISSN: 2088-8708

A Path-Compression Approach for Improving Shortest-Path Algorithms (Nabil Arman)

778

Algorithm Shortest_Path_Using_Candidates (Graph, Mark, Reverse_Matrix)
{initialize Mark[i] to 0
Node=t
Mark[Node]=1
for every vertex next to Node in Reverse_Matrix
 if vertex != coordinates_pointer
 Node=vertex
 else
 Node=ReverseMatrix[coordinates_pointer]
 Mark[Node]=1
 end if
end for
dist= FindShortest(GraphMatrix, Mark, s)
}

Function FindShortest (GraphMatrix,Mark,s)
 {
for each vertex v in GraphMatrix

dist[v]=infinity;
pred[v]=undefined;

end for
dist[s] := 0 ;
MarkQ=set of Marked nodes in GraphMatrix ordered as of depth first search visits.
while MarkQ is not empty and u != t:

u= vertex in MarkQ with smallest distance in dist[];
 remove u from MarkQ;
 if (u == t ||dist[u] == infinity)
 break ;
 end if
 find coordinates for v
 if (there is a direct path for node)
 for each goalNode in GraphMatrix and
 goalNode is in MarkQ
 p=dist[u] + dist_between (u ,goalNode);
 if(p <dist[goal Node])
 dist[goalNode]=p ;
 pred[goalNode]=u ;
 end if
 end for
 end if
 for each neighbor v of u and v is in MarkQ
 if v is coordinate pointer <a,b>
 v=GraphMatrix[a,b]
 end if
 p=dist[u] + dist_between(u, v) ;
 ifp<dist[v]:
 dist[v]=p ;
 pred[v]=u ;
 update v in MarkQ;
 end if
 end for
end while
return dist;

}

5. PERFORMANCE IMPROVEMENT
An algorithm that finds the shortest path P(s,t) between two given vertices <s> and <t> in a directed

weighted graph G(V,E,w) is presented. It clearly determines the compressed graph G'(V',E',w). This obvious

 ISSN: 2088-8708

IJECE Vol. 5, No. 4, August 2015 : 772 – 781

779

improvement reduces the number of edges |E| and vertices |V| in the graph which lowers the cost. Equation1
DC(E) calculates the degree of compression in terms of vertices and edges.

DCሺEሻ ൌ 	 ሺ#୭	ୢୣୱ	୧୬	େ୭୫୮୰ୣୱୱୣୢ	ୋ୰ୟ୮୦ሻ
ሺ୭୲ୟ୪	#	୭	ୢୣୱሻ

∗ 100%

DCሺEሻ ൌ 	 ห
ᇲห

||
∗ 100% (1)

 Having Graph G dipected in Figure 1 which has a direct path P from v37 to v17 where p={v37,

v38, v14, v13, v17} and P has 4 edges, as improvement on this path, we have a direct edge from v37 to v17.
This means that we reduced the number of edges from 4 edges to one edge. If the degree of compression is
used, we get 75% time saving. If we look at the entire graph G, it has a total number of edges equals to 71
edges. After compressing it to graph G’ as illustrated in Figure 2, the new number of edges is 46. Applying
the compression equation, the graph size, the saving ratio is 36%. This tangible saving is demanding in real-
world applications and networks.

Each shortest path requires O((|V|+|E|)log |V|) using traditional algorithms making the cost
extremely high. The proposed algorithm introduces more improvements comparing with some late studies
such as the improvements introduced in [5]-[7]. Moreover, our algorithm works in better and improved
performance on sparse and dense networks.

The experimental phase provides evidence that the proposed heuristic outperforms the conventional
algorithms. The performance of the algorithm is compared with that of the conventional procedure and shows
a considerable cost saving in random generated graphs with different sizes range from 30 to 300 nodes.
Savings in performance occur in dense graphs and more in sparse ones in most of the trials. Table 5 shows
the performance saving ratios as a result of the experiment.

Table 5. Saving ratio of performance in sparse and dense graphs
Nodes Sparse (%) Dense (%)

30 0.1366846 0.4460346

60 0.4913375 0.5619978

90 0.4481861 0.4249575

120 0.6437499 0.2406172

150 0.3121945 0.1788921

180 0.369958 0.1761222

210 0.2612862 0.1249683

240 0.1970283 0.2412186

270 0.2618782 0.2114776

300 0.2410497 0.3028802

Figures 3 and 4 show the average performance of applying the improved algorithm on set of

randomly generated graphs with different density degrees. This shows that the proposed algorithm
outperforms the standard depth-first search procedures on the original graph. Specifically, the conventional
algorithm applied is Dijkstra’s.

IJECE ISSN: 2088-8708

A Path-Compression Approach for Improving Shortest-Path Algorithms (Nabil Arman)

780

Figure 3. Performance of proposed algorithm on sparse graph

Figure 4. Performance of proposed algorithm on dense graph

6. CONCLUSION

For a given weighted graph G(V,E,w), with weights as a function of |w(e)|, an efficient and
improved algorithm for finding shortest paths between a given source <s> and destination <t> using
generated-compressed graph G' have been presented. In the practical phase, the algorithm outperforms the
performance of improved algorithm. It shows obvious improved performance in set of random general
applied graphs. As a heuristic algorithm, the complexity will always be bounded by the complexity of known
algorithms, ie., it will not exceed O((|V|+|E|)log |V|).

ACKNOWLEDGEMENTS

This research is funded by The Scientific Research Council, Ministry of Education and Higher
Education, State of Palestine under a project number of 01/12/2013, and Palestine Polytechnic University.
The authors would like to thank the research assistants Ms. Walaa Naser Idin and Ms. Salma Dirbashi for
their help in implementing the algorithms.

0

5

10

15

20

0 30 60 90 120 150 180 210 240 270 300

Ti
m
e

Nodes

Shortest Path [Sparse Graph]

Dijkstra's Algorithm

Compression
Algorithm

0

2

4

6

8

10

12

14

30 60 90 120 150 180 210 240 270 300

Ti
m
e

Nodes

Shortest Path [Dense Graph]

Dijkstra's Algorithm

Compression Algorithm

 ISSN: 2088-8708

IJECE Vol. 5, No. 4, August 2015 : 772 – 781

781

REFERENCES
[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, “Dijkstra's Algorithm. Introduction to Algorithms”,

(Second ed.). Section 24.3: pp. 595–601. MIT Press and McGraw-Hill. ISBN 0-262-03293-7.
[2] F. Khamayseh and N. Arman, “An Efficient Multiple Source Single Destination (MSSD) Heuristic Algorithm

Using Nodes Exclusions”, International Journal of Soft Computing, Vol. 10, 2015.
[3] H.N. Djidjev, G.E. Pantziou, and C.D. Zaroliagis, “Improved Algorithms for Dynamic Shortest Paths”,

Algorithmica (2000) 28: 367–389.
[4] N. Arman, “Parallel Algorithms for the Generalized Same Generation Query in Deductive Databases”, Journal of

Digital Information Management: 4(3), 192- 196, 2006, ISSN 0972-72.
[5] J.B. Orlin, K. Kamesh Madduri, K. Subramani, and M. Williamson, “A faster algorithm for the single source

shortest path problem with few distinct positive lengths”. J. of Discrete Algorithms, 8, 2 (June 2010), 189-198
[6] L. Xiao, L. Chen, and J. Xiao, “A new algorithm for shortest path problem in large-scale graph”. Appl. Math, 6(3),

(2012), 657-663.
[7] F. Zhang, A. Qiu, and Q. Li, “Improve on Dijkstra Shortest Path Algorithm for Huge Data”. Chinese academy of

surveying and mapping: China, 2005.
[8] F. Khamayseh and N. Arman, “An Efficient Heuristic Shortest Path Algorithm Using Candidate Subgraphs”.

International Conference on Intelligent Systems and Applications. Hammamet, Tunisia. 22-24 March, 2014.
[9] F. Khamayseh and N. Arman. “Improvement of Shortest-Path Algorithms Using Subgraphs' Heuristics”, Journal of

Theoretical and Applied Information Technology, 2015. Vol. 76.
[10] E.W. Dijkstra, “A note on Two Problems in Connexion with Graphs”, Numerische Mathematik, 1: 269

271. doi:10.1007/BF01386390.
[11] Y. Huang, Q. Yi, and M. Shi, “An Improved Dijkstra Shortest Path Algorithm”. Proceedings of the 2nd

International Conference on Computer Science and Electronics Engineering (ICCSEE 2013). Hangzhou, China,
Paris: Atlantis Press, March 2013: 226-229.

[12] F. Simek and I. Simecek, “Improvement of Shortest Path Algorithms through Graph Partitioning”. International
Conference Presentation of Mathematics. Liberec, Czech Republic, 2011.

[13] W. Yahya1, A. Basuki2, J. Jiang. “The Extended Dijkstra’s-based Load Balancing for Open Flow Network”,
International Journal of Electrical and Computer Engineering (IJECE), Vol. 5, No. 2, April 2015, pp. 289~296.

[14] J. Zhang, J. Li, X. Fan, Z. Deng, “Research on Real-Time Optimal Path Algorithm of Urban Transport”,
TELKOMNIKA Indonesian Journal of Electrical Engineering, Vol.12, No.5, May 2014, pp. 3515 ~ 3520.

BIOGRAPHIES OF AUTHORS

Dr. Nabil Arman is a Computer Science professor at Palestine Polytechnic University. He
received his BS in Computer Science with high honors from Yarmouk University, Jordan in
1990 and an MS in Computer Science from The American University of Washington, DC USA
in 1997, and his PhD from the School of Information Technology and Engineering, George
Mason University, Virginia, USA in 2000. At Palestine Polytechnic University, he worked as the
MS Informatics Program Coordinator and the head of the Department of Mathematics and
Computer Science. Currently, he is the Dean of the College of Information Technology and
Computer Engineering. Dr. Arman is interested in Database and Knowledge-Base Systems,
Algorithms, and Automated Software Engineering. He has published more than thirty refereed
conference and journal papers.

Dr. Faisal Khamayseh is a Computer Science assistant professor. He received his BS in
Computer Information – Advanced Computer Careers, from Southern Illinois University, USA
1992, and MS in Computer Science from same university in 1995, and his PhD in Computers
and Information Systems from the College of Computers and Information, Helwan University,
Egypt, in 2009.Currently working at Palestine Polytechnic University as instructor and head of
Dept. of Information Technology and as instructor of MS in Informatics. Dr. Khamayseh is a
researcher in software engineering research unit at college of Information Technology and
Computer Engineering. He is interested in Computer Algorithms, Software Engineering and E-
learning.

