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 This research focuses on the k-center problem and its applications. Different 

methods for solving this problem are analyzed. The implementations of an 

exact algorithm and of an approximate algorithm are presented. The source 

code and the computation complexity of these algorithms are presented and 

analyzed. The multitasking mode of the operating system is taken into 

account considering the execution time of the algorithms. The results show 

that the approximate algorithm finds solutions that are not worse than two 

times optimal. In some case these solutions are very close to the optimal 

solutions, but this is true only for graphs with a smaller number of nodes. As 

the number of nodes in the graph increases (respectively the number of 

edges increases), the approximate solutions deviate from the optimal ones, 

but remain acceptable. These results give reason to conclude that for graphs 

with a small number of nodes the approximate algorithm finds comparable 

solutions with those founds by the exact algorithm. 
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1. INTRODUCTION 

Graph theory is a field of computer science that has constantly been evolving in recent years [1]. 

Graphs are very useful data structures [2]. They are used to describe and study various relationships of  

real-world objects [3], [4]. Complex problems can be visually and effectively presented and solved through 

the graphs. For this purpose it is necessary to select the appropriate data structures and to use the appropriate 

algorithms [5], [6]. Typically, these problems are solved by a computer running a specific application 

program that executes a specific algorithm. This determines the great interest of researchers in synthesizing, 

analyzing and implementing various algorithms for solving the problems described by graphs. This process 

also includes the creation of application programs developed through the relevant programming 

environments and languages [7]. 

Finding centers in graphs is a classic NP-hard problem [8]. This problem is being actively studied, 

as are various algorithms for solving it [9]–[11]. Different variants and versions of the problem are described 

in the scientific literature [12]–[15]. Some of these variants are based on non-smooth optimization techniques 

[13], others are related to restricted covering problem [16] and fixed-parameter approximations in 

transportation networks [17], [18], as well as those applied in trees [19]. In [20] a detailed overview of the 

various methods and algorithms used to solve this problem is given. They are mainly used for problems 

related to locating different types of objects [21]–[26]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The graph G can be represented as the set that contains two other sets V and E. The set V contains 

the vertices (or also called nodes), and the set E contains the edges that connect some pairs of vertices. 

Analytically, this can be represented as G=(V, E), where V={v1, v2, ..., vn} is a set of vertices, and  

E={e1, e2, ..., em} is a set of undirected edges. The sets V and E are finite. If each element ek, (k=1, 2, ..., m) 

is an ordered pair (v, u), as v, u ∈ V, then the graph is called directed, and the set of edges is denoted by A, as 

the corresponding directed edges are called arcs. In this case, the vertex v is the beginning of the arc, and the 

vertex u is the end of the arc. If a value is mapped to each edge, then the graph is called weighted [27], [28]. 

Once these notations are entered, the problem of finding a center in a graph can also be defined. If a 

connected undirected graph G=(V, E) is given, it is necessary to find a vertex v ∈ V such that the distance 

from it to the farthest vertex (for example u) is minimal, i.e., distance(v, u)=minimum. In this case, the vertex 

v is called the center of the graph, and the distance from the vertex u to the vertex v (i.e., distance (v, u)) is 

called the radius of the graph [1], [29]. 

When the graph is connected and directed, i.e., G=(V, A), first, the length of the minimum path from 

vertex v to vertex u, i.e. distance(v, u)=minimum must be found. This is the shortest way to the farthest 

vertex of v. Then, the length of the minimum distance from all other vertices to the vertex v, i.e.,  

distance(u, v)=minimum, for each u ∈ V must be found. Since in this case the graph is directed, it is possible 

that the two paths from v to u and from u to v are different (as a length and as a sequence of vertices). The 

vertex v is called the outer center of the graph G, and the vertex u is called the inner center of the graph G. In 

this case, the minimum total distance of distance(v, u)+distance(u, v) is calculated. This distance is calculated 

for each pair of vertices v, u. The vertex x for which this distance is minimal is the center of the graph G. The 

shortest paths in the graph are calculated according to Floyd's algorithm. Once these distances have been 

calculated, the center and the radius are determined according to the definition. When looking for more 

centers in the graph, for example k, it is necessary to find the set C={c1, c2, ..., ck}, such that for any vertex i 

the longest distance from it to one of the centers is minimal. In this case, the distances obtained after 

generating all k-element subsets C of V are checked. There are different algorithms for solving the problem, 

both exact [15] and approximate [17], [30]. 

In the present study, a modification of the problem of finding k centers in graphs will be studied. If 

the set of all vertices in the graph into two disjoint subsets V and N is divided, then the elements in the set N 

will be nodes, and the elements in the set V will be vertices. The distribution of the elements is such that each 

element of the set V is located in close proximity to at least one of the elements in the set N (i.e., near one or 

more nodes). Proximity is determined by the epsilon threshold (e.g., 50 meters, 50 pixels, depending on the 

actual object being represented). In this case, the problem of finding centers in the graph is reduced to finding 

centers only among the elements that belong to the set N, i.e., only between nodes. 

 

 

2. RESEARCH METHOD 

In this section, three algorithms for solving the k-center problem will be implemented. These 

algorithms use both local and global data structures. The global variables NodeCount and KRadius (of 

Integer type) store the number of nodes in the current graph and the length of its radius, respectively. The 

two-dimensional FloydMatrix array (of Integer type) stores the lengths of the shortest paths between each 

pair of nodes in the graph. The one-dimensional arrays Centers and KCenters (of Integer type) store the 

combinations of the indexes of the nodes that the exact algorithm generates (the Centers array) and the 

indices of the centers in the graph (the KCenters array). The one-dimensional array UsedNodes array (of 

Boolean type) is used by the approximate algorithm to mark the nodes that have been tested for potential 

centers in the graph. Figure 1 shows the source code of the FindGraphCenter procedure. 

 

 
01 procedure FindGraphCenter; 

02 begin 

03 │ var CenterIndex: Integer: = 0; 

04 │ var MinRadius: Integer: = MaxInt; 

05 │ for var FRow: Integer: = 1 to NodeCount do begin 

06 │ │ var MaxRadius: Integer := FloydMatrix[FRow, 1]; 

07 │ │ for var FCol: Integer := 1 to NodeCount do begin 

08 │ │ │ if (FRow <> FCol) and (FloydMatrix[FRow, FCol] > MaxRadius) then 

09 │ │ │   MaxRadius := FloydMatrix[FRow, FCol]; 

10 │ │ end; 

11 │ │ if (MaxRadius < MinRadius) then begin 

12 │ │ │ MinRadius := MaxRadius; CenterIndex := FRow; end; 

13 │ end; 

14 end; 

 

Figure 1. Source code of the FindGraphCenter procedure 
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The FindGraphCenter procedure does not receive any input parameters because it is designed to 

search only one center in a graph. This procedure uses the global variable NodeCount (of type Integer) and 

the global two-dimensional array FloydMatrix (containing elements also of type Integer). The Floyd matrix 

contains the lengths of the shortest paths between each pair of nodes in a particular graph. The three local 

variables of type Integer-CenterIndex, MinRadius and MaxRadius (lines 03, 04, and 06) are declared in the 

body of the procedure FindGraphCenter. The variable CenterIndex stored index of the node fulfills the 

condition for the center of the graph. The variables MinRadius and MaxRadius are used to store the lengths 

of the smallest and largest radiuses found for each node in the graph.  

The search for the center of the graph is performed by iterating the Floyd matrix, which is realized 

by two nested loops - one for iterating the rows (line 05) and one for iterating the columns (line 07). Initially, 

the MinRadius variable is initialized with a value equal to the MaxInt constant (i.e., a value of 2147483647). 

This value is the largest possible value for a 32-bit Integer type (representing infinity in this case). The 

FindGraphCenter procedure checks each cell in the Floyd matrix (which is not a loop in the graph, i.e., a cell 

of the type FRow=FCol) comparing its value with the current value of the local variable MaxRadius. Thus, 

the FindGraphCenter procedure finds the farthest node from the current one (indicated by the value of the 

FRow variable) and stores this value in the MaxRadius variable (lines 07-09). If the value of the MaxRadius 

variable is less than the value of the MinRadius variable, then the MaxRadius value is copied to the 

MinRadius variable and the value of the FRow variable is stored in the CenterIndex variable. In this case, the 

variable FRow stores the current index of a node in the graph at which a smaller radius was found (lines 11-

12). Thus, after performing the FindGraphCenter procedure, the index of the node, which is the center of the 

graph, will be stored in the CenterIndex variable, and the value of the radius of the graph will be stored in the 

MinRadius variable. The complexity of this process is quadratic and is determined by the two nested loops 

that traverse the FloydMatrix matrix in rows and columns. The number of these rows and columns is 

determined by the value of the global variable NodeCount. It represents the number of nodes in each graph. 

Figure 2(a) shows the source code and Figure 2(b) the flowchart of the ExactFindCenters recursive 

procedure. This procedure generates all possible combinations (without repetition) of NodeCount elements of 

k-th class. NodeCount is the number of nodes in the analyzed graph, and k is the number of searched centers. 

 

 

 
(a) 

 
(b) 

 

Figure 2. The ExactFindCenters recursion procedure shown in (a) source code and (b) flowchart 

 

 

Before starting the ExactFindCenters procedure, the shortest path lengths between each pair of 

nodes in the graph are calculated. This step is similar to the FindGraphCenter procedure which is used to 

search only one center in a graph. The idea of searching for multiple centers in a graph (in this case k) is the 

same as searching for one center. This idea is implemented in the ExactFindCenters procedure (lines 03-20). 

The difference in searching for more centers is that for each node the greatest distance is minimized not to 
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exactly one specific center, but to one among several possible ones. Thus, from all the longest distances from 

a node to each center, the minimum distance is selected. The selection of the analyzed centers is made by 

generating all possible combinations of k nodes from all available ones. Each subsequent combination is 

generated by recursively calling the ExactFindCenters procedure (line 22). The number of searched centers 

(the variable CenterCount), the next element of the subset of the analyzed centers (the variable K + 1) and the 

next analyzed node (the variable Node + 1) are passed to this procedure as input parameters. 

The complexity of this procedure is determined by the number of searched centers (set by the value 

of the CenterCount parameter). This forms the number of all possible combinations of NodeCount elements 

of class k-th. For each generated combination, two nested loops are performed (lines 8-10) to minimize the 

longest distance from a node to some of the centers. In the analysis of the computational complexity, the 

generation of the Floyd matrix must be taken into account, which is done with a cubic complexity determined 

by the number of nodes in the graph, i.e., NodeCount3. Figure 3(a) shows the source code and Figure 3(b) 

shows the flowchart of the ApproximateFindCenters procedure. This code implements an approximate 

algorithm for finding k-centers in a graph. 

 

 

 
(a) 

 
(b) 

 

Figure 3. The ApproximateFindCenters procedure shown in (a) source code and (b) flowchart 

 

 

When performing this algorithm, one node (the first center of the required k) is initially randomly 

selected. In this case, this is a node with index 1, which is noted in the arrays Centers and UsedNodes  

(line 3). Each subsequent center is selected so that it is furthest from the already selected centers. This is done 

by traversing the nodes in the graph that have not yet been marked as used (line 9). For each of these nodes, 

the distance from it to the nearest center is checked in the Floyd matrix (among the selected so far,  

(lines 11-13). Finally, among all the shortest distances the longest one is stored (lines 14-15). Thus, the next 

searched center in the graph is located. The computational complexity of this approximate algorithm is 

quadratic and is determined by the number of nodes in the graph and the number of centers [8]. 

 

 

3. RESULTS AND DISCUSSION 

The purpose of the experiments is to study the behavior of the algorithms presented in section 2. 

These algorithms were tested on pre-generated graphs (randomly). The aim is to determine the influence of 

the number of nodes (respectively the number of edges in a graph) on the time for finding the exact and 

approximate number of centers. It is necessary to research experimentally for which graphs (in terms of a 

number of nodes and edges) the exact algorithm can be used to find the optimal solution. The optimal 

solution is the minimum radius of a graph. In addition, a comparative analysis between the implemented 

algorithms in terms of solutions found and the execution time needs to be made as well. 

 

3.1.  Development of an application for conducting the experiments 

A specialized application (named k-center analyzer) was developed for the experiments in this 

study. An example session of working with the k-center analyzer software is shown in Figure 4. The k-center 
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analyzer offers a wide range of functions that were used in conducting experiments. It provides the ability to 

work with graph-type data structures, as well as the implementation of algorithms for finding centers in 

graphs. The main functions are: creation and editing of graph type structures; maintaining interactive lists of 

nodes, vertices and edges; maintaining the adjacency and the Floyd matrix; implementation of an exact and 

an approximate algorithm for finding k-centers in a graph and visualization of the results. 

 

 

 
 

Figure 4. Example session of working with the k-center analyzer software 

 

 

The main window of the k-center analyzer application is divided into six sections node (vertex) list, 

edge list, adjacency matrix, floyd matrix, graph designer, and message window. Using draw grids the 

application visualizes the contents of the dynamic arrays that contain information about the nodes (vertices) 

and edges in the graph. The adjacency matrix and the floyd matrix are also represented with draw grids. The 

user can use the control buttons to select the application mode, for example, to add or remove a vertex, node, 

center or edge, to search by index in the list of vertices or edges and many others. The graph designer tool 

provides the ability to create and modify a graph by adding and arranging the elements of the graph-vertices, 

nodes and edges. The message window displays specific information after the execution of certain functions 

by the application for example, the time to generate the floyd matrix, the execution time of an algorithm, and 

the result obtained after the execution of this algorithm. 

 

3.2.  Experimental results 

The results were generated by the k-center analyzer application. The k-center analyzer was run on a 

computer with 64-bit Win 10 Pro OS with processor: AMD Ryzen 3 Pro 4350 G 3.8 GHz, RAM 16 GB 

(DDR4-2133), SSD 480 GB. For the experiments 14 graphs were generated randomly, respectively with 20, 

30,..., and 150 nodes. Table 1 shows detailed information for those graphs. 

The columns "Graph (G)", "Nodes (N)", "Edges (E)", "Vertices (V)", and "Arcs (A)" in Table 1 

show, respectively, the name of the graph, the number of nodes, the number of edges, the number of vertices 

and the number of arcs. The value E/N shows the ratio between the number of edges and the number of 

nodes. It is noticed that when the number of nodes increases, this ratio also increases. The value A/V shows 

the ratio between the number of arcs and the number of vertices. It is observed that as the number of vertices 

increases, this ratio also increases. The values N/V show the ratio between the number of nodes and the 

number of vertices (in percentages). For each graph, this ratio shows what percentage the nodes relative to 

the vertices is. It can be seen that when the number of nodes increases, the number of vertices decreases. A 

similar trend is observed in the ratio between the edges and the arcs ("Ratio (E/A)" column). 
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Table 2 shows the execution times of the exact algorithm for all 14 analyzed graphs. For each graph, 

4 tests were performed, one for each of the four different cases: 2-center, 3-center, 4-center and 5-center. The 

purpose of this analysis is to determine experimentally how the number of nodes in each graph influences on 

the execution time of the exact algorithm. The chart in Figure 5 shows the effect of increasing the number of 

nodes (the x-axis) on the execution time of the exact algorithm (the y-axis in milliseconds). 

 

 

Table 1. Detailed information about the analyzed graphs 
Graph (G) Nodes (N) Edges (E) Vertices (V) Arcs (A) Ratio (E/N) Ratio (A/V) Ratio (N/V) Ratio (E/A) 

G1 20 46 64 202 2.30 3.16 31.25% 22.77% 

G2 30 123 111 603 4.10 5.43 27.03% 20.40% 

G3 40 174 164 922 4.35 5.62 24.39% 18.87% 

G4 50 312 225 1 778 6.24 7.90 22.22% 17.55% 

G5 60 394 294 2 403 6.57 8.17 20.41% 16.40% 

G6 70 571 378 3 769 8.16 9.97 18.52% 15.15% 

G7 80 794 464 5 637 9.93 12.15 17.24% 14.09% 

G8 90 1 023 558 7 570 11.37 13.57 16.13% 13.51% 

G9 100 1 292 670 10 207 12.92 15.23 14.93% 12.66% 

G10 110 1 473 759 12 079 13.39 15.91 14.49% 12.19% 

G11 120 1 765 852 14 650 14.71 17.19 14.08% 12.05% 

G12 130 2 079 949 17 672 15.99 18.62 13.70% 11.76% 

G13 140 2 432 1 064 21 402 17.37 20.11 13.16% 11.36% 

G14 150 2 917 1 155 25 961 19.45 22.48 12.99% 11.24% 

 

 

Table 2. Execution time of the exact algorithm for the analyzed graphs 
Graph Title 2-Centers 3-Centers 4-Centers 5-Centers 

time (ms) (h, min, s) time (ms) (h, min, s) time (ms) (h, min, s) time (ms) (h, min, s) 

G1 0 < 0.01 s 16 0.02 s 31 0.03 s 110 0.11 s 

G2 0 < 0.01 s 31 0.03 s 219 0.22 s 1 453 1.45 s 

G3 0 < 0.01 s 93 0.09 s 1 015 1.02 s 9 515 9.51 s 

G4 0 < 0.01 s 219 0.22 s 3 265 3.27 s 38 156 38.16 s 

G5 15 0.02 s 454 0.45 s 8 641 8.64 s 111 016 1 min, 51 s 

G6 31 0.03 s 844 0.84 s 18 875 18.88 s 282 172 4 min, 42 s 

G7 38 0.04 s 1 437 1.44 s 38 422 38.42 s 642 578 10 min, 43 s 

G8 47 0.05 s 2 360 2.36 s 65 922 1 min, 6 s 1 316 266 21 min, 56 s 

G9 78 0.08 s 3 641 3.64 s 113 594 1 min, 54 s 2 464 563 41 min, 05 s 

G10 94 0.09 s 5 187 5.19 s 188 766 3 min, 9 s 4 386 844 1 h, 13 min 

G11 125 0.13 s 8 344 8.34 s 309 750 5 min, 10 s 7 894 859 2 h, 12 min 

G12 157 0.16 s 9 390 9.39 s 385 234 6 min, 25 s 11 642 828 3 h, 14 min 

G13 203 0.20 s 12 609 12.61 s 555 719 9 min, 16 s 18 132 156 5 h, 02 min 

G14 267 0.27 s 18 735 18.74 s 985 346 16 min, 25 s 31 164 652 8 h, 39 min 

 

 

  
 

Figure 5. Influence of increasing the number of nodes (x-axis) in each graph on the execution time 

(y-axis in logarithmic scale with base 2) of the exact algorithm 

 

 

From the values in Table 2 and the chart of Figure 5 it can be seen that with a linear increase the 

number of nodes in a graph when searching for 5 centers, the time to execute the exact algorithm increases 
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exponentially. The aim of the second experiment is to compare and analyze the results of the two algorithms 

(exact and approximate). The execution time of the approximate algorithm is relatively short (for all studied 

graphs) and therefore will not be discussed. For each of the studied graphs and number of centers, the ratio 

between the solution found by the approximate algorithm (A) and the exact algorithm (E) is calculated. This 

ratio is presented in Table 3 in the columns named "A/E" (Approximate/Exact ratio). These values show the 

deviation of the found solution from the approximate algorithm to the found solution from the exact one (for 

each of the analyzed graphs: G1-G14). 

The values in the "A/E" columns in Table 3 should be interpreted as follows: a value of 1.00 means 

that the solution found by the approximate algorithm coincides with the solution found by the exact 

algorithm. A value of 2.00 means that the solution found by the approximate algorithm is exactly 2 times 

worse than the optimal solution found by the exact algorithm. The results show that all values in the columns 

"A/E" are in the range 1.01 and 1.90. This means that when the number of searched centers increases 

linearly, the radiuses of the graphs decrease linearly. 

 

 

Table 3. Summarized results after the execution of the exact algorithm and the approximate algorithm. 
Graph Title 2-Centers 3-Centers 4-Centers 5-Centers 

Exact Approx. A/E Exact Approx. A/E Exact Approx. A/E Exact Approx. A/E 

G1 412 492 1.19 361 363 1.01 199 347 1.74 170 250 1.47 

G2 296 446 1.51 283 420 1.48 219 244 1.11 189 224 1.19 

G3 414 543 1.31 339 460 1.36 248 332 1.34 221 318 1.44 

G4 349 417 1.19 279 384 1.38 210 347 1.65 205 301 1.47 

G5 381 632 1.66 308 518 1.68 243 384 1.58 207 307 1.48 

G6 363 574 1.58 302 536 1.77 242 388 1.60 207 309 1.49 

G7 355 644 1.81 302 488 1.62 229 367 1.60 207 294 1.42 

G8 362 577 1.59 299 392 1.31 242 370 1.53 198 283 1.43 

G9 368 604 1.64 321 418 1.30 234 339 1.45 214 297 1.39 

G10 341 594 1.74 295 466 1.58 225 355 1.58 200 305 1.53 

G11 366 611 1.67 314 598 1.90 229 415 1.81 202 293 1.45 

G12 364 600 1.65 318 495 1.56 231 364 1.58 212 304 1.43 

G13 361 579 1.60 322 553 1.72 222 377 1.70 200 282 1.41 

G14 356 583 1.64 317 516 1.63 227 372 1.64 196 276 1.41 

 

 

4. CONCLUSION 

In this paper, a research of the k-center problem hase been presented. Various methods and 

algorithms to its solution have been analyzed. The implementations of two algorithms (one exact and one 

approximate) have been also described. The definitions of the dynamic data structures one-dimensional 

arrays and two-dimensional arrays (matrices) have been shown as well. The codes of the algorithm 

procedures have been implemented and analyzed. When considering the execution time of the algorithms, the 

multitasking mode of operation of the operating system ihas been taken into account. The methodology for 

the experiments, the aim of the research, and the conditions for implementing the experiments have been 

described. For the experiments, fourteen graphs were generated randomly. The ratios between the number of 

edges and the number of nodes, the number of arcs and the number of vertices, the number of nodes and the 

number of vertices, and the ratio between the edges and the arcs were calculated. A software was developed 

for this research. It implemented the described algorithms. Its main functions have been presented as well. 

All the results in this research were generated by this software. From the results it can be concluded that the 

approximate algorithm finds solutions that are not worse than 2 times optimal. These solutions in some cases 

are very close to the optimal solutions, but this is true only for graphs with a smaller number of nodes, 

respectively edges, such as for graphs G1-G4. As the number of nodes in the graph increases (respectively 

the number of edges), the approximate solutions found deviate from the optimal ones, but remain acceptable, 

for example in graphs G5-G9. These results give reason to conclude that for graphs with a smaller number of 

vertices (respectively edges) the approximate algorithm finds comparable solutions with those of the exact 

algorithm, even for a larger number of centers. In addition, the execution time of the approximate algorithm 

is significantly less than the execution time of the exact algorithm. 
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