Performance Evaluation of Channel Estimation in OFDM System for Different QAM and PSK Modulations

Surinder Singh, Hari Ram, Sandeep Singh Gill*
Sant Longowal Institute of Engineering & Technology, Longowal, Sangrur, Punjab, India
*Department of ECE, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
e-mail: surinder_sodhi@rediffmail.com

Abstract

To recover accurate transmitted data at the receiver end, the information regarding channel state derived from channel estimation methods play a very important role in any communication system. In this paper the performance evaluation of different types of QAM and PSK modulations with three different channel estimation methods in OFDM system for wireless communication in frequency domain for slow fading channel is compared. The results must be useful in OFDM based applications like IEEE 802.16(d) and equivalent standards.

Keywords: OFDM, QAM, PSK, modulations

1. Introduction

A title of An orthogonal frequency division multiplexing (OFDM) is an efficient high data-rate, having advantages of high spectrum efficiency, simple & efficient implementation by using the fast Fourier transform (FFT) & the inverse FFT (IFFT), mitigation of inter symbol Interference by inserting a cyclic prefix (CP) and robustness to frequency selective fading channels transmission technique for wireless communication[1].

Any channel estimation technique is used to evaluate the performance of the channel to know its behaviour during the transmission of data under different conditions and for different type of modulations. The channel estimation can be done either block type pattern in which the pilot tones are inserted in all subcarriers of an OFDM symbols, periodically or comb type pattern in which pilot tones are inserted in each individual OFDM data block & channel is estimated in all OFDM symbols [2], known as pilot symbol assisted (PSA) estimation. Block type pattern is suitable for slow-fading assuming channel characteristics are stationary. For comb type pilot pattern and fast fading channel the estimation can be done by interpolation methods like linear, cubic, spline and second order interpolations [1].

In this paper, a comparative study of different types of quadrature amplitude modulation (QAM) and phase shift keying (PSK) modulations with least square (LS), linear minimum mean square error (LMMSE) and modified minimum mean square error (Mod MMSE) channel estimation techniques applied to OFDM systems for the purpose of detecting the received signal, improving the throughput of orthogonal frequency-division multiple-access (OFDMA) systems. Different experts have put efforts to exploit channel estimators for OFDM systems. They are primarily categorized into two branches, depending on whether the fading and dispersive channel is treated as stationary within an OFDM symbol period or not [3-10]. First, when the OFDM symbol duration is much smaller than the channel coherence time, the fading channel is viewed as stationary within one OFDM symbol. This paper elaborates the channel estimation for such a channel situation. The technique is also be useful to provide wireless last mile broadband access in Metropolitan Area Network, delivering performance comparable to traditional cable, DSL or T1 offerings [6, 11-17]

2. System Model

The system model of simulated OFDM Trans-receiver [1] is depicted in figure 1. At transmitter end, the modulator generates Ns data symbols Sn, 0< n <Ns-1 which are multiplexed to the Nc (Ns≤Nc) subcarriers [7]. The time domain samples Sn transmitted during one OFDM symbol are generated by inverse fast Fourier transformation (IFFT) and transmitted over the channel after inserting the cyclic prefix (CP). In this research our multicarrier system employs 256 subcarriers and cyclic prefix (CP) length of 64. The result of OFDM transmitter will be sent through the multipath fading channel to the receiver.

At the receiver side, the cyclic prefix is removed from the received time-domain samples, and fast Fourier transformation (FFT) is carried out on the data samples yn, in order to achieve the received data symbols Yn frequency-domain. This received signal Yn characterizing one OFDM symbol can be written in frequency domain in matrix form as

\[ Y = XH + W \]  

(1)

Received Nov 5th, 2011; Revised Nov 29th, 2011; Accepted Dec 13th, 2011
where X is transmitted symbol, H is channel transfer function, W is additive white Gaussian noise.

\[ X = \text{diag}(X_0, \ldots, X_{N_c-1}) \]
\[ H = [H_0, \ldots, H_{N_c-1}]' \]
\[ W = [N_0, \ldots, N_{N_c-1}] \]

\( N_c \) is the number of subcarriers in an OFDM symbol.

3. Channel Estimation Techniques

We have to find the channel transfer function. The impulse response of the multipath fading channel is given by:

\[ h(t, \tau) = \sum_m a_m \delta(t - \tau(m)) \]  
(2)

Where \( \tau(m) \) is the multipath delay spread factor. Considered that the channel is almost stationary within one symbol period, and then the frequency domain channel transfer function at subcarrier k is given by:

\[ H_k = \sum_m a_m e^{j2\pi \tau(m)k/N} \]  
(3)

The equivalent discrete time channel impulse response due to the time domain sampling effect can be taken as under:

\[ g_n = \frac{1}{N} \sum_{k=-N/2}^{N/2} H_k e^{j2\pi nk/N} \]  
(4)

After simplification, we get

\[ g_k = \frac{1}{\sqrt{N}} \sum_m a_m e^{j2\pi(k+(N-1)\tau(m))/N} \sin(\pi \sin(r(m)-k)/N) \]  
(5)

The channel transfer function can be obtained by taking the fast Fourier transformation of \( g_k \).

3.1 Least Square Based Estimation

In this estimation the weighted errors between the measurements and the model are minimized [6-7]. In block type pilot arrangement where pilots are inserted in all subcarriers of an OFDM symbol, LS estimator channel transfer function can be written as:

\[ H_{LS} = X^{-1}Y = [X_0^{-1}Y_0, X_1^{-1}Y_1, X_2^{-1}Y_2, \ldots, X_{N_c-1}^{-1}Y_{N_c-1}] \]  
(6)

Where \( N_c \) is the number of subcarriers.
3.2 Linear Minimum Mean Square Error Estimation (LMMSE)
In general the Channel Autocorrelation matrix is expressed as:

\[ R_{hp,hp} = \mathbf{E}[\mathbf{H}_p\mathbf{H}_p]^H \]  \hspace{1cm} (7)

where

\[ \mathbf{E}\{\mathbf{H}_m\mathbf{H}_n\} = \begin{cases} \ldots, & \text{for } (m=n) \\ 1-e^{j2\pi(m-n)/N}, & \text{for } (m\neq n) \end{cases} \]  \hspace{1cm} (8)

Note that for an exponentially decaying multipath power-delay profile (\(\Phi(\tau) = e^{-\tau/\tau_{rms}}\)) the correlation between \(K_1\)-th and \(K_2\)-th subcarriers \(r_k(k_1, k_2)\) can be expressed as:

\[ R_k(k_1, k_2) = \frac{1-e^{-2\pi(k_1-k_2)/N}}{\tau_{rms}(1-e^{-2\pi(k_1-k_2)/N})(1/\tau_{rms})} \]  \hspace{1cm} (9)

Where \(L\) is the length of cyclic prefix, \(\tau_{rms}\) is RMS delay spread factor of the channel [1]. If \(R_{HH}\) is given as

\[
\begin{bmatrix}
    r_h(0,0) & r_h(0,1) & \cdots & r_h(0,N_c-1) \\
    r_h(1,0) & r_h(1,1) & \cdots & r_h(1,N_c-1) \\
    \vdots & \vdots & \ddots & \vdots \\
    r_h(N_c-1,0) & r_h(N_c-1,1) & \cdots & r_h(N_c-1,N_c-1)
\end{bmatrix}
\]

Based on the knowledge of the auto-correlation matrix, the channel transfer function can be written for LMMSE estimator as:

\[ H_{MMSE} = R_{HH} (R_{HH} + I \frac{\beta}{SNR})^{-1} H_{LS} \]  \hspace{1cm} (10)

Where \(I\) is an Identity matrix and

\[ \beta = \mathbf{E}\{|X_k|^2\} \mathbf{E}\{\frac{1}{|X_k|^2}\}, \ k=0,1,...N_{c-1} \]  \hspace{1cm} (11)

\(\beta\) is a constant value depending on the modulation type. In our case \(\beta=1\) [6].

3.3 Modified MMSE Estimation
The equation of channel transfer function can be written as:

\[ H_{MMSE} = A H_{LS} \]  \hspace{1cm} (12)

where \(A\) is a weight matrix defined as:

\[ A = R_{HH} (R_{HH} + I \frac{\beta}{SNR})^{-1} \]  \hspace{1cm} (13)

If \(R_{HH}^{\text{Mod}}\) is give as:

\[
\begin{bmatrix}
    r_h(0,0) & r_h(0,1) & r_h(0,2) & 0 & 0 & 0 & 0 & 0 \\
    r_h(1,0) & r_h(1,1) & r_h(1,2) & 0 & 0 & 0 & 0 & 0 \\
    0 & r_h(1,0) & r_h(1,1) & \eta_h(1,2) & 0 & 0 & 0 & 0 \\
    0 & 0 & r_h(3,0) & \eta_h(3,1) & \eta_h(3,2) & 0 & 0 & 0 \\
    \vdots & \vdots \\
    0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
    0 & 0 & 0 & 0 & 0 & 0 & 0 & \eta_h(1,0) \eta_h(1,1) \eta_h(1,2)
\end{bmatrix}
\]

Then \(A\) can be modified as:
$$A_{\text{Mod}} = R_{\text{IH}}^{\text{Mod}} (R_{\text{IH}}^{\text{Mod}} + I \beta/\text{SNR})^{-1} \quad (14)$$

To modify the autocorrelation channel matrix, a significant number ($Z$) out of $N$ subcarriers is considered for computations [1] to reduce the rank of this matrix by assigning the zero values to non-significant coefficients. Therefore, the Modified channel transfer function is:

$$H_{\text{MMSE}}^{\text{Mod}} = A_{\text{Mod}} H_{\text{LS}} \quad (15)$$

It can be seen from above equation that the calculation of $A_{\text{Mod}}$ contains two steps: i) inverting an $N \times N$ matrix. ii) Multiplying the yield matrix and $N \times N$ matrix.

4. Simulation Results

The symbol error rate is calculated in LS, LMMSE, and Modified MMSE methods in frequency domain for 500 iterations. The performance comparison of channel in terms of symbol error rate and signal to noise ratio for different QAM and PSK modulations has been obtained. In modified MMSE method, a number significant ($Z$) has considered for calculating the channel transfer function ($H$) at reduced rank of autocorrelation matrix by assigning zero values to non-significant elements. So, the final computation takes place only for the significant elements near to main subcarrier. Hence the computational complexity of LMMSE algorithm is reduced without loss of MSE performance. We consider two paths with non integer sampling interval of 0.5 and 3.5 micro seconds. The impulse response of the multipath fading channel is given by:

$$h(\tau, t) = \sum h_m(t) \delta(t - \tau_m) \quad (15)$$

Where, $h_m(t)$ and $\tau_m$ are the gain and delay of the multipath. In Simulation, we considered

$$h(\tau, t) = \delta(t-0.5T_s) + \delta(t-3.5T_s) \quad (16)$$

![Figure 2. Performance comparison of QAM symbol error rate.](image)
Figure 3. Performance comparison of 4QAM symbol error rate.

Figure 4. Performance comparison of 8QAM symbol error rate.
Figure 5. Performance comparison of 16QAM symbol error rate.

Figure 6. Performance comparison of 32QAM symbol error rate.
The simulations are carried through for channel estimation methods with the aid of pilot symbols insertion. The model parameters are given as under

<table>
<thead>
<tr>
<th>Parameter /Specifications for OFDM system for QAM &amp; PSK modulations</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Parameter</strong></td>
</tr>
<tr>
<td>No. of Subcarriers</td>
</tr>
<tr>
<td>FFT size</td>
</tr>
<tr>
<td>Length of Guard Interval</td>
</tr>
<tr>
<td>Modulation type</td>
</tr>
<tr>
<td>Pilot Type</td>
</tr>
<tr>
<td>Significant Number (Z) for Modified MMSE Method.</td>
</tr>
<tr>
<td>Channel Model</td>
</tr>
<tr>
<td>Number of Iterations</td>
</tr>
</tbody>
</table>

5. **Results Discussions**

In Figures 2 to 13, shows the symbol error rates of different types of quadrature amplitude modulation (QAM) and phase shift keying (PSK) as per conditions in Table 1 parameters for 256 subcarriers with three methods of channel estimation along with insertion of pilot tones block type assuming the channel characteristics are stationary. The channel correlation matrix $R_{HH}$ for LMMSE method consists of 256 coefficients & the modified MMSE method considered 105/90 coefficients by assigning zero values to the non-significant coefficients of the $R_{HH}^{modified}$ matrix.

Results showed that in frequency domain estimation the use of LMMSE estimator performs significantly better than the LS estimator and modified MMSE gives better or equivalent performance with suitable significant number for channel weight matrix. The modified MMSE has a significant advantage of reduced computational complexity. Further, the results showed that symbol error rate increases with the higher order of modulations.
Figure 8. Performance comparison of BPSK symbol error rate.

Figure 9. Performance comparison of QPSK symbol error rate.
Figure 10. Performance comparison of 8PSK symbol error rate.

Figure 11. Performance comparison of 16PSK symbol error rate.
Figure 12. Performance comparison of 32PSK symbol error rate.

Figure 13. Performance comparison of 64PSK symbol error rate.
6. Conclusion

In this paper different QAM and PSK modulations with LS, LMMSE and Modified MMSE channel estimation approaches in frequency domain have come under investigation. Results showed that in frequency domain estimation the use of LMMSE estimator performs significantly better than the LS estimator and modified MMSE gives better or equivalent performance with suitable significant number to the LMMSE. Further, the results showed that symbol error rate increases with the higher order of modulations and PSK modulations involved lesser computations than QAM modulations.

References


Bibliography of author

Surinder Singh born in Hoshiarpur (Punjab), India, on December 27, 1975. He received the B.Tech. degree from Dr B. R. Ambedkar Regional Engineering College, Jalandhar in 1997 and M.Tech. degree from Guru Nanak Dev Engineering College, Ludhiana in 2003. He obtained the Ph.D. degree from Thapar University, Patiala, India. His field of interest is optical amplifier for optical communication system & Networks, wavelength converters. He is a Senior Lecturer in Giani Zail Singh College of Engineering and Technology, Bathinda (Punjab), India from 1998 and now acts as Associate Professor at Sant Longowal Institute of Engineering and Technology, Longowal, Sangur, Punjab, India in the Department of Electronics and Communication Engineering. He has over 70 research papers out of which 19 are in international journals and 51 are in international and national conferences. Mr. Singh is a member of Indian Society for Technical Education, Institution of Engineers (India).