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 Given a weighted directed graph G=(V;E;w), where w is non-negative 
weight function, G’ is a graph obtained from G by an application of path 
compression. Path compression reduces the graph G to a critical set of 
vertices and edges that affect the generation of shortest trees. The main 
contribution of this paper is finding shortest path between two selected 
vertices by applying a new algorithm that reduces number of nodes that 
needs to be traversed in the graph while preserving all graph properties.  The 
main method of the algorithm is restructuring the graph in a way that only 
critical/relevant nodes are considered while all other neutral vertices and 
weights are preserved as sub paths' properties.  Our algorithm can compress 
the graph paths into considerable improved percentage especially when the 
graph is sparse and hence improves performance significantly. 
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1. INTRODUCTION  

Efficient approach of the single source shortest path problem on communication or transportation 
networks is extremely important requirement for real-world applications. 

Since finding shortest paths over network topology is expensive, it is worthy to consider various 
techniques and heuristics that can help in improving the existing algorithms. The most well-known algorithm 
for finding a single-source shortest path is Dijkstra's algorithm [1]. A large variety approaches have been 
proposed attempting to improve the performance of shortest path algorithms using different assumptions and 
graph representations [2]-[10]. This paper addresses the value of the graph representation - in the form of 
compression graph- to improve the performance of the shortest path algorithm. 

Finding the shortest path varies in time complexity upon the constraints is to be applied.  Such 
examples are finding the single-source shortest path, single-source shortest path with the possibility of 
negative weights, k-shortest paths, single-pair using heuristics, all-pairs shortest paths, etc. These 
assumptions and constraints may require applying simple minimum spanning tree procedures to effectively 
find the shortest path, while other assumptions may require advanced algorithms such as Dijkstra's algorithm. 
Some variations and improvements based on tree structures have been presented in the literature.  Example of 
such variations is the running time based on Fibonacci-heap min-priority queue which is O(|V|log|V|+|E|) 
assuming that w(e) is a nonnegative weight [1]. 

  Recent research attempt to improve shortest path algorithm based on search strategy by introducing 
a constraint function with weighted value and ignoring the large number of irrelevant nodes during shortest 
path finding [11]. Some researchers have focused more on overcoming the network structure rather than the 
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algorithm itself. References [12]-[14] presented an algorithm to find the shortest path through graph 
partitioning. They took an advantage of road network features to improve the search. The main feature is the 
possibility of partitioning the graph into a set of components or clusters. They focused on simplifying the 
detailed graph by clustering nodes that are near each other. In the final generated graph, the search is 
conducted near the start of the destination of the path and among the components on the transit edges. 

    The first section of this paper describes an existing technique of graph representation and how 
this technique works on path existence in directed weighted graphs [2]. The remaining sections present our 
algorithm and its improvements. This work presents a new improved variation of finding single source-
destination shortest path by focusing on compression graph. 

     Let G=(V;E;w) be a directed graph, and G'=(V; E';w)  the compressed graph which formed from 
G, where V is a set of vertices, E is a set of edges , E' a set of edges formed using compression function and 
w is the weight function, where w(e) > 0 for each edge e  E. Let each edge e has a non-negative weight. 
Assume <s> and <t> are given vertices where <s> and <t>V, <s> is the source vertex and <t> is the 
destination.  The single pair source-destination shortest path is to find the path with the minimum cost sum of 
edges from source <s> to destination <t>. 

 
 

 
 

Figure 1. Graph G=(V;E;w) 
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2. REPRESENTATION AND DATA STRUCTURE 
A graph G=(V;E;w) consisting of a set of |V| non-repeatable vertices, requires two matrices with 

maximum |V|2 elements to represent the graph in normal and reverse representations [2]. Figure 1 depicts 
graph G=(V;E;w) which is represented in the matrix structure and linear array as shown in Table 1 and Table 
3 respectively. These representations were used in developing parallel algorithms for the generalized same 
generation queries in deductive databases [4].   

 
 

Table 1. Graph Matrix Representation for Graph G 
-- 0 1 2 3 4 5 6 7 8 9 10 

0 v1 v2 v4 v10 v12 v18 v51 v52 v54   

1        v55 v59 v60  

2   v5 v6 v11 0,4      

3      v20 v19 v27 v35 v58 1,9 

4         v34 3,9  

5        v53 3,8   

6     v22 v21 v26 v28 v31 v33  

7        v29 v30 v32 6,9 

8       3,7     

9   v7 v8 v9 v23      

10      v24 v25     

11  v3 0,2         

12  v37 v38 v14 v13 v17 v50 v49 v56 v57 1,8 

13 v36 v39 v43 v15 12,5       

14  v40 v41 v45 v46 v48      

15     v16 v47 12,7     

16      14,5      

17   v42 v44 13,3       

18     15,4       

 
 

The reverse matrix representation of the graph G is depicted in Table 2. This structure helps in 
finding all possible ancestor vertices starting from a destination node <ti>. For example, vertex <v60> is 
reachable from node <v1> via <v2, v4, v5, v6, v11, v20, v19, v53, v35, v34, v58>. 

For efficient implementation and to save storage, the matrix can also be represented as a linear array 
with |E| entries. 

The advantage of representing the graph in graph matrix is storing all paths from every possible 
vertex to all reachable vertices in the graph. This way of representation provides a set of benefits. It takes a 
linear time to check the path existence. It also helps in finding simple sub baths of vertices of in-degree and 
out-degree of 1.  This representation also shows all graph roots and paths' ends in reference to a given source 
vertex is. Zero in-degree vertices are shown in the first column (the sources column). Paths are represented in 
as a depth first search traversal order while common parts of the paths are stored only once using array 
indexing to avoid duplications of subpaths. For example, if paths p1 is represented as vertices 
<v1,v2,vi,…,vn-1,vn> and p2  is <v1,v2,..,vi,..,vm>, P1 and P2 are present in the graph, then p2 is stored in 
the next row of p1 starting from the column (i+1) representing the rest of the p2 as <vi+1, vi+2, …> with 
empty i+1 entries. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



                ISSN: 2088-8708 

IJECE Vol. 5, No. 4, August 2015 :  772 – 781 

775 

Table 2. Reverse Matrix Representation for Graph 
-- 0 1 2 3 4 5 6 7 8 9 10 11 

0 v23 v9 v8 v7 v2   v1       

1 v25 v24 0,1          

2 v33 v31 v28 v26 v21 v22 v6 v5  
0,4 

   

3  v32 v30 v29 2,3        

4 v48 v16 v44 v42 v40 v36       

5   v45 v41 4,4        

6  v46 5,2          

7 v54 v52 v51 v18 v12 v10 v4 0,4     

8       v3 0,5     

9      v11 2,6      

10 v60  v58   v34 v35 v53 v19 v20      
9,5 

    

11     v27 10,5       

12      2,4       

13   10,3          

14  v59 v55 7,2         

15   v57 v56 v49 v50 v17 v13 v14 v38 v37 0,5 

16        v15 v43 v39 4,5  

17         4,2    

18      v47 4,1      

 
 

Table 3. Linear array representation for graph 
Node Reference  Node Reference  Node Reference  

0,0 v1  5,8 3,8  12,6 v50  

0,1 v2  6.4 v22  12,7 v49  

0,2 v4  6.5 v21  12,8 v56  

0,3 v10  6.6 v26  12,9 v57  

0,4 v12  6.7 v28  12,10 1,8  

0,5 v18  6.8 v31  13,0 v36  

: 
: 

: 
: 

 
: 
: 

: 
: 

 
: 
: 

: 
: 

 

4,8 v34  12,3 v14  18,4 15,4  

4,9 3,9  12,4 v13     

5,7 v53  12,5 v17     
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Table 4. Compressed-weighted graph representation 
-- 0 1 2 3 4 5 6 7 8 9 10 

0 v1 - v2 5 v4  v10  v12  v18  v51  v52  v54      

 v1          

1               v55  v59  v60    

           

2     v5  v6 15 v11 16 0,4            

  v2 v5 v6       

3          v20 20 v19 22 v27 26 v35 28 v58 33 1,9 37 

     v11 v20 v19 v27 v35 v58 

4                v34  3,9    

           

5               v53  3,8      

           

6        v22  v21  v26  v28  v31  v33    

           

7               v29  v30  v32  6,9  

           

8             3,7          

           

: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

18         15,4              

           

 
 

3. PATH COMPRESSION 
Figure 2 shows the compressed graph G’=(V,E,w') after doing some processing/compression on 

graph G=(V,E,w)  to reduce the number of nodes and edges needed to be considered in computing paths as 
shown table 4. For example, the shortest path from vertex <v1> to vertex <v60> on Graph G in Figure 1 is 37 
and the path is <v1, v2, v5, v6, v11, v20, v19, v27, v35, v58, v60>. And also the shortest path from vertex 
<v1> to vertex <v60> on G' is 37 but the path is compressed as <v1, v2, v6, v11, v19, v35, v60>. 

 
 

4. SHORTEST PATH USING COMPRESSION 
This optimized technique may exclude huge parts of the graph and hence saves the cost and 

improves performance of the graphs. The technique is summarized as: 
1) Construct the matrix to represent the graph with inner structure that includes the Vertex, Dist, Pred 

Node, DirectPath that have a 0/1 flag, GoalNode, and accumulated weights from Direct Path. Dist[v] 
maintains the minimum distance to <v> via Pred Node.  

2) Traverse the graph G to store direct paths for nodes where outDegree[Node] equal 1 and inDegree[Node] 
equal 1 as: 

 Store the Node parent, where outDegree[parent] equal 1. 
 Find the GoalNode, the first node we reached it that has outDegree[Node] not equal 1 in the same 

path. 
 Store Direct Path between the parent and the GoalNode, and the accumulated weight.  

3) Construct the Reverse Matrix to represent the graph rooted with destinations.  
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Figure 2. Compressed graph 
 
 

4) Traverse the graph G starting by the given destination to mark all candidate nodes in the main matrix 
representation. This is possible using Reverse Matrix marking all candidate nodes as discussed in the 
algorithm. This is also possible in different ways as preferred by the programmer, e.g., copying the 
candidate nodes to a different reduced matrix, having a mark flag in the node structure, or by changing 
the weights of the excluded nodes to infinity in the main graph matrix. The preferred way is to have a 0/1 
flag in a corresponding coordinate linear array representation. 

5) After marking the candidate subgraph in the main matrix, and starting from the given source s, the 
algorithm check if there exist a DirectPath. 

If there exists a Direct Path, we directly take the direct paths; else we add all neighbor edges by 
visiting all nodes listed in the next column (breadth fashion) of the current node (vertex). In this case, we 
always accumulate the subpath weight by adding the current vertex weight to accumulated path weight (dist). 

Whenever we read the coordinates (i,j) of any vertex, it means that we revisit the node using another 
edge e with new weight w(e). In this case we directly jump to coordinates' pointer (i,j) in the main graph 
matrix as represented in Table 1 and compare the new weights and hence we keep the minimum path distance 
with updated predecessor nodes. 

The algorithm Shortest Path Using Path Compression finds the shortest path based on reducing the 
number of edges and nodes that make the search take less time than searching in the entire graph. This 
efficient procedure saves much work comparing to the functionality of known conventional algorithms. 
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Algorithm Shortest_Path_Using_Candidates (Graph, Mark, Reverse_Matrix) 
{initialize Mark[i] to 0 
Node=t 
Mark[Node]=1 
for every vertex next to Node in Reverse_Matrix 
   if vertex != coordinates_pointer 
  Node=vertex 
 else 
         Node=ReverseMatrix[coordinates_pointer] 
 Mark[Node]=1 
   end if 
end for 
dist= FindShortest(GraphMatrix, Mark, s) 
} 

 
Function FindShortest (GraphMatrix,Mark,s)             
 { 
for each vertex v in GraphMatrix 

dist[v]=infinity;    
pred[v]=undefined; 

end for  
dist[s] := 0 ;  
MarkQ=set of Marked nodes in GraphMatrix ordered as of depth first search visits. 
while MarkQ is not empty and u != t:                 

u= vertex in MarkQ with smallest distance in dist[ ]; 
 remove u from MarkQ; 
 if (u == t ||dist[u] == infinity)   
  break ; 
 end if       
   find coordinates  for v  
   if ( there is a direct path for node ) 
      for each goalNode in GraphMatrix  and    
         goalNode  is in MarkQ 
  p=dist[u] + dist_between (u ,goalNode); 
        if( p <dist[ goal Node]  )      
  dist[goalNode]=p ; 
  pred[goalNode]=u ; 
         end if 
      end for 
   end if 
    for each neighbor v of u and v is in MarkQ  
       if v is coordinate pointer <a,b> 
    v=GraphMatrix[a,b]  
       end if 
     p=dist[u] + dist_between(u, v) ; 
    ifp<dist[v]:         
 dist[v]=p ; 
 pred[v]=u ; 
 update  v in MarkQ;     
     end if 
   end for 
end while 
return dist; 

} 
 
 

5. PERFORMANCE IMPROVEMENT 
An algorithm that finds the shortest path P(s,t) between two given vertices <s> and <t> in a directed 

weighted graph G(V,E,w) is presented. It clearly determines the compressed graph G'(V',E',w). This obvious 
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improvement reduces the number of edges |E| and vertices |V| in the graph which lowers the cost. Equation1 
DC(E)  calculates the degree of compression in terms of vertices and edges. 

 

DCሺEሻ ൌ 	 ሺ#୭	ୢୣୱ	୧୬	େ୭୫୮୰ୣୱୱୣୢ	ୋ୰ୟ୮୦ሻ
ሺ୭୲ୟ୪	#	୭	ୢୣୱሻ

∗ 100% 

 

DCሺEሻ ൌ 	 ห
ᇲห

||
∗ 100% (1) 

 
   Having Graph G dipected in Figure 1 which has a direct path P from v37 to v17 where p={v37, 

v38, v14, v13, v17} and P has 4 edges, as improvement on this path, we have a direct edge from v37 to v17. 
This means that we reduced the number of edges from 4 edges to one edge. If the degree of compression is 
used, we get 75% time saving. If we look at the entire graph G, it has a total number of edges equals to 71 
edges. After compressing it to graph G’ as illustrated in Figure 2, the new  number of edges is 46. Applying 
the compression equation, the graph size, the saving ratio is 36%. This tangible saving is demanding in real-
world applications and networks.  

Each shortest path requires O((|V|+|E|)log |V|) using traditional algorithms making the cost 
extremely high. The proposed algorithm introduces more improvements comparing with some late studies 
such as the improvements introduced in [5]-[7].  Moreover, our algorithm works in better and improved 
performance on sparse and dense networks. 

The experimental phase provides evidence that the proposed heuristic outperforms the conventional 
algorithms. The performance of the algorithm is compared with that of the conventional procedure and shows 
a considerable cost saving in random generated graphs with different sizes range from 30 to 300 nodes. 
Savings in performance occur in dense graphs and more in sparse ones in most of the trials.  Table 5 shows 
the performance saving ratios as a result of the experiment. 

 
 

Table 5. Saving ratio of performance in sparse and dense graphs 
Nodes Sparse (%) Dense (%) 

30 0.1366846 0.4460346 

60 0.4913375 0.5619978 

90 0.4481861 0.4249575 

120 0.6437499 0.2406172 

150 0.3121945 0.1788921 

180 0.369958 0.1761222 

210 0.2612862 0.1249683 

240 0.1970283 0.2412186 

270 0.2618782 0.2114776 

300 0.2410497 0.3028802 

 
 
Figures 3 and 4 show the average performance of applying the improved algorithm on set of 

randomly generated graphs with different density degrees. This shows that the proposed algorithm 
outperforms the standard depth-first search procedures on the original graph. Specifically, the conventional 
algorithm applied is Dijkstra’s. 
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Figure 3. Performance of proposed algorithm on sparse graph 
 
 

 
 

Figure 4. Performance of proposed algorithm on dense graph 
      
 
6. CONCLUSION 

For a given weighted graph G(V,E,w),  with weights as a function of |w(e)|, an efficient and 
improved algorithm for finding shortest paths between a given source <s> and destination <t> using 
generated-compressed graph G' have been presented. In the practical phase, the algorithm outperforms the 
performance of improved algorithm. It shows obvious improved performance in set of random general 
applied graphs. As a heuristic algorithm, the complexity will always be bounded by the complexity of known 
algorithms, ie., it will not exceed O((|V|+|E|)log |V|).  
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