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 Real-time inspections for the large-scale solar system may take a long time 

to get the hazard situations for any failures that may take place in the solar 

panels normal operations, where prior hazards detection is important. 

Reducing the execution time and improving the system’s performance are 

the ultimate goals of multiprocessing or multicore systems. Real-time video 

processing and analysis from two camcorders, thermal and charge-coupling 

devices (CCD), mounted on a drone compose the embedded system being 

proposed for solar panels inspection. The inspection method needs more 

time for capturing and processing the frames and detecting the faulty panels. 

The system can determine the longitude and latitude of the defect position 

information in real-time. In this work, we investigate parallel processing for 

the image processing operations which reduces the processing time for the 

inspection systems. The results show a super-linear speedup for real-time 

condition monitoring in large-scale solar systems. Using the multiprocessing 

module in Python, we execute fault detection algorithms using streamed 

frames from both video cameras. The experimental results show a super-

linear speedup for thermal and CCD video processing, the execution time is 

efficiently reduced with an average of 3.1 times and 6.3 times using 2 

processes and 4 processes respectively. 
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1. INTRODUCTION  

Many real-time applications including video processing need an algorithm to be executed in parallel 

on multicore or a multiprocessor system. Multicore or multiprocessor with parallel programming is used to 

address performance improvement. To achieve such improvements, efficient utilization of thread-level 

parallelism is elemental. In fact, the ability to divide the tasks among a multicore or multiprocessor system is 

sub-linear, linear, or superliner speedups. A multicore system adds processing power with minimal latency 

which delivers significant performance benefits for software. This trend is shaping the future of software 

development toward parallel programming [1]. This benefit will be clear in applications which have huge 

input data and work in real time. Parallelism can be used at the system level by spreading the workload of the 

handling requests among the processors and disks. Data level parallelism (DLP) is enabled data parallel reads 

and writes via distributing data across many disks. Taking advantage of instruction level parallelism (ILP) via 

an individual processor is also critical to achieving high performance, and pipelining is the simplest way to 

do this. Parallelism can also be employed at the level of detailed digital design; for example, modern all-
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optical arithmetic logic unit (ALU) use carry-lookahead, or set-associative caches [2]. The principle of 

locality is one of the most important program properties. Programs tend to reuse instructions and data they 

have used recently; a program spends 90% of its execution time in only 10% of the code. The idea of locality 

is that the prediction of instructions and data that a program will use in near future is based on its accesses in 

the recent past. The locality has two types; spatial locality says that items whose addresses are near one 

another tend to be referenced close together in time. Temporal locality says that recently accessed items are 

likely to be accessed in the near future [2]. Talk about speedup related to parallel processing, the speedup is 

estimated in comparison of the runtime of the best sequential program versus the run time of the parallel 

program [3] as defined in (1). 

 

𝑆𝑝𝑒𝑒𝑑𝑈𝑝 =
𝑟𝑢𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑟𝑜𝑔𝑟𝑎𝑚

 𝑟𝑢𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑝𝑟𝑜𝑔𝑟𝑎𝑚
 (1) 

 

However, a speedup metric is defined by Amdahl’s law in (2) which indicates that it depends on two factors; 

the fraction of the computation time that can be converted to take advantage of the enhancement 

(𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑). The second factor is the improvement gained by the enhanced execution mode 

(𝑆𝑝𝑒𝑒𝑑 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑  ). This is equal to the time of the original mode over the time of the enhanced mode.  

 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =  
1

(1− 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑)+ 
𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑
𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑

 (2) 

 

In Amdahl’s law, the task speedup cannot be more than the reciprocal of 1 minus the fraction if an 

enhancement is only usable for a fraction of a task. Amdahl’s law can be considered as a guide to how much 

enhancement can be achieved. The goal is to utilize resources proportionally to where time is needed. The 

speedup that will be achieved by n cores is based on the proportion of the program/tasks executed in parallel 

versus in serial. The speedup of parallelizing any computing problem is limited by the percentage of the 

serial portion, which is also in agreement with Amdahl’s law. Gustafson’s trend is based on that once the 

problem size is increased; the processor power also tends to increase. Also, the drastic increase in the ratio of 

parallel-to-serial tasks in the computational load presents an equally dramatic increase in the processing 

requirements, which means once the computing resources increase, the problem size also increases, and thus 

the serial portion becomes much smaller [4]. Gustafson modified Amdahl’s law putting forth that while the 

size of the overall problem should increase proportionally to the number of processors (n), the size of the 

serial portion (s) of the problem should remain constant as the number of cores increases, as given by (3).  

 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 𝑠 + 𝑛(1 − 𝑠) (3) 

 

Superlinear speedup is defined as computation using n processors that could be more than the same 

computation performed on a uniprocessor [5]. The speedup will be more than (n). There are many factors 

leading to this superlinear phenomena these include the increase in cache size where each processor has a 

local cache level 1 or level 2; hidden latency in communications; the different speeds of memory inherent in 

distributed memory ensembles, the shifting in time fraction spent on different-speed tasks [6]; the utilization 

of resources more efficiently that comes hand-in-hand with parallelization [7], and fitting the data in caches 

of multiple data nodes by partitioning the data.  

In this work, we are using infrared as well as charge-coupling devices (CCD) videos for defect 

inspection in a solar system. Infrared images have been used for a wide range of applications including 

medical imaging, nondestructive testing, and quality controls. Other applications include helping firefighters 

and police to find warm bodies in search areas. With the development of image acquisition technology, the 

image is of higher quality such as image resolution. However, this leads also to increase in demands on 

memory and time. The high-resolution images extracted from videos at 60 frames per second, required a 

multicore system in order to process them for real-time systems [8]. We combined two videos and using 

several image processing algorithms to inspect solar panels in real time.  

Regarding to to the literature review, the existing techniques of using multiprocessing for image 

processing are presented. Mostly, images will require some pre-processing for noise removal or extraction of 

certain features and/or segmenting the image that even leads to more tasks to be accomplished. For example, 

the image segmentation process is one of the primary steps of extracting different objects or regions. The 

larger the images, the higher the computational time for the segmentation process [9]. Happ et al. [9] 

enhanced the segmentation process of an image using a multicore processor and their results show a speedup. 

The segmentation algorithm by Baatz [10] was improved by [9] used parallel processing, where the 

image is divided into tiles (regions). Using the sequential algorithm, one thread is utilized to process a local 

region growing for each one tile [9]. Once the image is divided into tiles and then the work divided into 
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threads, these should impact the final segmentation results. The number of threads should always be equal to 

the number of available cores. Three different sizes for the input images, 2800x2800, 2000x2000, and 

1000x1000, the testing environment was on an Intel core 2 quad with speed 2.40 GHz, and 2 GB of RAM. 

The results show speed ups to around 1.5 times and 2.5 times using 2 threads and 4 threads respectively [9]. 

Saxena et al. [11] represented the sequential image processing algorithms using multicore processor by the 

parallel implementation, such as segmentation, histogram equalization, and noise reduction. The input images 

are dividing into different tiles equal to the number of threads cores or the number of cores. Each core or 

thread processed its tile and paid attention to the synchronization within the processor. The input image 

resolutions are 256x256, 256x768, and 128x843. The testing environment was intel core i3-2350 M 

Processor 2.30 GHz, 3 GB of RAM, and hard disk drive 320 GB Software with a 64-bit operating system. 

They used also matrix laboratory (MATLAB) R2011a and JAVA JDK 1.6.0_21 and. The results show that 

the parallel processing is better than sequential processing by 1 time. The results also show that for some 

algorithms the improvement reached 2 times [11].  

Liu and Gao used a parallel programming tool for the implementation of the interpolation of the 

cubic convolution algorithm in images, for example OpenMP and threading building blocks (TBB) utilizing a 

multicore processor [12]. They also compared between the sequential and parallel implementations. The 

results show that the cubic algorithm is improved 200% and 400% using of Dual-core and Quad-core 

respectively compared with sequential implementation [12].  

Kamalakannan et al. [13] proposed multithreaded color image processing using fuzzy method 

versus edge detection including contrast enhancement. They proposed simultaneous processing for equal 

blocks using separate cores where the entire image has been partitioned into blocks [13]. Their work tested 

using input images were 10 images of different pixel size using Core i5 Quad-core. The results show that 

using a four-thread model improved the performance 3.4 times over a sequential method. 

 

 

2. RESEARCH METHOD  

In this proposed system, we use the acquired videos from both the thermal and CCD cameras. In 

python and using OpenCV, we determine the length and the number of frames of the input video in offline 

processing. Figure 1 shows the main steps for video segmentation process in order to process each segment in 

by individual processes simultaneously. Ffmpeg is used for video portioning process using the following 

command which it is embedded in python code.  

 

𝑜𝑠. 𝑠𝑦𝑠𝑡𝑒𝑚(′𝑓𝑓𝑚𝑝𝑒𝑔 − 𝑠𝑠 ′ + 𝑠𝑡𝑟(𝑓𝑟𝑜𝑚_𝑡𝑖𝑚𝑒) + ′ − 𝑡 ′ +  𝑠𝑡𝑟(𝑐𝑢𝑡𝑡𝑖𝑛𝑔_𝑝𝑒𝑟𝑖𝑜𝑒𝑑) + ′ − 𝑖 ′ +
𝑖𝑛𝑝𝑢𝑡_𝑣𝑖𝑑𝑒𝑜 + ′ ′ + 𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑖𝑟 + ′/′ + 𝑓𝑖𝑙𝑒_𝑛𝑎𝑚𝑒𝑠 + 𝑠𝑡𝑟(𝑓𝑖𝑙𝑒_𝑛𝑢𝑚) + ′. 𝑚𝑝4′) 

 

Ffmpeg is installed with python and it is used to calculate the cutting interval by determining the duration of 

the input video using (4).  

 

𝐶𝑢𝑡𝑡𝑖𝑛𝑔𝑝𝑒𝑟𝑖𝑜𝑑 =
𝑖𝑛𝑝𝑢𝑡𝑓𝑖𝑙𝑒𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑛𝑢𝑚𝑏𝑒𝑟𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠
 (4) 

 

The segmentation process for thermal and CCD videos is started simultaneously in a while loop, by which 

the starting time, initialized at zero, is determined, then it increased by the cutting period as shown in (5), the 

cutting period is decreased from the duration of the input video as shown in (6). 

 

𝑓𝑟𝑜𝑚𝑡𝑖𝑚𝑒 = 𝑓𝑟𝑜𝑚𝑡𝑖𝑚𝑒 + 𝑐𝑢𝑡𝑡𝑖𝑛𝑔𝑝𝑒𝑟𝑖𝑜𝑑  (5) 

 

𝑖𝑛𝑝𝑢𝑡𝑓𝑖𝑙𝑒𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
= 𝑖𝑛𝑝𝑢𝑡𝑓𝑖𝑙𝑒𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

− 𝑐𝑢𝑡𝑡𝑖𝑛𝑔𝑝𝑒𝑟𝑖𝑜𝑑  (6) 

 

Multiple segments will be generated and stored in a specific path after the video is divided. In 

python, the number of processes is initialized using the multiprocessing module. Each specified video frames 

are celled using OpenCV by its specific process and start running simultaneously, Figure 2 shows the running 

diagram for the multiprocessor module in python. A while loop in each process can read frames from the 

specified video portion frames. During the reading of frames, the image processing operations for the fault 

detection algorithm will be started in each process. All processes are running simultaneously with the same 

operations; each process should exit from the execution after completing its specific task with no waiting for 

another process to tackle. 

In this paper, the detection of the defects in the PV module and determining the longitude and 

latitude for the location of the solar panel is done using image processing algorithms. Different types of 
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defects in the PV modules are detected by implementing the different proposed algorithms. On different 

detection algorithms, different input data is implemented separately, and each algorithm is briefly presented 

in the following sections to show the computing demands. 

 

 

 
 

Figure 1. Videos processing using a multicore system 

 

 

 
 

Figure 2. Running tasks by multiprocessing module in python 

In Python, capture the input video 

using OpenCV 

Get the duration of the input file 
(D) and the number of frames  

Calculate the cutting period (T) 

Call ffmpeg in a new process    

 (D) > 0 

Segment the input video into parts equal 

to the number of processes 

Set name for each segment to each 
process - save    

D = D – T 

Exit 

No Yes 
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2.1.  Morphological transformation with canny edge detector 

In computer vision-based applications, canny edge detection is used to extract useful structural 

information from different objects which reduces the amount of data to be processed [14], and a canny 

detector is used to get the accurate information of the target object [15]. In this paper, a canny edge detector 

is used where the input image is converted to a binary image. Then the threshold process is applied on each 

frame. The value of the threshold, Th, is determined adaptively, and it was re-estimated for each frame in 

some experiments. A kernel (structuring element) is assigned to implement the morphological 

transformations [16] and followed by canny edge detection algorithm to detect the defective cells in the solar 

panel. Edge detection using canny algorithm provides excellent performance results in many practical 

problems, and it is considered an optimal edge detection algorithm [17].  

In this paper, canny algorithm to be applied to identify significant intensity discontinuities in the 

image. The main idea is finding the direction of the gradient at each pixel. This can be done by finding the 

first derivative for the horizontal and the vertical directions using the soble filter. The (7) and (8) show the 

edge gradient and the angle calculations for each pixel respectively [18]. The Gradient direction is 

perpendicular to the edges; its value is rounded to one of four angles representing diagonal directions, 

horizontal or vertical [18]. 

 

𝐸𝑑𝑔𝑒𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡(𝐺) =  √(𝐺𝑥
2 + 𝐺𝑦

2)  (7) 

 

𝐴𝑛𝑔𝑙𝑒 (𝜃) =  tan−1(
𝐺𝑦

𝐺𝑥
) (8) 

 

After computing the image gradients, the unwanted pixels should be removed by scanning the image 

in order to identify which pixels do not constitute the edges [18]. The last step is the thresholding of the 

edges. This can be done by using two values for thresholding, minimum (𝑇ℎ𝑚𝑖𝑛) and maximum (𝑇ℎ𝑚𝑎𝑥) 

values. Comparing computed gradients with these two Thresholding values, edges are identified under the 

conditions in (9). Using a morphological transformation and canny edge algorithm to monitor the real-time 

operations of solar panel and detect faults is introduced in [19]. 

 

𝐸𝑑𝑔𝑒𝑠𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 = {
𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑔𝑟𝑎𝑑𝑖𝑎𝑛𝑡   >    𝑇ℎ𝑚𝑎𝑥 ,          𝑆𝑢𝑟𝑒_𝐸𝑑𝑔𝑒

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑔𝑎𝑟𝑑𝑖𝑎𝑛𝑡 <  𝑇ℎ𝑚𝑖𝑛   ,   𝑆𝑢𝑟𝑒_𝑛𝑜𝑡_𝐸𝑑𝑔𝑒 
  (9) 

 

2.2.  SLIC super-pixel algorithm 

K-mean clustering is used to implement the spatial localization which is the main concept of simple 

linear iterative clustering (SLIC) super-pixel technique. Recently, superpixel algorithms are widely used for 

computer vision and multimedia applications, such as in [20] to close all the contours and reserve coherence 

across image boundaries. In addition, SLIC is used in the hyperspectral image (HSI) to solve the small 

sample problem [21]. Using SLIC, the image can be decomposed into small homogeneous regions, providing 

a perceptual understanding of content by locally grouping the pixels. The image complexity, thousands of 

thousands of pixels, is reduced to only a few hundred of pixels using super-pixel [22]. In order to minimize 

the outliers in SLIC which they would skew the results, a gaussian smoothing filter is used as a preprocessing 

phase.  

Super-pixels is generated to effectively propose SLIC by Achanta et al. [23]. The desired number of 

approximately equally sized superpixels, k is the main parameter of the SLIC algorithm. Initializing cluster 

centers (𝐶𝑘) at regular grid step is the first step in SLIC by sampling pixels using (10), the number of pixels is 

presented in N. Then, (11) is used to calculate the distance between the cluster center and the pixel. The 

cluster is moving to the lowest gradient position in a 3x3 neighborhood, the seed location, for each pixel in 

the 2Sx2S region around for each cluster center (𝐶𝑘). 

 

𝑆eg. = √
𝑁

𝑘
  (10) 

 

𝐷 = √(
𝑑𝑠

𝑆
)

2

𝑚2 + (𝑑𝑐
2)  (11) 

 

SLIC corresponds to clusters in labxy color space, where the color and spatial distances should be 

calculated using (12) and (13) respectively. They are combined in (14) in order to normalize color and spatial 

proximities by their respective maximum distances with a cluster, 𝑁𝑠 and 𝑁𝑐.  
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𝑑𝑠 = √(𝑥𝑗 − 𝑥𝑖)
2

+  (𝑦𝑗 − 𝑦𝑖)
2
  (12) 

 

𝑑𝑐 = √(𝑙𝑗 − 𝑙𝑖)
2

+ (𝑎𝑗 − 𝑎𝑖)
2

+ (𝑏𝑗 − 𝑏𝑖)
2

   (13) 

 

𝐷′ = √(
𝑑𝑠

𝑁𝑠
)

2

 +  (
𝑑𝑐

𝑁𝑐
)

2

 (14) 

 

The sampling interval value 𝑆 is considered the maximum spatial distance 𝑁𝑠 within a given cluster. 

From image to image and cluster to cluster, the color distance can be different so the constant value m in (11) 

is considered as the maximum color distance 𝑁𝑐. The new cluster centers will be computed when the pixel is 

assigned to the nearest cluster, then the distance is recalculated until the residual error between the new and 

the previous cluster center is less than the threshold value. Using SLIC to monitor the real-time operations of 

solar panel and detect faults is introduced in [24]. 

 

2.3.  Hot pixels seeds based for segmentation 

An image can be divided into constitutive parts or objects is called the segmentation process [25]. 

Segmentation the image provides many operations to be implemented on the image, such as object 

classification and recognition, the clusters identification, features of similarity or discontinuity between 

different pixels such as edges and lines [25]. The first step of the proposed segmentation method is 

determining a seed pixel 𝑆𝑃, (hot pixel), in the input image. The threshold would be more difficult due to the 

low contrast problem, it is solved by the pre-processing processes by Gaussian filter and histogram 

equalization for the input images. After image pre-processing, setting the value of the highest pixel is done 

using (15). The (16) is used to determine where the neighboring pixels are linked to the hot pixel, assigning 

them as seed pixels 𝑆𝑃, or to the background pixels 𝐵𝑃 . 

 

𝐻𝑜𝑡𝑃𝑖𝑥𝑒𝑙 = 𝑀𝐴𝑋 (𝑝𝑖𝑥𝑒𝑙[𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛]) (15) 

 

𝑆𝑃 =  {
𝑝𝑖𝑥𝑒𝑙[𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛]   ≥ (𝐻𝑜𝑡𝑃𝑖𝑥𝑒𝑙 − 𝑚𝑎𝑟𝑔𝑖𝑛),        𝑆𝑢𝑟𝑒_𝑆𝑃

𝑝𝑖𝑥𝑒𝑙[𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛] < (𝐻𝑜𝑡𝑃𝑖𝑥𝑒𝑙 − 𝑚𝑎𝑟𝑔𝑖𝑛 ) ,      𝑆𝑢𝑟𝑒_𝐵𝑃
  (16) 

 

The mean value µ𝑆𝑃
 for each seed pixel 𝑆𝑃  is calculated using (17). For each seed region with 8 neighboring 

pixels of the 𝑆𝑃 , the mean value µ𝑆𝑃
 is computed. 

 

µ𝑆𝑃
=

(∑ 𝑝𝑖𝑥𝑒𝑙[𝑟𝑜𝑤,𝑐𝑜𝑙𝑢𝑚𝑛
9,9
𝑟𝑜𝑤=0,𝑐𝑜𝑙𝑢𝑚𝑛=0 )

9
 (17) 

 

At the same time, the average value for all hot pixels µℎ𝑜𝑡_𝑝𝑖𝑥𝑒𝑙𝑠  for each thermal frame is computed. 

However, the value of hot pixels for the CCD frames is assigned to µℎ𝑜𝑡_𝑝𝑖𝑥𝑒𝑙𝑠=127 which is a value that 

worked fine in the most cases. An adaptive method for the selection of these parameters should be 

investigated further and developed in the near future. The actual seed pixel 𝐴𝑐𝑡_𝑆𝑝 is determined using (18). 

 

𝐴𝑐𝑡_𝑆𝑝 =  {
    µ𝑆𝑃

≥  µℎ𝑜𝑡𝑝𝑖𝑥𝑒𝑙𝑠
  𝑆𝑢𝑟𝑒𝐴𝑐𝑡_𝑆𝑝

 

µ𝑆𝑃
 <  µℎ𝑜𝑡_𝑝𝑖𝑥𝑒𝑙𝑠  ,     𝐵𝑃   

 (18) 

 

Computation of the standard deviation using (20) to estimate the minimal deviation distance (MDD) based on 

(19) for each actual hot pixel. 

 

𝑀𝐷𝐷 =  𝑚𝑖𝑛 ((Ω𝐴𝑐𝑡_𝑆𝑝
)2)  (19) 

 

Ω𝐴𝑐𝑡_𝑆𝑝
=  |𝑆𝑝 − 𝑝𝑖𝑥𝑒𝑙 [𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛]|  (20) 

 

The selection of 𝐵𝑃  to be defected or not is based on (22). For each background pixel with its’ 8 

neighbors the mean value µ𝐵𝑝
 is estimated, then delta value δ is computed using (21). The 𝐵𝑃  is assigned as a 

defected pixel if MDD value is greater than (δ); otherwise, 𝐵𝑃is considered as a (zero) pixel. Using hot pixels 

seeds-based segmentation to monitor the real-time operations of solar panel and detect faults is introduced in 

[19]. 
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(δ=|𝑚𝑒𝑎𝑛𝐵𝑝
−  µ𝑆𝑃

| ) (21) 

 

𝐷𝑒𝑓𝑒𝑐𝑡𝑒𝑑𝐵𝑃
=  {

δ ≤ MDD , defected pixel 𝐵𝑃 = 1
δ > MDD , not_defected pixel 𝐵𝑃 = 0

  (22) 

 

 

3. RESULTS AND DISCUSSION 

The proposed system proves the use of multicore processors reduces the required execution time for 

real-time operations. In this paper, the results show that the importance of using a multicore processor with 

parallel processing using python is reducing the inspection time for large-scale solar system monitoring and 

detecting hazards. The system has two cameras; the FLIR Vue Pro is a thermal camera which has an accurate 

thermal resolution with 336x256 pixels which is high enough to show defects on solar panels, and with 

(NTSC) frame rate. GoPro Hero 4 Black is a CCD camera was used in the system; the camera has the max 

video resolution 3840x2160 and effective photo resolution 12.0 MP. These two cameras are connected on the 

Yuneec Q500 quadcopter. The input data were processed and implemented the offline system using python 

2.7 and the eclipse IDE platform on a windows 10 environment, where the processor is Intel (R) Core (TM) 

i5-4210 M CPU with speed 2.60 GHz, and with 8 Gigabyte RAM. Other python modules, extensions and 

libraries are installed using a pip command; Multiprocessor module, matplotlib, NumPy, and Pillow. 

OpenCV is used with python for providing multiple modules for image processing. 

A multicore system has been used for simultaneous thermal and CCD videos processing to detect 

defects in the solar panel with a reduction of the execution time. The results of defects detection are 

explained in previous work [19], [24]. The inspection process has been made on real experiments where the 

drone was flying on panels that were imposed with internal and external defects. The experiments were 

conducted outdoor in the daytime where the thermal camera would be able to detect the defects in the 

nighttime. The drone was flying on normal mode without specifying the angel where the altitude was 

different for many scenarios. Thermal frames and CCD frames are processed for the same panels at the same 

time. In this paper, the results are recorded for different scenarios for fault detection algorithms in PV 

systems, using 1 process, 2 processes, or 4 processes. 

Table 1 shows the input thermal and CCD videos and the number of processed frames. A different 

number of frames is shown because the input videos have a different size. Multiprocessing module by python 

is used to process the input videos and improve the execution time which it is reduced significantly, where 

the whole system's performance is improved. The processing time is recorded after the segmentation process 

is completed.  

 

 

Table 1. Input of thermal and CCD videos for defects detection 

Input Video 
Thermal Video CCD Video 

Size (MB) # Frames # Processed Frames Size (MB) # Frames # Processed Frames 

V_1 4.76 456 60 219 1832 60 

V_2 7.66 856 120 418 349 120 

V_3 11.4 1440 200 715 5968 200 

 

 

Table 2 presents the processing time of using morphological transformation with canny edge 

detector where the faults can be detected in solar panels using thermal and CCD videos. This execution was 

done by using 1 process, 2 processes, and 4 processes with the speedups illustrated in Figure 3. The 

processing time was improved 3.5, and 4.2 times using 2 and 4 processes respectively. Table 3 presents the 

processing time of using SLIC super-pixel for different size of segments, 50 and 200 with maximum10 

iterations for k-mean, where the defects are detected in the solar panel using thermal and CCD videos. This 

execution was done by using 1 process, 2 processes, and 4 processes with the speedups shown in Figure 4. 

The processing time was improved 3.2 and 8.2 times using 2 and 4 processes respectively.  

 

 

Table 2. Processing time for morphological and canny edge detection execution for thermal and CCD videos 

using multicore 

Input video 
Processing time (in Min.) based on # of Processes Speedup 

P1 P2 P4 (P1/P2) (P1/P4) 

V_1 4.78 1.34 1.07 3.57 4.47 
V_2 8.01 2.18 1.93 3.67 4.15 

V_3 12.56 4.01 3.07 3.13 4.09 
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Figure 3. Speedup results of using morphological with canny edge detection algorithm for thermal and CCD 

videos using multicore 

 

 

Table 3. Processing time for SLIC super-pixel execution for thermal and CCD videos using multicore 

Input video 
Processing time (in Min.) based on # of Processes Speedup 

P1 P2 P4 (P1/P2) (P1/P4) 

V_1 64.18 21.84 9.02 2.94 7.12 

V_2 144.95 46.3 17.96 3.13 8.07 
V_3 567.57 163.99 60.64 3.46 9.36 

 

 

 
 

Figure 4. Speedup for SLIC super-pixel for thermal and CCD videos using multicore 

 

 

Table 4 presents the processing time of using the defects detection algorithm, hot pixel seeds based 

for segmentation. The defects are detected in solar panels using thermal and CCD videos. The achieved speed 

up is shown in Figure 5 where the execution was done by using 1 process, 2 processes, and 4 processes. 

Using a multiprocessing module improved the execution time 2.7 and 6.4 times using 2 and 4 processes 

respectively. 

 

 

Table 4. Processing time for hot pixels based for segmentation for thermal and CCD videos using multicore 

Input Video 
Processing time (in Min.) based on # of Processes Speedup 

P1 P2 P4 (P1/P2) (P1/P4) 

V_1 64.78 25.41 8.9 2.56 7.28 

V_2 107.58 36.1 18.6 2.98 5.78 

V_3 196.1 76.06 31.67 2.58 6.19 
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Figure 5. Speed up for hot pixels based for segmentation for thermal and CCD videos using multicore 

 

 

4. CONCLUSION 

Real-time condition monitoring of large-scale solar system needs more processing time in order to 

monitor and detect faults. The inspection system is implemented using thermal and CCD cameras and the 

processing time was very long without using parallel processing. This problem is solved in this paper where 

the captured videos are proceeded using multiple processes simultaneously which reduces the execution time. 

The speedup we achieved with image processing algorithms is a very significant improvement. The average 

improvement for the processing time was 3.1 times and 6.3 times using 2 processes and 4 processes 

respectively. This is due to many reasons including the problem size is large (the number of processed 

frames), and once the execution time for each frame is long, the speedup using simultaneous processes 

resulted in a superlinear speedup. The results show that when the problem size is divided into portions and 

executed among processes simultaneously, the execution time will have a significant reduction and result in a 

superlinear speedup. In addition, the computer resource utilization will be more effective once the problem is 

divided into portions; for example, the cache effect will take place once the problem is divided into more 

than one process via multicore CPU and run simultaneously.  
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