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 In a mobile communication systems, the number of observation data 
(snapshots) used for covariance matrix estimation can be insufficient, which 
often occurs due to fast dynamically changing environment or signal 
characteristics are rapidly changing. In these situations, the performances of 
the standard adaptive algorithms such as LMS are known to degrade 
substantially. In this paper, we propose the use of a Genetic Algorithm (GA) 
to perform the adaptation control of the system parameters under 
dynamically changing environments The GA-based beamformer has nearly 
optimal interference cancellation under dynamic conditions, and makes the 
output SINR consistently close to the optimal one regardless of the number 
of snapshot used. Other advantages of the GA are its simplicity and fast 
convergence provided that the parameters are appropriately chosen, which 
makes it a practical algorithm for beamforming in smart antenna. Simulation 
results validate substantial performance improvements relative to other 
standard adaptive algorithms. Although, the use of GA is not new in smart 
antenna technology, the performance evaluation of the genetic optimization 
under fast dynamically changing environment has not been investigated to 
the best of my knowledge and it is of great practical significance. 
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1. INTRODUCTION 

 There has been an explosive growth in the wireless communication area in recent years. This growth has 
forced system designers to increase the quality of service, coverage, and bandwidth. Smart antennas are an 
emerging technology that can be used to tackle the capacity, quality, and coverage problems faced in wireless 
communication under heavy traffic. Such antennas use a weighted average of the received signals to 
automatically adjust the beam towards the signal of interest (SOI) to radiate or receive desired signals while 
nulling the interferers. If the environment is changing dynamically, the complex weights need to be adjusted 
in order to track the changes. In the stationary case the weights are found and the beam is fixed, but in 
adaptive systems these weights must be updated every time new information comes in. The adaptive 
algorithm chosen is very important since the convergence speed, stability, and complexity are important 
issues in an adaptive system design. The algorithm must satisfy some chosen criteria for the optimization 
process. Most commonly used techniques are least mean squares (LMS), recursive least squares (RLS) [1], 
direct matrix inversion (DMI) [2], neural networks [3], conjugate gradients [4], and constant modulus 
algorithm (CMA) [5]. The performance of the RLS and SMI schemes are not dependent of the eigenvalue 
spread of covariance matrix, since the covariance matrix is inverted directly. On the other hand, the LMS 
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algorithm suffers from slow convergence in the case of large eigenvalue spread of the sample covariance 
matrix. However, these classical adaptive processing techniques employ large number of snapshots 
(observation data) to carry out digital beamforming and thereby make their applications in real life 
prohibitive as they are computationally too expensive and are unsuitable for a fast dynamically changing 
environment as they require a latent time to collect the snapshots of data [6]. A snapshot is defined as the set 
of voltages measured at the terminals of the antennas. On the other hand, when the number of snapshots used 
for covariance matrix estimation is insufficient. In this situation, the performances of the conventional 
adaptive algorithms are known to degrade substantially [7, 8]. This undesired behavior results in a reduction 
of the array output signal-to-interference-plus-noise ratio (SINR). 

To mitigate these practical shortcomings, recently a genetic algorithm GA was developed for 
solving the robust adaptive beamforming optimization problem [9]. Although, the use of genetic optimization 
is not new in smart antenna technology [e.g. see 14, 15] the developed GA in [9] has been shown to be very 
effective in smart antenna technology. However, the aim of this paper is to devise a practical and simple 
scheme that is suitable for a fast dynamically changing environment. We achieve this goal by considering a 
small number of snapshots to carry out digital beamforming. Since no covariance matrix is needed in GA 
approach and it operates with small population size, it can be implemented in real time using a modern digital 
signal processing device. The organization of this paper is as follows. Section II contains the signal model 
and presents the existing adaptive algorithms. The GA approach for the computation of the adaptive array 
weights is introduced in Section III. Simulation results are given in section IV and conclusions drawn in 
Section V. 

 
 

2. BACKGROUND 
Fig. 1 shows a block diagram of an antenna array controlled by adaptive algorithm. The output of such 

array which consists ofN antennas at a time sample k is given by 

)()( kky xw H=                                                                                                                                                  (1) 

wherek is the time index, T
N kxkxkxk )]()....()([)( 110 −=x is the complex vector of received signal,

T
Nwww ]....[ 110 −=w is the antenna weight vector,T andH denote transpose and conjugate transpose, 

respectively. The received signal at time instantk is given by 
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whereI is the number of interference signals. Here,)(ks and )(ki j are the signal and interference symbol 

samples. It is understood that all the signal of interest (SOI), interferences, and thermal noise vary as function 
of time. The SOI and interference angles of arrival (AOA) are sθ and Ijj ,...,1, =θ , respectively, with 

corresponding steering vectors )( sθa and )( jθa . Let xxR denote the NN × theoretical covariance matrix of the 

received signal. Assume thatxxR is a positive definite matrix with the following form 
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where 2
sσ and Ijj ,...,1,2 =σ are the powers of the uncorrelatedd impinging signals )(ks and )(ki j respectively, 

andQ is the noise covariance matrix. The error signal)(kε , as indicated in Fig.1, is 

 

)()()()( kkkdk xwH−=ε                                                                                                                                  (4) 

where )(kd is the desired output at samplek . The cost (fitness) function is given as 
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where )()( kkd H
dx xr = and )()( kk H

xx xxR = . We may employ the gradient method to locate the minimum of 

(5). Thus 
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)(22))(( kJ xxdxw wRrw +−=∇                                                                                                                        (6) 

 
The minimum occurs when the gradient is zero. Thus, the solution for the weights is the optimum Wiener 
solution as given by 
 

dxxxopt rRw 1−=                                                                                                                                                    (7) 

It is obvious that computation of the optimum weight requires the knowledge of both the correlation matrix 
of the input signal and the cross correlation matrix between the input signal and the desired signal. 
Computing the inverse of the autocorrelation matrix can be costly; using the steepest descent algorithm one 
can reduce the computation time since the weights are computed in a recursive way. The updated weight 
vector, which uses the steepest descent optimization method, is written as [1] 

)()()()1( kkkk H xww µε+=+                                                                                                                         (8) 

 
Here,µ is the step size which controls the rate of convergence of the LMS algorithm. One of the drawbacks 

of the LMS is that the algorithm must go through many iterations before satisfactory convergence is 
achieved. If the signal characteristics are rapidly changing, the LMS algorithm may not allow tracking of the 
desired signal in satisfactory manner.  One possible approach to circumventing the relatively slow 
convergence of the LMS is by use of RLS algorithm [1]. The convergence rate can also be accelerated by use 
of the conjugate gradient (CG) method [4,10]. The goal of CG is to iteratively search for the optimum 
solution by choosing perpendicular paths for each new iteration. The detailed information about these 
methods can be found in the cited references. Moreover, these algorithms are canonical adaptive signal 
processing algorithms. They are based on the steepest descent algorithm, which is easy to implement but can 
get stuck in a local minimum. Furthermore, the problem with the adaptive algorithms (see Fig.1) is that they 
need a receiver at each element to detect the incident signals to form the covariance matrix. The receivers are 
very expensive and require regular calibration, so the cost of this type of an array is extremely high. In 
addition, if the number of iteration (snapshots of data) used for covariance matrix estimation is insufficient, 
the adaptive algorithms will attenuate the desired signal as it were interference. 

 
 

3. PRINCIPLES OF THE PROPOSED METHOD 
 
3.1.  Cost function of GA 

A genetic algorithm manipulates the variables of a cost function until the cost is minimized. In this case, 
the cost function is a linear array with variable amplitude and /or phase weights, and the cost is the total 
output power. It returns the sum of the magnitude of the array factor at interference angles Ijj ,...,1, =θ . Its 

equation is written as 
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Where d represents the spacing between antenna elements, � is wavelength and �� = ���
��. Controlling the 

weights modifies the main beam peak and nulls.  
The problem with this cost function formulation is that the desired signal and the interfering signals are 

mixed together. Minimizing the output power will decrease the desired signal in addition to the interfering 
signals unless the desired signal is assumed to enter the main beam and the adaptive weights are constrained 
to small values that cannot place a null in the main beam. 

Since the total output power consists of both the desired signal and interference signals, some constraints 
are needed to insure that only the sidelobes are nulled and not the main beam. This paper shows how the 
constraints are implemented through using only a fraction of the elements in the antenna array. In other 
words, only a few of the edge element are given variable amplitude weights. For example, if a twenty 
element array has amplitude weights as given by the following 
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Where the three edge elements on both ends of the antenna array have continues variable amplitude settings 
and the remaining 14 elements in the middle of array have uniform amplitude weight. Here the amplitude 
weights of the array are assumed symmetric. A continuous variable GA is used in place of the binary GA to 
do the adaptation. The array is assumed to start with a uniform amplitude distribution. Each chromosome in 
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the GA population represents amplitude setting at each edge element in the array. Adjusting these settings 
has a small effect on the main beam but can place nulls in the sidelobes. The goal of the GA is to minimize 
the total output power of the antenna by adjusting these edge elements. Since the algorithm must be fast and a 
global minimum is not necessary, the GA uses a small population size.  

It should be mentioned that the most genetic algorithms have a large population size and low 
mutation rate. Although these implementations have been successful, they require many function calls to find 
an acceptable solution. These slow algorithms will not work under fast dynamically changing environment in 
real time applications like mobile communication systems. There has been strong evidence that genetic 
algorithms with small population size and high mutation rates find good solutions fast [13], [14]. 
 
3.2.  Genetic Algorithm 

 In conventional adaptive processing, it is assumed that a set of weights nw , 1,...,2,1,0 −= Nn , is 

connected to each one of the antenna elements. Then, a block of data is generated corresponding toM

snapshots (i.e., mnx for m= 0, 1, . .. , M-1 and n= 0, 1,. . . , N-1). Here the superscript m onnx denotes that the 

voltage m
nx is induced at antenna element n at a specific time instance m. Then, a covariance matrix of this 

block of data of )( MN × samples is evaluated and the adaptive weights are given by the Wiener solution, 

which is related to the inverse of the covariance matrix. The computational load of forming covariance 

matrix and its inversion is an )( 3NΘ operation (see equation 7). Hence, it is difficult to implement it in real 

time. In addition, the procedure assumes that the data is stationary over these )(M samples (i.e., the 

environment of the SOI, and interference scenarios have not changed over the entire data collection process). 
Because of these disadvantages of the conventional adaptive processing, a GA with small population size is 
used to perform the adaptation control of the antenna weights. The structure of the adaptive beamforming 
controlled by a GA is shown in Fig. 2. The GA performs the adaptation by manipulating the weight vector of 
the cost function until the total output power is minimized.  
Since the GA reduces the total output power of the beamformer, constraints are used to prevent desired signal 
attenuation in the main beam. In this work, the constraints take the form of using only a few of the edge 
elements of the array. Because only few of the edge elements are adaptive, the main beam receives limited 
perturbation. As an example, consider an array of 20 elements that are spacedλ5.0 apart. Three edge 
elements on both ends of the array have continues variable amplitude settings. There are two interference 
signals incident at 20 degree and -20 degree. The resulting adapted amplitude weights are given by 

].0949.01685.08188.0111111111111118188.01685.00949.0[=w  

 The array is assumed to start with a uniform amplitude distribution. The GA uses the following steps for 
adaptive interference cancellation: 
 

1. An initial population of chromosomes is randomly generated. By this way, the first generation of 
chromosome is created. The weights of these three edge elements are described by a chromosome, 
i.e. each chromosome contains three variables.  

2. The weights of these edge elements are sending to the beamformer and the output power is 
measured. In this way, a fitness (cost) value is assigned to each chromosome in the population in 
order to expressing how well the chromosome meets requirements to the optimized system. 

3. Members of the population with high costs are discarded and a new population of chromosome 
(offspring) is generated by selecting the best existing chromosomes (parents). The parents are 
combined by crossover and mutation to produce offspring. The offspring replace the discarded 
chromosomes. This step is iteratedM times. This means thatM generations of chromosome are 
created in order to find as good chromosome as possible. 

4. The result of the genetic optimization is obtained as the best chromosome at theM iteration.  
 

The flow chart of the GA-based adaptive beamforming is shown in Fig. 3. Each chromosome 
represents the variable weights of edge elements. These weights are sent to the antenna array and the output 
power is measured. In this way, every population member has an associated cost. Members of the population 
with high costs are discarded. The surviving members form a mating pool. The parents are combined by 
using single point crossover to produce offspring. The offspring replace the discarded chromosomes. The 
next step randomly mutates a certain percentage of the population. After mutation, the process repeats by 
measuring the output power associated with the new population. 
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4. SIMULATION RESULTS 
To evaluate the performance of the GA under a fast dynamically changing environment, some computer 

simulations have been carried out in various scenarios. In the following, we assume a uniform linear array 
with 20 elements and half-wavelength element spacing. The desired signal with SNR=20dB is assumed to 

impinge on the array from the direction o
s 0=θ . Two interferers are assumed to impinge on the array from 

the directions o201 −=θ and o202 =θ , both with interference-to-noise ratio (INR) equal to 20dB. The noise,

)(kn , is spatially and temporally white and it has a complex Gaussian zero mean distribution with variance

01.02 =nσ .  

In our first example, we study the convergence rate of the GA-based smart antenna beamformer 
compared to LMS, RLS, and CG for interference cancellation. In this case, each run of Monte Carlo 
simulation consisting of 100=M samples of )(kx , i.e. 100 iterations or generations are used. The step size 

parameter of the LMS algorithm is chosen as ]ˆ[41 xxRtrace=µ . The convergence rate of the LMS for 

interference cancellation is governed by the eignvalue spread of xxR̂ . For RLS, the forgetting factor is chosen 

to be 0.9. While GA parameters include a population size of 8, a 50% selection rate, roulette wheel selection, 
uniform crossover, and a 10% mutation rate. The quiescent and resulting adapted beam patterns for all 
techniques appears in Fig.3(a). From Fig.3(a), we observe that, when the number of snapshots (M ) is 
sufficient, all patterns have deep nulls at the AOAs of the interferences. The cost function (or mean square 
error) of all techniques as a function of iteration is shown in Fig. 3(b). It is quite clear from Fig.3(b) that the 
GA quickly converge to optimal interference cancellation. For this case, the CG performs similarly in terms 
of convergence rate. The LMS did not converge until after 50 iterations.  

Receiver 0w

∑  

Adaptive 
Algorithm 

Receiver 

Receiver 

1w  

1−Nw  

∑  

)(0 kx

)(1 kx  

)(kε  

)(kd  

)(ky  

)(1 kxN−  

Fig.1 Smart Antenna Based Adaptive Algorithms. 

)(1 kxN−  

0w  

∑  

GA 
Algorithm 

Receiver 1w  

1−Nw  

)(0 kx

)(1 kx  

Fig.2 (a) Smart Antenna Based GA. 

Initial 
population 

Cost 
Function 

Mutation 
Process 

 Offspring 

Mating 
Pool 

Natural 
Selection 

Minimum 
Cost 

Beampattern 
Calculations 

Fig. 2 (b) Flow Chart of Genetic Algorithm. 

NO 

YES 



IJECE  ISSN: 2088-8708 � 
 

Comparative Performance Investigations of Stochastic and Genetic …. (Jafar Ramadhan Mohammed) 

103

In the second simulation example, we investigate the effect of the small number of iterations (which 
can also be viewed as a steering vector error problem [8]) on the performance of the algorithms tested for the 
same scenario as in the previous example except for a sample size of 20=M and 10=M iterations. Figs.4(a) 
and 5(a) shows the beam patterns of the tested algorithms. Convergences of the LMS, RLS, CG, and GA 
algorithms for interference cancellation are shown in Figs. 4(b) and 5(b). In this scenario, the GA technique 
demonstrates an appropriate operation under this situation. On the other hand, as illustrated in Fig. 5(a), the 
beam pattern of the RLS allocates a deep null for the desired signal and the interference cancellation 
(creating nulls) of the LMS algorithm is unsatisfactory. This inadequate operation of the LMS and RLS 

highly depends on the number of iteration (M ) which is used to estimate the covariance matrixxxR̂ . In Fig.6 

we show the output SINR of the tested algorithms versus the number of iteration. It is clearly demonstrate 
that the GA shows better capabilities against the effect of small number of iterations. It works well even 
whenM is as small as 2=M . The LMS requires a large number ofM . As illustrated in Fig.6, the RLS 
algorithm has a problem of instability with large number of iterations under a fast dynamically changing 
environment. This problem of the RLS is well-known in the adaptive control literature [15].  

In our last example, we study the impact of constraints, using subset of few edge elements with GA, 
on the mainbeam perturbation and interference cancellation. Fig.7 show the SINR reduction when various 
subset of edge elements are used to perform the mainbeam constraint in GA. This reduction depends on the 
number of edge elements that used for constraint. In our simulation we found that the best result may be 
obtained when 3 elements on each end of the array were used. Fig.8(a) shows the GA patterns of the various 
subset of  the edge elements. Corresponding convergence rates are shown in Fig. 8(b). From Fig.8, we have 
verified that the conventional GA (here we refer to conventional GA as unconstraint GA, where all antenna 
elements are variables, while the proposed one is refered as constraint GA) exhibits little perturbation to the 
mainbeam peak. On the other hand, the constraint GA performs very well especially when 3 edge elements 
on both ends of the array are variable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

0.4

0.6

0.8

1

Iteration Number (Generation)

C
os

t 
(F

itn
es

s)

 

 

GA

LMS
RLS

CG

-20 0 20
-70

-60

-50

-40

-30

-20

-10

0

10

AOA (deg)

A
F

 (
dB

)

 

 

Quiescent

GA

LMS
RLS

CG

Fig.3 M=100 iterations: (a) Comparison of Patterns, (b) Objective Function versus Number of Iteration. 
(a) (b) 

(a) 

0 2 4 6 8 10 12 14 16 18 20
-0.2

0

0.2

0.4

0.6

0.8

1

Iteration Number (Generation)

C
os

t 
(F

itn
es

s)

 

 

GA

LMS
RLS

CG

-20 0 20
-70

-60

-50

-40

-30

-20

-10

0

10

AOA (deg)

A
F

 (
dB

)

 

 

Quiescent

GA

LMS
RLS

CG

(b) 
Fig.4 M=20 iterations: (a) Comparison of Patterns, (b) Objective Function versus Number of Iteration. 
 



      �          ISSN: 2088-8708 

IJECE  Vol. 2, No. 1,  February 2012 :  98 – 105 

104

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
Fig.5 M=10 iterations: (a) Comparison of Patterns, (b) Objective Function versus Number of Iteration. 
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5. CONCLUSIONS 

For the conventional adaptive algorithms, an inadequate estimation of the covariance matrix (which 
often occurs under a fast dynamically changing environment) results in adapted antenna patterns with high 
sidelobes and distorted mainbeams. The GA has been proposed as an alternative to the conventional many 
iterations-based adaptive algorithms. The design of the corresponding GA was highlighted and its achievable 
performance was characterized in terms of both the optimal interferences cancellation and the SINR. It was 
demonstrated that a potentially more attractive SINR is achievable by the proposed GA-based smart antenna 
beamformer even when the number of available snapshots is scarce. Moreover, fast convergence to optimal 
solution is achieved by using a small population size and high mutation rate. Furthermore, using subset of the 
edge elements to form the constraint in the GA reduced the mainbeam perturbation and provides additional 
control over the sidelobe level. 
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