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Abstract  
  The paper presents an extensive and careful study of elliptic curve cryptography (ECC) and its applications. This 
paper also discuss the arithmetic involved in elliptic curve  and how these curve operations is crucial in determining the 
performance of cryptographic systems. It also presents different forms of elliptic curve in various coordinate system , specifying 
which is most widely used and why. It also explains how isogenenies between elliptic curve  provides the secure ECC. 
Exentended form of elliptic curve i.e hyperelliptic curve has been presented here with its pros and cons. Performance of ECC 
and HEC is also discussed based on scalar multiplication and DLP. 

  
Keywords: Elliptic curve cryptography (ECC), isogenies, hyperelliptic curve (HEC) , Discrete Logarithm Problem (DLP), 
Integer  Factorization , Binary Field, Prime Field 
 
  
1. Introduction  

Public key cryptosystems are constructed by relying on the hardness of mathematical problem. RSA based 
on Integer Factorization Problem and DH based on the Discrete Logarithm Problem. The main problem of 
conventional Public key Cryptosystems is that the Key size has to be sufficiently large in order to meet the high 
level security requirement, resulting in lower speed and consumption of more bandwidth. 

Elliptic curves have a rich and beautiful history, having been studied by mathematicians for over a hundred 
years. They have been deployed in diverse areas like :Number theory( proving Fermat`s Last Theorem) in 1995 [1],  
modern physics: String theory(The notion of a point-like particle is replaced by a curve-like string.),  Elliptic Curve 
Cryptography(An efficient public key cryptographic system). 

In 1985, Neal Koblitz [2] and Victor Miller [3] independently proposed using elliptic curves to design 
public key cryptographic systems. In the late 1990`s, ECC was standardized by a number of organizations such as 
ANSI [4, 5], IEEE[4,6], ISO[7, 8], NIST[9, 10] and it started receiving commercial acceptance. Nowadays, it is 
mainly used in the resource constrained environments, such as ad-hoc wireless networks and mobile networks. 
There is a trend that conventional public key cryptographic systems are gradually replaced with ECC systems. 

In Sep’2000 Daniel V. Bailey and Christof Paar [11] showed efficient arithmetic in finite field extensions 
with application in elliptic curve cryptography.  

In May 2002, M. Bednara, M. Daldrup, J. Shokrollahi, J. Teich, and J. von zur Gathen[12] , showed how an 
elliptic curve coprocessor based on the Montgomery algorithm for curve multiplication can be implemented using 
our generic coprocessor architecture. 

In February, 2005, the NSA announced that it had decided on a strategy of adopting elliptic curve 
cryptography as part of a US government standard in securing sensitive-but-unclassified information. The NSA 
recommended group of algorithms called Suite B, including Elliptic-Curve Menezes-Qu-Vanstone and Elliptic-
Curve Diffie-Hellman for key agreement, and the Elliptic Curve Digital Signature Algorithm for digital signatures. 
The suite also included AES. 

In 2010 [13]Brian King provided a deterministic method that  guarantees  ,the map of a message to an 
elliptic curve point can be made without any modification. 

In 1988 Koblitz suggested for the first time the generalization of EC to curves of higher genus namely 
hyper elliptic curves (HEC)[40]. Since then HEC has been analyzed and implemented  in software [41-45] and 
hardware [46, 47]both. 
 
 
2. Alternative representations of Elliptic curve 

In this section, various forms of elliptic curve has been explored 
 
2.1.    Weierstrass curve 

An elliptic curve E over a field K is defined by an equation (Weierstrass equation) 
 
E : y2 +a1xy+a3 y = x3 +a2x

2 +a4x + a6   (1) 
 
where a1, a2, a3 ,a4, a6 ∈ K and ∆≠ 0, 
where ∆ is the discriminant of E and is defined as follows: 
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2 − a4
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If both the coordinates of the point P ∈ E or P=∞(the point at infinity, or zero element. The set of points on E is:  
 

E(L) = {(x, y) ∈ L ×L : y2 + a1 xy+ a3 y−x3 − a2x
2 − a4x − a6 = 0}∪{∞} (2) 

 
2.2.  Hessian curve 

This curve[14] was suggested for application in elliptic curve cryptography because arithmetic in this curve 
representation is faster and needs less memory than arithmetic in standard Weierstrass form 

 
2.3.   Edwards curve  

This curve was introduced in 2007 by Edward[15] and in Bernstein and Lange [16] pointed out several 
advantages of the Edwards form in comparison to the more well  known weierstrass form. 
 
2.4.  Twists of curve 

  In mathematics an elliptic curve E  over a field K has its quadratic twist, that is another elliptic curve which 
is isomorphic to E over an algebric of K. In particular, an isomorphism between elliptic curves is an isogeny of 
degree 1, that is an invertible isogeny. Some curves have higher order twists such as cubic and quartic twists. The 
curve and its twists have the same j-invariant and is shown in [17]. Twisted Hessian curve [18] represents a 
generalization of Hessian curve. It was introduced in elliptic curvecryptography  to speed up the addition and 
doubling formulas and to have strongly unified arithmetic. Twisted Edward curve [19] are plane models of elliptic 
curve, a generalisation of Edward curves introduced by Bernstein (2007).  

 
2.5.   Jacobian curve 

It [20] is used in cryptography instead of the Weierstrass form because it can provide a defence against simple 
and differential power analysis style (SPA) attacks and also faster arithmetic compared to the Weierstrass curve.  
 
2.6 . Montgomery curve 

 This curve was introduced by Peter L Montomery  [21] , and it has been used since 1987 for certain 
computations,and in particular in different  cryptography  applications. 
 
 
3.    Arithemetic used in Elliptic curve 
 Let E be an elliptic curve defined over the field K(binary field , prime field or extension field ). There is a 
chord-and-tangent rule for adding two points in E(K) to give a third point in E(K). Together with this addition 
operation, the set of points E(K) forms an abelian group with ∞ serving as its identity. It is this group that is used in 
the construction of elliptic curve cryptographic systems. This addition and doubling of points  rule is best explained 
in [ 22]. This is known as group law.  
   The addition rule is best explained geometrically. Let P = (x1, y1) and Q = (x2, y2) be two distinct points 
on an elliptic curve E. Then the sum R, of P and Q, is defined as follows. First draw a line through P and Q; this line 
intersects the elliptic curve at a third point. Then R is the reflection of this point about the x-axis. This is depicted in 
Figure 1. 

Similarly the double R, of P, is defined as follows. First draw the tangent line to the elliptic curve at P. This 
line intersects the elliptic curve at a second point. Then R is the reflection of this point about the x-axis. This is 
depicted in Figure 2. 
 

 
Figure 1. Geometric addition on elliptic curve points 

 
Figure 2. Geometric doubling  on  elliptic curve 

points 
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Hasse's theorem on elliptic curves [24]  bounds the number of points on an elliptic curve over a finite field 
above and below. If #E(Fq )  is the number of points on the elliptic curve E over a finite field with q elements, 
then Helmut Hasse’s result states that 

 

q+1−2√q ≤  #E(Fq )    ≤ q+1+2√q (3) 
 

 
4.      Field theory of Elliptic Curve 
 This section introduces the mathematical concepts necessary to understand and implement the arithmetic 
operations on an elliptic curve over a finite field(Galois field) [23].  Abstractly a finite field consists of a finite set of 
objects called field elements together with the description of two operations - addition and multiplication - that can 
be performed on pairs of field elements. These operations must possess certain properties. The finite field containing 
q elements is denoted by Fq. Generally two types of finite fields Fq are used — finite fields   Fp  with q= p,  p an 
odd prime which are called prime finite fields, and finite fields F2

m  with  q=2m for some m>=1 which are called 
characteristic  two finite fields. 
 
4.1.   Finite field Fp 

The elements of Fp should be represented by the set of integers: {0, 1, 2… ,p-1} with operations as  
follows: If a, b Є Fp 
Addition :, then a+b = r in F p, where r Є [0.. p-1] is the remainder.  
Multiplication : then a. b=s in F p, where s Є [0.. p-1] is the remainder  
Additive inverse:  then the additive inverse (-a) of a in Fp is the unique solution to the equation a+x ≡ 0 (mod p). 
Multiplicative inverse: a≠0, then the multiplicative inverse a-1 of a in Fp is the unique solution to the equation a. x 
≡1 (mod p). 
The prime finite fields Fp used should have: 
log2pЄ{112,128;,,160;,192,;224;,256,;384,521}. This restriction is designed to facilitate interoperability in terms of 
computation and communication since p is aligned with word size. 
 
4.2.   The Finite Field  F2

m 
The finite field F2

m is the characteristic 2 finite field containing 2m elements. Here the elements of  F2
m should 

be represented by the set of binary polynomials of degree m-1 or less: 
{ a m- 1x m-1+ a m- 2x m-2+. . . . . . . +a1x+a0 : ai Є{0;1}} 
with addition and multiplication defined in terms of an irreducible binary polynomial f (x) of degree m, 
known as the reduction polynomial, as follows: 
If a = am- 1x m-1+ a m- 2x m-2+. . . . .+a0, b = bm- 1x m-1+ b m- 2x m-2+. . . . .+b0 Є F2, 
Addition : then a+b = r in F2

m, where 
r = rm- 1x m-1+ r m- 2x m-2+. . . . .+a0with r i ≡ai+bi (mod 2). 
Multiplication:  then a:b = s in F2m, 
where s = sm- 1x m-1+sr m- 2x m-2+. . . . .+s0 is the remainder when the polynomial a.b is divided by f (x) with all 
coefficient arithmetic performed modulo 2. 

In this representation of F2
m, the additive identity or zero element is the polynomial 0, and the 

multiplicative identity is the polynomial 1. Additive inverses and multiplicative inverses in F2
m can be calculated 

efficiently using the extended Euclidean algorithm. Division and subtraction are defined in terms of additive and 
multiplicative inverses. Here the characteristic two finite fields F2

m used should have: 
m Є{113, 131, 163 ,193, 233, 239, 283, 409,571} 
 
 
5. Elliptic curve domain parameters 

Two types of elliptic curve domain parameters may be used: elliptic curve domain parameters over Fp and 
elliptic curve domain parameters over F2

m . Domain parameters for Elliptic curve are specified in [25]. ECC uses 
modular arithmetic or polynomial arithmetic for its operations depending on the field chosen. 
 
5.1.    Parameters over Fp  

The domain parameters for Elliptic curve over Fp are p, a, b, G, n and h, where p is the prime number 
defined for finite field Fp ,  a and b are the parameters defining the curve y2 mod p= x3 + ax + b mod p , G is the 
generator point (xG, yG), n is the order of the elliptic curve. The scalar for point multiplication is chosen as a number 
between 0 and n – 1, h is the cofactor  where h = #E(Fp)/n , #E(Fp) is the number of points on an elliptic curve. 
 
5.2.  Parameters over F2

m 
The domain parameters for elliptic curve over F2

m are m, f(x), a, b, G, n and h , where m is an integer 
defined for finite field F2

m. The elements of the finite field F2
m are integers of length at most m bits , f(x) is the 
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irreducible polynomial of degree m used for elliptic curve operations ,  a and b are the parameters defining the curve 
y2 + xy = x3 + ax2 + b , G is the generator point (xG, yG), a point on the elliptic curve chosen for cryptographic 
operations ,  n is the order of the elliptic curve. The scalar for point multiplication is chosen as a number between 0 
and n – 1 , h is the cofactor where h = #E(F2

m)/n , #E(F2
m) is the number of points on an elliptic curve. 

 
 

6.    EC representation in different coordinate system  
In order to add two points on elliptic curve E one needs, not only several additions and multiplications 

in Fq but also an inversion operation. The inversion is one to two orders of magnitude slower than multiplication. 
Fortunately, points on a curve can be represented in different coordinate systems which do not require an inversion 
operation to add two points. Various coordinate system are represented in Table 1 : An additional speed-up is 
possible if mixed coordinates are used for point addition and doubling[36]. 
 
 

Table 1 Representation of point and number of GF (p) elements 
Coordinate system Coordinates Elements in GF (p) 
Affine  A (x, y) 2 
Projective P  (X, Y, Z) 3 
Jacobian J  (X, Y, Z) 3 
Chudnovsky Jacobian  Jc  (X,Y,Z,Z2, Z 3 ) 5 
Modified Jacobian J m  (X, Y, Z, aZ 4) 4 

 
Table 2  Number of operations for adding and doubling points in different coordinate system. 

Coordinate system Addition Doubling 
Affine  A  2M + S + I  2M + 2S + I 
Projective P  12M + 2S  8M + 5S 
Jacobian J  12M + 4S  4M + 6S 
Chudnovsky Jacobian JC 11M + 3S  5M + 6S 
Modified Jacobian J M  13M + 6S  4M + 4S 

 
 

7.    Integer factorization  
Factoring is the act of splitting an integer into a set of smaller integers (factors) which, when multiplied 

together, form the original integer. For example, the factors of 15 are 3 and 5; the factoring problem is to find 3 and 
5 when given 15. Prime factorization requires splitting an integer into factors that are prime numbers; every integer 
has a unique prime factorization. Multiplying two prime integers together is easy, but as far as we know, factoring 
the product of two (or more) prime numbers is much more difficult. 

Factoring is the underlying, presumably hard problem upon which several public-key cryptosystems are 
based, including the RSA algorithm [33-35]. Factoring an RSA modulus would allow an attacker to figure out the 
private key; thus, anyone who can factor the modulus can decrypt messages and forge signatures. The security of the 
RSA algorithm depends on the factoring problem being difficult and the presence of no other types of attack. This is 
why the size of the modulus in the RSA algorithm determines how secure an actual use of the RSA cryptosystem is. 
Namely, an RSA modulus is the product of two large primes; with a larger modulus, the primes become larger and 
hence an attacker needs more time to factor it.  
 
 
8.    Discrete logarithm problem 

If the elliptic curve groups is described using multiplicative notation, then the elliptic curve discrete 
logarithm problem is: given points P and Q in the group, find a number that Pk = Q; k is called the discrete 
logarithm of Q to the base P(k =logPQ). When the elliptic curve group is described using additive notation, the 
elliptic curve discrete logarithm problem is: given points P and Q in the group, find a number k such that Pk = Q . n 
a real application, k would be large enough such that it would be infeasible to determine k.  
Eg: What is the least integer k such that 5k = 2? [under multiplication  modulo  7] 

Answer: ((5 ×7 5 = 4) ×7 5 = 6) ×7 5 = 2. 
So 54 = 2. Or, log5(2) = 4. 
The direct effect of this is that using elliptic curves over smaller finite field yields the same security as 

using discrete log or factoring based public key crypto systems of Diffie-Hellman and RSA with larger moduli. 
 
 
9.    Isogenies of elliptic curve  

Isogenies are group homomorphisms [26 – 29]. They are used in algorithms for point counting on elliptic 
curves and for computing class polynomials for the complex multiplication (CM) method. They have applications to 
cryptanalysis of elliptic curve cryptosystems. They also have constructive applications: prevention of certain side 
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channel attacks; computing distortion maps for pairing-based cryptography; designing cryptographic hash functions; 
relating the discrete logarithm problem on elliptic curves with the same number of points.  

The first application of isogenies to cryptography was as a tool in the Schoof- Elkies-Atkins (SEA) 
algorithm for counting the number of points on elliptic Curves over finitefields [30]. Originally Schoof had provided 
an algorithm that, when given a curve E defined over some finite field Fq , would return the number of points in the 
group of points on E defined over Fq . Earlier it has the complexity of O(n5+e). Later the SEA improvement results 
in a complexity of O(n4+e).This improvement fundamentally uses isogenies. More recently, isogenies have been used 
as a tool to analyze the computational difficulty of the elliptic curve discrete log problem (ECDLP) [31]. 
Specifically, the paper shows that isogenies can be used to create a randomized algorithm that will reduce the 
ECDLP from one set of curves to a significantly larger set of curves in polynomial time. Isogenies have also been 
proposed as a tool in constructing random number generators and hash functions [32].  
 
 
10.   .Hyper elliptic curve 

A hyperelliptic curve (over the complex numbers) is an algebraic curve given by an equation of the form 
y2= f(x), where f(x) is a polynomial of degree n > 4 with n distinct roots. A hyperelliptic function is a function from 
the function field of such a curve; or possibly on the Jacobian variety on the curve, these being two concepts that are 
same for the elliptic function case, but different in this case. 

The degree of the polynomial determines the genus of the curve: a polynomial of degree 2g + 1 or 2g + 2 
gives a curve of genus g. When the degree is equal to 2g + 1, the curve is called an imaginary hyperelliptic curve. 
Meanwhile, the curve that has degree 2g + 2 is mentioned a real hyperelliptic curve. This statement about genus 
remains true for g = 0 or 1, but those curves are not called "hyperelliptic". Rather, the case g = 1 (if we choose a 
distinguished point) is an elliptic curve. All curves of genus 2 are hyperelliptic, but for genus ≥ 3 the generic curve 
is not hyperelliptic.  Hyperelliptic curves can be used in cryptosystems based on the discerete logarithm problem 
[40]. The security of hyperelliptic cryptosystems is based upon the difficulty of solving the discrete logarithm 
problem in the Jacobian of the curve. 
 
 
11.   ECC implementation 

ECC can be implemented in software and hardware [37]. Software ECC implementation provide moderate 
speed, higher power consumption and also have very limited physical security w.r.t key storage. Where as hardware 
implementation improves performance in terms of flexibility. Also hardware implementation provides greator 
security since they cannot be easily modified or read by an outside attacker. [38] specified an approach to combine 
the advantages of software and hardware in new paradigm of computation referred as reconfigurable computing. 
 
12.    Implementation issues in ecc 

The most time consuming operation in ECC cryptographic schemes is the scalar multiplication (kP). 
Efficient hardware and software implementation of scalar multiplication have been the main research topic on ECC 
in recent years.  [38] shows elliptic curve scalar multiplication according to three layers. Upper layer shows different 
algorithm to perform the multiplication. In middle layer there are several combinations for finite field representation 
and coordinate system. The lower level is about finite field operation and arithemetic. An efficient implementation 
of ECC over binary Galois field in normal and polynomial bases has been proposed by Ester and Henies [39]. 
 
 
13.     Conclusion 

Although ECC is a promising candidtate for public key cryptosystem, its security has not been completely 
evaluated. The ECC has been shown to have many advantages due to its ability to provide the same level of security 
as RSA yet using shorter keys. Implementing ECC with the combination of software and hardware is advantages as 
it provides flexibilty and good performance. Its disadvantage is its lack of maturity, as mathematicians believe that 
not enough research has been done in ECDLP. In particular, isogenies can be used as a one way function that can be 
used in these cryptographic primitives. However, this is now a deep and popular area of research. Also it hs been 
found that  hyperelliptic  curves of higher genus are potentially insecure from a cryptographic point of view[48], yet 
the researchers are trying to prove it better than ECC. 
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