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1. INTRODUCTION

Intelligent personal identification based on biomost measurement has become very popular in
recent years for security purpose. Facial featuhesmal emission, iris, gait, voiceprint, gestyralm-prints,
fingerprints, hand-written signature, hand geometiy are some of the means for personal identifica
Iris recognition is one of such biometric methodakhs advantageous from variability, stability iqueness
and security point of view for the reasons givetobe Iris is the only internal human body organttiga
visible from the outside, thus well protected fremternal modifiers. The possibility of finding ansiequal
to another one is considered to be null. Even wWeitises of the same individual do not match. Trise
pattern does not change throughout the user’s wiifelelt is impossible to modify surgically withbany
risk for the vision. The physical response to lightvides a suitable way to test the alivenesshefuser
(avoiding the use of synthetic eyes). Yet, the huinia is relatively simple to image and is doneaimon-
intrusive way.

Number of iris recognition algorithms is proposadhe literature such as Independent Component
Analysis (ICA), Singular Value Decomposition (SV@Qharacterizing key local variation etc. [1] to rext
iris features and to propose competitive learningcmanism to recognize iris pattern. Singular value
decomposition is simple and provides highly stabkults even under changing lightning conditioBsie to
large degree of parallelism associated with iisita proper candidate for hardware and hence f@A-P
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implementation. The analytical details of SVD alemigh the details of the architecture designed and
developed are presented in this paper.

2. IRISRECOGNITION
Figure.l shows the four main steps in iris recagnisystem, which consists of Image Acquisition,
Image Segmentation, Feature Extraction and Claasifin.

2.1 Image Acquisition

The very first step of Iris Recognition is imagegaisition. High resolution camera under certain
lightning conditions is used for grabbing the imagstill or video black and white images are gelhetsed
to avoid problems regarding dilatation of the pufiilis necessary to obtain several captures ofirieeto
assure aliveness and quality of the capture.

2.2 Image Segmentation

Main objective of segmentation is to remove redmdmformation, namely the pupil segment and
the part outside the iris (sclera, eyelids, skif)is is done by cropping the unnecessary informatifier
detecting the Pupillary Boundary and the outeredge.
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Figure 1. Iris Recognition System

2.3 Feature Extraction

Feature extraction step is used to create a biamrieimplate. The biometric template provides a
normalized, efficient and highly discriminating repentation of the feature, which can then be ¢ibjly
compared with other templates in order to deterrttieeidentity. This step forms the heart of thegper and
is explained in detail in the next section.

2.4 IrisPattern Matching

Iris matching step is used to match known templatigls unknown templates using mathematical
distances. If the distance between two patterrssis than some threshold value, then it indicatgsad
matching between the corresponding patterns. Tdpgipconcentrates only on the last two stagedearture
extraction and iris pattern matching stages.

3. FEATURE EXTRACTION BY SINGULAR VALUE DECOMPOSITION

A process of feature extraction is followed aftee process of image segmentation. Due to large
redundancy in the segmented image, the cost asstaidth extracting valuable features from segmente
image is quite exorbitant in terms of heavy compaiteal burden, computational time and memory sterag
The singular value decomposition algorithm redugas complexity of iris recognition from O(n3) to(Q)
by using Jacobi transformation. We have used riiéthod for Eigen value computation. Jacobi method
offers large degree of parallelism in computati@siles providing accurate results even with fixethtp
arithmetic. This fact leads to fairly simple implentation of SVD algorithm in FPGA.

3.1 Singular Value Decomposition

Singular Value Decomposition is a powerful tool fdecomposing the iris basis matrix. SVD
exposes the hidden geometry of the matrix. Inghiger SVD is used as a dimensionality reductioh e
basic operation of SVD relies on the factorizatidran mxn matrix iy > n) into three other matrices in the
following form:

Amxn =uU mxm [Smxn wrl:n 1)
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where the superscripf™ denotes the transpos#. is an mxm orthogonal left unitary matrixy is annxn
orthogonal right unitary matrix andi$ anmxndiagonal matrix witt5;= Oif i # j and Sii £ 0. For a given
matrix A, matrixSis unique. The two important aspects to be nberéd are:

1. Matrix element of Sis zero everywhere except in the main diagonals Témds to reduction in the
dimension of the input pattern from a matmixnto only a vector oh elements.

2. Only the firstk elements out oh elements, when arranged in descending order, icostdstantial
information, and the vector tail without signifi¢dnss of information can be cropped out, leading t
further reduction in the dimension of the vect@resenting 2-Dnxnmatrix.

By re-arranging (1) we get,

— T
Sman =Y man BAmn Vi 2

In the above equation , iA is a square matrix, then the left and right unitagtricesU andV are
derived from Jacobian rotations on matfixteratively. Considering this aspect, the aboveagign can be
modified to an iterative equation as,

A= 317 i 3)

Here,J is the Jacobi rotational matrix. As the iteratimmmber(i) tends to infinity, off diagonal
elements of the iterated matrxtend to zero. The singular values of the origmalrix A are then obtained
by taking the square root of diagonal elementshefttansformed matrix.

3.2 Construction of Jacobi M atrix
Consider a 2x2 matrix A as below

Az[app apq}
agp aqq

Let p be the row number angl be the column number of the the pivot element Jacobi
transformation. Therf, the angle between -8 45 through which rotation operation is to be performed
is given by,

tan(26) = —wazw 0 € {-11/4,11/4}

a ~ Qpp

The Jacobi matrix, which is nothing but the rotagiboperator, is then constructed as ,

_| cos@ sing
“|-sind cosf
Applying Eg. (3), the iterative equation is giveyn b

AL = cos@ -sind]' app apq| cosd siné
“|sing cos@ agp aqq| —-sin@ cosé

1 0 0 0 0 0 0 0
0 ¢ 0 0 s 0 0 0
0o 0 1 0 0 0 0 0
;.0 0o o 1 0 0 0 0
0 -s 0 0 ¢c 0 0 0
0o 0 0 0 0 1 0 0
0o 0 0 0 0 0 1 0
0 0o 0 0 0 0 0 1|

Figure 2. Jacobi Transformation of nxn Matrix Sétat of Pivotal Elements
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For a matrixA of size nxn as per Eq.(3), the Jacobi transformasaapplied iteratively, computing
Jacobi matrix in each iteration from the previouggrated matrixA with pivot values p andq . This
freezes the four elemenépp, apg, agmndaqq of a matrixA leading to computation af/_and hence
cosJ[Ic)Jand sin]J sl values. This will generate the Jacobi matrix witlementsl(p,p), J(p,q), J(d,p),
J(g,9) asc, s, -s, crespectively and remaining diagonal elements béinged to 1 while non-diagonal
elements being forced to zer€onsider an example of 8x8 Jacobi matrix vath 2 andg = 5 where except
for the four elements as above, all diagonal elésnare 1 while non-diagonal elements are 0.

3.3 Singular Value Decomposition for an x n Matrix

Once Jacobi matrix is generated fré¥n ( matrix A in the [" iteration), A" is computed using
Jacobi transformatiod’AJ. The process is repeated till the compuaeniatrix has non-diagonal elements
less than some threshold value (hence forcing tioeraro) and diagonal elements are nonzero. Tlyoda
elements are then arranged in a descending ortersuare root of these diagonal elements gives afs
singular values for the original matrix A. This alghm of SVD is represented in Figure 3.

Selection of pivot plays a major roll in reducirftgttime complexity. The basic Classical Jacobi
method by Brent [1963] which has a time complerityD(n3)2] uses position of maximum value in a row
as pivot position. The cyclic Jacobi method[19864 modification of classical Jacobi method whetke
starting pivot element correspondsfgo=1 andq = 2 (i.e. p +1) with p incrementing by 1 in each
successive iteration. This selection method praitie complexity oO[(n(n -1)/2) [3].

P
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Figure 3. Flow Chart for SVD Computation
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Figure 4. Tournament Ordering Scheme for 8x8 Matrix
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In 1985 Brent and Luk introduced a more efficienaywof determining the pivotal element called
Tournament Ordering[10] which has a time complexifyO(2(n-1)) An example of pivoting sequence
where the four processors, P, P; and Bare working in parallel on diagonal for a 8x8 smatrix is shown
in Figure 4. In stepl, the four processors geaetatobi matrix by considering the pivot with p anealues
as shown in the first row of the following figurén the subsequent steps the processors work Einghtihe
pivot p, g values in a fashion as shown by thevesrim Figure 4.

We have implemented all the three methods using M¥8 before implementing them in FPGA.
Table 1 gives MATLAB simulation results of pivotlsetion on an image of size (40x40). It can be
concluded from this table that tournament ordesngeme is the best among the three selection nmethod
mentioned above and can be taken further for FR@glementation. Also it is obvious from the tablatth
the number of iterations required to obtain a @ekierror is consistent with the time complexityeafch
method as mentioned above.

Table 1. Matlab Simulation Results (Pivot Selectibethods)

No of o
Method lterations % error Convergence found Comments
Classical Error does not reduce below 1.27% even upto
Jacobi 20000 1.273 No 60000 iterations
0
Cyclic Jacobi 5000 0.004 Yes Error does'not rgduce below 0.004% even
upto 8000 iterations
Tourna-ment Considerably lower no of iterations to obtain
Ordering 100 0.001 Yes 0.001 % error. Best pivit selection method

4. FPGA IMPLEMENTATION

Figure 5 shows the block diagram of the catgplystem consisting of four stages viz. image
acquisition, image segmentation, feature extracdod classification. Out of these first two stagee
implemented in host PC while the remaining two etagre implemented in FPGA. The emphasis of this
paper is on FPGA implementation of SVD using Jacoigithod with tournament ordering for feature
extraction and classification of iris templateseTdegmented iris template image which has a sizZ®xt0
pixels with 8-bit pixel data (256 gray levels) ens$ via parallel communication port to FPGA kit farther
processing. The next sub-section gives the detdilSVD hardware architecture while Sub-section 4.2
presents the details on classification of iris iemgepresented by SVD features using one of thesifilers
such as Hamming Distance Classifier.

Host pc FPGA Kit
Image Feature
acquisition extraction
Serial/ parallel
communication

Image Classification
Segmentation

Figure 5. Block Diagram of the System

4.1SVD Core

Figure 6 shows SVD core for FPGA implementationhe Tmajor components of SVD core are
Matrix Multiplier, Jacobi Transformer, Finite Sta#tachine, Reorder Unit and Square Root block.

Matrix multiplier is used for computing one of thieree matrix multiplications vizA'A, JA and
J'AJ. The appropriate input matrix to this unit is sédecusing Matrix Multiplexer which selects original
image matrix for the first step, selecfsdr the second step and C and J for the third $tkgirix multiplier
based on systolic array parallel implementatioregivesult for nxn size matrix in n clock cycles.tia
multiplier has extra facility for getting resultsa normal format or Q15 format and perform transpose
multiplication (e.g. JA). The outputs of this unit are multiplexed to dhic transformer and Matrix
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Multiplexer or Reorder Matrix block depending updime convergence of the matrik after Jacobi
transformation.

Jacobi Transformer generates Jacobi matrix by tipgraon A and selecting pivot element by
tournament ordering method. This block containgdtsub blocks viz. diagonal processor, sine-cdsiole
up table and update pivot. Diagonal processor regipivot elements as input and provides sine asthe
of the angle computed using look-up table in @dnat. Update pivot block generates new pair @bpi
elements for construction of new Jacobi matrix persscheme given in Figure 4.
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h
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Figure 6. SVD Core for FPGA Implementation

Finite State Machine is the heart of SVD core wigeimerates the control signals as per the state
diagram shown in Figure 7. The various operaticarsied out during each state are also indicatedhen
state diagram. Reorder Matrix block implements seatjal search algorithm to arrange the diagonahetds
in descending order while square root block impleta@on-restoring type method to compute squareafo
diagonal elements which are primary outputs of S)ie.

L "
A *a8 operafion
Start_mult

Done_mult=1
CfoJs
transform
R Trans_jacobi
-1

Start_mult =

Done_sqrt=1

Done_jacobi=1

Enable_reor
der =1

Converge =1

C* Joperation

Figure 7. State Diagram of the Control Unit (Firfiate Machine)

The operation of SVD core is as follows:

Matrix Data Latch has data input from PC providéth data clock and asynchronous reset. Reset
from host PC resets the whole system and fingeghachine. Valid data is latched at the risithgeeof the
data clock and stored in the matrix form. This tatenerateslata readysignal after receiving the whole
matrix data and triggers FSM for the next stateME@nerates theel _matsignal to select either the original
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matrix (A) for conversion to square matrix in the first step Jacobi Transpose/Jacobi matrix (J) in the
second/third step or J and C matrix (which isrémailt ofJ'A) in the third step.The matrix multiplication is
initiated by theStart Multiplication signalgenerated by FSM whildone multiplication signal from Matrix
Multiplier is used to trigger FSM for executing thext Jacobi Transformer operation. It may be ndbed
with large number of Jacobi matrix elements beiagpzthe 16x16 multiplier output is limited to orp
least significant bits. Jacobi transformer blockstoucts Jacobi matrix after computirgvalue for the pivot
p, qvalues as per tournament ordering scheme and #fersr cod and sir# values for the computed?
from look-up table by generating appropriate adglreSince co8and sirfvalues do not change appreciably
for 8 below -18 and above +10 the look-up table entries in Jacobi transform klace also limited to +
10° with 1024 entries in ROM with 10 bit address giyif.008 resolution. Done signal from Jacobi
Transformer triggers FSM either to repeat the fitexation or enable Reorder Matrix to accept tlzydnal
values of the convergetl matrix. The handshaking between Reorder Matrix, 8 Square Root block
initiates square root operation to find out singualues and then to output those widbne SVDsignal
being generated by the same block.

Hamming Classifier

Classification is the last stage of iris recogmitidn architecture of this is as shown in FigureA8.
set of features obtained from SVD are stored in ROMall iris images under consideration. SVD valfer
the iris image to be recognized, as computed by $¥i2, are inputted to the classifi@-array) which
computes simple hamming distance between SVD vabfighe test image with pre-stored values of all
images one by one. The classifier outputs 1-hobded value of the image if the difference between
corresponding singular values for all singular wesluis less than pre-determined threshold value.
Thresholding level can be decided by finding oat&off between false acceptance ratio and faleetief
ratio.

Hamming

__:> distance

MIN : Matched

array | selector o

iiiiiii

by

ROM

Figure 8. Hamming Classifier for FPGA

5. SIMULATION RESULTS (XILINX)

Both SVD core and Hamming Classifier were impleradnin Vertex 5 XC50VXL FPGA device
using Xilinx ISE 10.1 EDA tool. SVD results for fes images as computed by MATLAB (using floating
point arithmetic) and by FPGA implementation (usfixgd point arithmetic) is as shown in Table 2.

Table 2. Comparison between SVD Values

SVD Values Computed using

Image No. MATLAB FPGA
S1 S2 S3 S4 S1 S2 S3 S4
1 409 16 8 5 408 13 11 9
2 427 69 31 7 423 70 38 13
3 589 16 9 3 588 14 9 6
4 619 10 5 2 614 15 7 4
5 463 13 11 5 463 14 7 5

It is seen from the above table that there is aeclmatch between SVD values computed using
MATLAB — a software approach and using FPGA implataton — a hardware approach. Further it was
found that the Hamming classifier (with ROM storiMATLAB computed SVD values for ten images)
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identified the test image correctly the image d#tavhich was fed to SVD core. These results vatidhe
hardware architecture for both SVD core and thesifir.

The expected time complexity of various blockd=BfGA implemented architecture for an image
of sizenxnis given in Table 3. The synthesis report of #uichitecture as generated by XST tool of Xilinx
ISE for an iris image of size 40x40, when operatéth a clock of 100 MHz indicated that the time
consuming block is a SVD core with 1§ (1600 pixels x 10 ns) as the time for capturmginage data and
203 s as the time for SVD computation. Hamming Classifakes negligible time in comparison with this.
This result indicates that the iris image can leniiied in a time period less than 258 which is much
faster than that identified by a human eye. Thishfr suggests to reduce the clock frequency dyitab
reduce the overall power consumption in the hardwahe same synthesis report indicated the resource
utilization of about 80% suggesting the suitabitfithe FPGA device used.

Table 3. Xilinx Timing Simulation Results

Block name Clock Cycles
Matrix data latch n2+1
Matrix multiplexer 1
Matrix Multiplier n
Pivot update 1
Jacobi Read lookup 1
Transformer Division 32 by 20 n+1
Total n+3
Finite State 5 states 1 clock cycle 5
Machine for each
Convergence 1
Reorder n
Square root n

6. CONCLUSION

A hardware architecture for computing SVD ‘esuof a given 2-D matrix is developed and
successfully implemented in Virtex5 FPGA of Xilinkhis has been used to extract a set of featurdsféx
a nxn iris image data. This is the greatest adgentd SVD algorithm from data storage point of vieAv
close match between SVD values obtained using MABL&nd FPGA implementation validates the
architecture developed. A Hamming Classifier destbusing a set of comparators with different eziee
values successfully classified the test iris imagesample basis. The timing simulation indicateat the
core can identify the iris images successfully ewben operated with a clock of 10 MHz.

7. FUTURE SCOPE

Though the hardware developed and implementedtegssinito successful iris image identification,
the experimentation was performed on few benchnmadges. There is a need to validate the hardware
further by checking the False Acceptance Ratio (FARI False Rejection Ratio (FRR) on a large daseb
Hardware optimization is another area where spetiahtion can be given to reduce resource utitinand
delays. In this aspect, hardware algorithms forlémenting division and square root demands further
research. Studies can be carried out to find oat gbwer dissipation and implement the low power
approaches. Fixed point arithmetic results can bdermore accurate with increasing Q-value in Q-&irm
and increasing the number of lookup table entriddle considering the trade-off between area amdizcy.

ACKNOWLEDGEMENTS

The authors would like to acknowledge InstituteAotomation, Chinese Academy of Sciences for
making CASIA iris image database available onrtbewhich has been extensively used for carrgimg
the research work.

REFERENCES

[1] Brent R. P., and Luk, F. T., An Efficient Jacobi-like Algorithm for Parallel Eg value ComputationEEE
transactions on computersol. 42, no. 9, September 1993, pp 1058-1065.

[2] Rahmati, Sadri, Naeini, “FPGA based singular valeeodnposition for image processing applications’tocp of
International Conference on Digital Object Idergifi 2008 pp 185-190.

Title of manuscript is short and clear, impliesearsch results (First Author)



222 O3 ISSN: 2088-8708

[3] Weiwei, M. E. Kaye, D. M. Luke, R. Doraiswami, “ArPIBA-Based Singular Value Decomposition”, Proc. Of
Canadian Conference on Digital Object Identifi2006, pp 1047-1050.

[4] Nikolay Sorokin, “Implementation of high-speed fikpoint dividers on FPGA” Journal of CS and T April 2006,
Vol. 6, pp 8-11.

[5] David C. O'Neal and Raghurama Reddy “Solving Symmegigenvalue Problems On Distributed Memory
Machines” Pittsburgh Supercomputing Center Carnegiédd University Pittsburgh, PA 15213, October, 498p
1-27.

[6] K piromsopha, “An FPGA implementation of fixed pbsguare root operation1SCIT 2001

[7] Liu-Jimenez, Sanchez-Reillo, Sanchez-Avila, “Fulrdveare solution for processing iris biometrics”,ec8rity
Technology, 2005CCST '05

[8] Ignacio Bravo, Pedro Jimnez, Manuel Mazo,Jos LzAtfsedo Gardel, “Implementation of Jacobi Methtml
Solve the eigen value and eigen vector problem “,

[9] R.P.Brent and F.T.Luk, “The solution of singular waland symmetric eigen value problems on multipsames
Array”, SIAM J.sci Stat.CompMol.6,No.1,pp.69-84 Jan1985

[10] Michael W. Berry, Dani Mezher, Bernard Philippe, a#&ftned Sameh “Parallel Algorithms for the SingWalue
Decomposition'Handbook on Parallel Computing and Statisti2605, pp 117-164

[11] Li Ma, Tienui Tan, Fellow,IEEE,Yunhong Wang,MemBbEEE,and Dexin Zhang “Efficient Iris Recognition by
Charactering Key Local VariationfEEE TTranscations on Image Processingl, 13, 6, June 2004,

[12] O.Dniz,M.Castriiin,M.Hernndez, “Face recognition ngiindependent component analysis and support vecto
machines, pattern Recognitiaetters”Vol.24,No13,pp.2153-2157,Sep.2003.

BIBLIOGRAPHY OF AUTHORS

Mr. Babasaheb G. Patil :He received his M.E. Electronics degree in 180860 B.E. Electronics
in 1988. He is currently working as a Associatef€sor in department of Electronics in
Walchand College of Engineering, Sangli, MaharasHtrdia. He is having keen interest in
image processing and communication. Currently heaisying out research work in the field
of Image Processing.

Dr. (Mrs) Shaila Subbaraman : She received M-Tech degree from IISc. Bangalor&9n5
and Ph.D. from IIT Bombay in 1999. She worked in ®emductor Device Manufacturing
company from 1975 to 1989. Currently she is ProfessoDepartment of Electronics in
Walchand College of Engineering, Sangli, Maharashidia. She has keen interest in the field
of Microelectronics and VLSI Design.

Mr. Nikhil Niwas Mane: He is a M.Tech. degree from Walchand College ofifering,
Sangli, Maharashtra, India in Electronics. He hagars industrial work experience. Presently
he is an Assistant Professor in Bharati Vidyapeetblege of Engineering, Kolhapur,
Maharashtra. He has keen interest in the fieldvdfexided system and VLSI Design.

IJECE Vol. 2, No. 2, April 2012 : 214 — 222



