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 Despite all the model predictive control (MPC) based solution advantages 

such as a guarantee of stability, the main disadvantage such as an 

exponential growth of the number of the polyhedral region by increasing the 

prediction horizon exists. This causes the increment in computation 

complexity of control law. In this paper, we present the efficiency of particle 

swarm optimization (PSO) in optimal control of a two-tank system modeled 

as piecewise affine. The solution of the constrained final time-optimal 

control problem (CFTOC) is derived, and then the PSO algorithm is used to 

reduce the computational complexity of the control law and set the physical 

parameters of the system to improve performance simultaneously. On the 

other hand, a new combined algorithm based on PSO is going to be used to 

reduce the complexity of explicit MPC-based solution CFTOC of the  

two-tank system; consequently, that the number of polyhedral is minimized, 

and system performance is more desirable simultaneously. The proposed 

algorithm is applied in simulation and our desired subjects are reached. The 

number of control law polyhedral reduces from 42 to 10 and the liquid 

height in both tanks reaches the desired certain value in 189 seconds. Search 

time and apply control law in 25 seconds. 
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1. INTRODUCTION 

According to the system modeling, it is possible to introduce piecewise affine (PWA) systems, a 

particular hybrid system class. It is described by partitioning the vast input-state space into Polyhedron 

regions and assigning a PWA equation to each of these regions. Discrete-time PWA systems are a very 

effective tool for modeling most hybrid systems [1]. These systems have established themselves as a 

powerful class for identification and approximation of generic nonlinear systems by multi-linearization at 

equilibrium [2]. A practical method in designing controllers of nonlinear systems is optimal control concepts 

in constrained and non-constrained processes by linear discrete-time models in the form of state space.  

Study [3] presents a constrained discrete model predictive control strategy for an inside greenhouse 

temperature. Given what has been said about the modeling advantages of most systems based on the PWA 

class, recently, there has been strong interest in computing the optimal form-package controller for PWA 

systems. These problems became known as the constrained final time-optimal control (CFTOC) [4], [5]. The 

most important methods of analysis of this problem are multi-parameter programming, receding horizon 

control (RHC), or model predictive control (MPC). MPC is an effective way to deal with constrained control 

problems and has found many applications and advances in industry and academic research. This method 

https://creativecommons.org/licenses/by-sa/4.0/
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requires that the next position of the variables be predicted based on the current position, the controller input, 

and the process model. In other words, the sequence of control inputs that optimize the objective function is 

computed and applied to the process. This control concept is called the MPC [6].  

Boiler turbine process control was performed with three manipulated variables and three controlled 

variables using MPC technique [7]. Optimal control sequence allows recalculation and feedback performance 

in MPC whenever a new measurement arrives; this is known as MPC. The stability of the control system and 

the fulfillment of conditions, constraints, and requirements during operation are ensured by the proper 

formulation of the objective function. RHC has the complexity and high volume of online computing related 

to optimizing and reducing system robustness due to the difference between the actual and MPC processes. 

Optimal methods based on the use of multi-parametric linear programming (MP-LP) and multi-parametric 

quadratic programming (MP-QP) were provided [8], [9]. 

The offline calculation of the optimal control rule for constrained discrete-time linear systems was 

performed using these methods. The resulting rules were made available as a PWA function on the 

polyhedrons. At present, explicit MPC techniques enable a standard method in controller design for nonlinear 

processes that are modeled in the PWA form, creating a substitute for intelligent controller design methods 

such as fuzzy logic and neural networks in high-performance applications [10]. Unfortunately, one of the 

main problems is the increasing complexity of the control rule obtained by increasing the prediction horizon 

and its effect on system performance. On the other hand, it is necessary to increase the prediction horizon for 

the system's optimal performance. For linear systems with parametric uncertainty by the Lyapunov function, 

the PWA controller is designed with low complexity [11]. Effective representation and approximation are 

provided by in-depth learning to MPC of linear time invariant (LTI) systems. Theoretically, at least neurons 

and hidden layers are considered [12]. A nonlinear robust MPC with input-dependent perturbations and states 

and uncertainty is presented [13]. The MPC algorithm with PWA control rules is presented for discrete-time 

linear systems in the presence of finite perturbation [14]. The online burden of computational of the linear 

MPC can be transferred to offline by using multi-parameter programming, which is named explicit  

MPC [15]. A flexibility algorithm is proposed to reduce the calculation volume in [15] that the designer can 

balance time and storage complexities.  

This is done by hash tables and the associated hash functions. Two modified controllers instead of 

the standard MP-QP are used [16] to reduce the complexity of the multi-parameter programming of MPC. 

The problem of reducing the complexity of explicit MPC for linear systems is considered by PWA 

employing separating functions [17]. A semi-continuous PWA model based on the optimal control method 

for the nonlinear system is proposed [18]. First, the nonlinear system is approximated by multi-linear 

subsystems, and then the subsystems are incorporated into a PWA system and formulated as an optimal 

control problem. A computational method for optimizing and controlling a two-tank system with three 

control valves is presented [19]. Easy implementation and optimizability of complex objective functions, 

with many local minimums are the main advantages of particle swarm optimization (PSO). Furthermore, 

PSO can be used to search significantly wider range of candidate solutions. The dynamics of the tank system 

are nonlinear. The linear model is considered, and the parameters are adjusted so that the difference between 

the actual system and the model is minimized by solving the optimal control problem. PSO has been used to 

solve the problem of constrained optimization [20]. Self-adaptive of particle swarm optimization (SAPSO) is 

recommended to increase PSO performance. Theoretically, the convergence of the method has been 

investigated. Considerable interest has recently been generated to use PSO in optimization and engineering 

problems [21]. A new algorithm that combines model predictive control with the PSO is proposed for 

optimal control of constrained direct current (DC-DC) power system modeled as piecewise affine [22]. A 

modern strategy based on model reference command shaping (MCRS) for an overhead crane, with dual 

pendulum component impacts. The existing MRCS calculation has been making strides with the PSO 

calculation to diminish plan complexity and guarantee that synchronous alteration can be done with the 

feedback controller [23]. The proposed hybrid algorithm incorporates social interaction and elitism 

mechanisms from PSO into manta ray foraging optimization (MRFO) strategy [24]. A control strategy based 

on the self-tuning method and synchronous reference frame with proportional integral (PI) regulator is 

proposed to achieve optimal power quality in an independent microgrid. Particle swarm optimization is used 

to adjust the parameters of the PI controller, which ensures flexible performance and superior power quality 

[25]. The tuning method used for proportional integral derivative (PID) with derivative filter controller for 

liquid slosh system by implementing PSO algorithm [26]. PSO algorithm is applied to optimize the surface 

grinding process parameter in both rough and final grinding conditions [27]. This paper is organized as 

follows; first, the CFTOC of PWA system is briefly described. Having introduced the two-tank optimal 

control in section 3, in section 4, the application of PSO for the solution of the expressed problem is 

discussed, and finally, the simulation results and conclusion are presented. 
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2. CONSTRAINED FINAL TIME-OPTIMAL CONTROL (CFTOC) PROBLEM AND SOLUTION  

We will do with the constrained PWA systems as (1) [4], [10]: 

 

x(t + 1) = fPWA (x(t), u(t)) ≔ Aix(t) + Biu(t) + fi   (
x(t)

u(t)
) ∈ Di   (1) 

 

where t≥0, the domain D ≔ ⋃ Di
ND
i=1  of fpwa(.,.) is a non-empty compact set in Rnx+nu  , ND<∞ is the number of 

system dynamics and D ≔ ⋃ Di
ND
i=1  denotes a polyhedral partition of the domain D. i.e., the closure of Di is 

Di̅ ≔ {(
x
u

) ∈  Rnx+nu|Di
xx + Di

uu ≤ Di
0}  and int(Di) ∩ int(Dj) = ∅ ∀i ≠ j. The CFTOC problem for 

piecewise affine system (1) in the form (2a), (2b) and (2c) [4], [22]: 

 

JT
∗ (x(0)) = min

UT

JT(x(0), UT) (2a) 

 

 subject to {
x(t + 1) = fPWA(x(0), u(t)

x(t) ∈ χf  (2b) 

 

JT(x(0), UT) = lT(x(T)) + ∑ l(x(t), u(t))T−1
t=0   (2c) 

 

where JT(. , . ) is the cost function, l(.,.) the stage cost, lT(.) the final penalty, UT optimization variable 

described as the input sequence UT = {u(t)}t=0
T−1, T<∞ receding horizon and χf is a compact terminal target 

set in Rnx. If the solution of the CFTOC problem is not unique, uT
∗ (x(0)) = {u∗(t)}t=0

T−1 decides one 

realization from the set of the conceivable optimizers. 

The CFTOC problem determine a set of initial state and feasible inputs as χT ⊂ Rnx(x(0) ∈ χT), 

UT−t ⊂ Rnu(u(t) ∈ UT−t , t = 0, … , T − 1) respectively. The explicit closed form solution can be expressed 

as u∗(t): χT → UT−t, t=0, …, T-1. The considered system is PWA (1), and the cost is based on 1, ∞ norm 

[22]. 
 

𝑙(𝑥(𝑡), 𝑢(𝑡)) ≔ ‖𝑄𝑥(𝑡)‖𝑝 + ‖𝑅𝑢(𝑡)‖𝑝 (3a) 

 

𝑙(𝑥(𝑇)) ≔ ‖𝑃𝑥(𝑇)‖𝑝 (3b) 

 

where ‖. ‖p with p={1,∞} speak to the standard vector standard 1,∞. The arrangement of (2) with 

aforementioned limitations is a time varying PWA work of the starting state x(0)∈ 𝒫i. 
 

𝑢∗(𝑡) = 𝜇𝑃𝑊𝐴(𝑥(0), 𝑡) = 𝐾𝑇−𝑡,𝑖𝑥(0) + 𝐿𝑇−𝑡,𝑖   (4) 
 

where t = 0, … , T, {𝒫i}i=1

Np
 is the polyhedral partition of a set of feasible state x(0), χT = ⋃ 𝒫i

Np

i=1
, with the 

closure of 𝒫i stated as �̅�i = {x ∈ Rnx|𝒫i
xx ≤ 𝒫i

o} [2]. 

If a receding horizon control strategy is used for closed-loop, the control rule is expressed as  

time-variant PWA state-feedback of the form [4]: 
 

𝜇𝑅𝐻(𝑥(𝑡)) ≔ 𝐾𝑇,𝑖𝑥(𝑡) + 𝐿𝑇,𝑖   𝑖𝑓 𝑥(𝑡) ∈ 𝒫𝑖     (5) 

 

where i=1,…, Np and for t≥0, u∗(t) = μRH(x(t)). The CFTOC problem can be presented and solved for any 

selection of P, Q, R, albeit here it is assumed that the parameters T, Q, R, P and χf are selected by the 

following assumptions [3]. To avoid additional control actions in steering states to the origin (equilibrium 

point), matrices R, Q are required to have a full column rank. 

 

 

3. OPTIMAL CONTROL OF TWO-TANK SYSTEM  

The two-tank [28] shown in Figure 1 is a basic benchmark model to investigate and analyze the 

control issues for PWA system. The tanks are filled by pump acting on tank 1, continuously manipulated 

from 0 up to a maximum flow Q1. A switching valve V12 controls the flow between the tanks. This valve is 

assumed to be either completely opened or closed (V12=0 or 1 respectively). The VN2 manual valve controls 

the nominal outflow of the second tank. It is assumed in the simulations that the manual valves, VN1 is always 

closed and that VN2 is open. The liquid levels to be controlled are denoted by h1, h2 for each tank respectively. 
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Figure 1. Two-tank system schematic 

 

 

It consists of two tanks that connected to each other. We assumed that: i) the valves behavior is 

linear, ii) the initial volume of liquid in tanks is zero, and iii) the inflow of liquid to the first tank is constant 

and has the maximum value. The liquid volume of tank 1 is defined by a time varying equation as (6a) and 

(6b): 

 

V1(t) = V0,1 + (Q1 − Q1,2) × t (6a) 

 

𝑉1(𝑡) = 𝐴1 × ℎ1(𝑡) (6b) 

 

where V0,1 is initial volume of liquid in tank 1and Q1, Q1,2 are inflow and outflow liquid of tank1 (Q1,2 can be 

defined as inflow of liquid to tank 2), A1 and h1 are base area and the time varying height of liquid in tank1 

respectively. The (6) can be repeated for the tank 2 with similar definition as (7a) and (7b): 

 

𝑉2(𝑡) = 𝑉0,2 + (𝑄1,2 − 𝑄2) × 𝑡 (7a) 

 

𝑉2(𝑡) = 𝐴2 × ℎ2(𝑡) (7b) 

 

By combining (6), (7), 

 

ℎ1(𝑡) =
1

𝐴1
(𝑉0,1 + (𝑄1 − 𝑄1,2) × 𝑡)           (8a) 

 

ℎ2(𝑡) =
1

𝐴2
(𝑉0,2 + (𝑄1,2 − 𝑄2) × 𝑡)        (8b) 

 

The system is expressed as a discrete time model with a sample time (Ts=10s) by (9). 

 

{
ℎ1(𝑘 + 1) = ℎ1(𝑘) +

𝑇𝑠

𝐴1
(𝑄1(𝑘) − 𝑘12𝑉12

∗ (ℎ1(𝑘) − ℎ2(𝑘))

           ℎ2(𝑘 + 1) = ℎ2(𝑘) +
𝑇𝑠

𝐴2
(𝑘12𝑉12

∗ (ℎ1(𝑘) − ℎ2(𝑘)) − 𝑘𝑁2𝑉𝑁2
∗ ℎ2(𝑘)

         (9) 

 

This model can be defined as a piecewise affine system of the shape (1), with four modes, depicted as takes 

after [28]: 

 First Mode: 𝑉12
∗  open, h1≥hv  

 Second Mode: 𝑉12
∗  open, h1≤hv  

 Third Mode: 𝑉12
∗  closed, h1≥hv  

 Fourth Mode: 𝑉12
∗  closed, h1≤hv 
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For example, the first mode of the system matrices is: 

 

𝐴1 = [
0.9542 −0.0393
0.0941 0.9670

] 𝐵1 = [
0.0699 0

0 0
] 𝐶1 = [1 0] 𝐷1 = [0] 𝑎𝑛𝑑 𝑓1 = [

0.0164
−0.0164

]   

 

The CFTOC problem of the presented PWA system is solved by MPT [29] based on MPC for the 

prediction horizon=3, norm =1, 𝑄 = [
1 0
0 1

], R= 10−5 × [
1 0
0 1

] and the explicit PWA control law has 78 

polyhedral regions as shown in Figure 2 and the performance of the closed-loop system from a given initial 

condition is presented in Figure 3. 

Using PSO algorithm, the considered purposes are going to be fulfilled simultaneously: 

 The number of polyhedral of explicit MPC-based control law is minimized to reduce the complexity, 

 The liquid reaches a certain height in tanks in a short time and desirable manner. 

 

 

 
 

Figure 2. Controller partitions 

 

 

 
 

Figure 3. Closed loop system performance 
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4. PSO ALGORITHM APPLICATION FOR SOLVING DEFINED PROBLEM  

Before long a short time later, a brief audit of PSO calculation is displayed, and after that PSO 

application is explored to fathom the defined problem. The PSO could be a worldwide exploratory 

optimization strategy, to begin with, proposed by Kennedy and Eberhart in 1995 [30]. It is made of swarm 

insights and is based on inquiring about the behavior of feathered creatures and the angle of development. 

The motion of each molecule is impacted by its best-known nearby position and is additionally coordinated 

to the best-known positions within the look space, which are upgraded by other particles to discover superior 

positions. Agreeing to Figure 4, the premise of the strategies is as follows: “Each molecule can appear with 

its current speed and position, the foremost ideal position of each individual, and the foremost ideal position 

of the environment” [22], [30]. By selecting the beginning populace Xi, Vi, the speed and position of each 

molecule around the look space alter concurring to correspondence (10) [30]:  

 

𝑋𝑖 = [𝑥1,𝑖 𝑥𝑖,2 ⋯ 𝑥𝑛,𝑖] 
 

𝑉𝑖 = [𝑣1,𝑖 𝑣𝑖,2 ⋯ 𝑣𝑛,𝑖] 
 

𝑉𝑖𝑑
𝑘+1 = 𝑉𝑖𝑑

𝑘 + 𝑐1 × 𝑟1
𝑘 × (𝑉𝑖𝑑

𝐿𝑏𝑒𝑠𝑡) + 𝑐2 × 𝑟2
𝑘 × (𝑉𝑖𝑑

𝐺𝑏𝑒𝑠𝑡)      (10a) 

 

𝑋𝑖𝑑
𝑘+1 = 𝑋𝑖𝑑

𝑘 + 𝑉𝑖𝑑
𝑘                                                                                      (10b) 

 

𝑉𝑖𝑑
𝐿𝑏𝑒𝑠𝑡 = 𝑝𝑏𝑒𝑠𝑡𝑖𝑑

𝑘 − 𝑋𝑖𝑑
𝑘                                                                                 (10c) 

 

𝑉𝑖𝑑
𝐺𝑏𝑒𝑠𝑡 = 𝑔𝑏𝑒𝑠𝑡𝑖𝑑

𝑘 − 𝑋𝑖𝑑
𝑘                                                                         (10d) 

 

where in this uniformity, 𝑉𝑖𝑑
𝑘  and 𝑋𝑖𝑑

𝑘  independently stand for the speed of the molecule i at its k times and the 

d-dimension amount of its position; 𝑝𝑏𝑒𝑠𝑡𝑖𝑑
𝑘  speaks to the d-dimension amount of the person i at its most 

ideal position at its k times; 𝑝𝑏𝑒𝑠𝑡𝑖𝑑
𝑘  is the amount d-dimension of the swarm at its most ideal position. To 

avoid a molecule from being distant from the look space, the speed of the made molecule is restricted in each 

course between -vdmax and vdmax [22]. In the event that the number of vdmax is as well tall, the arrangement is 

distant from the most excellent arrangement, something else; the ideal arrangement will be nearby. c1 and c2 

appear the speed digit, which alters the length when flying to the biggest molecule within the entire gather 

and the ideal single molecule. In the event that the number of vdmax is as well little, the molecule is likely 

distant from the target field; in case the shape is as well huge, the molecule may fly all of a sudden to the 

target field or past the target field. 

 

 

 
 

Figure 4. The basis of evolutionary PSO algorithm 

 

 

Reasonable figures for c1 and c2 can control the molecule flight speed and will not be a halfway ideal 

arrangement. c1 is more often than not rise to c2, and they are rising to 2. r1 and r2 speak to an irregular story 

and 0-1 could be an arbitrary number. As said some time recently, our modern point is utilizing PSO for 

complexity lessening of unequivocal MPC-based control law by diminishment the number of its polyhedral 

and setting the physical parameter of framework to move forward the framework execution at the same time. 

In this manner, the taking after objective work has been defined: Fitness-Function =Number of polyhedral + 

Output specifications. 

X
i

Xi+1

Vi

Vi+1

VLbest

VGbest
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Where yield determinations are decided as a summation of operational determinations such as 

settling time, overshoot, undershoot, steady-state deviation, time consistent, and so forward. Presently, the 

unequivocal controller gotten in past segment as a portion of PSO ought to be considered and the taking after 

unused execution list is being defined: 

 

JnewT
∗ = 𝑀𝑖𝑛(𝐹𝑖𝑡𝑛𝑒𝑠𝑠 − 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛)  = 𝑀𝑖𝑛[𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑙𝑦ℎ𝑒𝑑𝑟𝑎𝑙𝑠 𝑜𝑓 𝜇𝑅𝐻(𝑥(0)  

+ 𝑂𝑢𝑡𝑝𝑢𝑡 𝑠𝑝𝑒𝑐𝑖𝑖𝑐𝑎𝑡𝑖𝑜𝑛] (11a) 

 

S.T{
u∗ = μRH(x(t)) = KT,ix(t) + LT,i  if x(t) ∈ 𝒫i

Output = ∑ desired output characteristic
                                                     (11b) 

 

It is used according to the flowchart shown in Figure 5.  

 

 

 
 

Figure 5. Flowchart of PSO algorithm application 
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The issue is illuminated as:  

 The required information such as time step, fluid stature, and calculation parameters such as the number 

of population and a number of the cycles is considered.  

 The initial population is made as follows [22]: 

 

Xi = [height of valve1, cross section of valves, maximum height, base area of each tank] 

initial population = [

X1

X2

⋮
XN pop

]  

 

 The yield determinations of the framework are measured based on introductory parameters, at that point, 

the control law (gotten by MPT) is connected, and the number of polyhedral districts is calculated. In the 

long-run objective work is characterized as [22]:  

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 − 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑙𝑦ℎ𝑒𝑑𝑟𝑎𝑙 + 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠. 
 

where we consider yield determinations can be expected as yield details ≜ settling time + certain stature 

of liquid. The best arrangement among the entire population is decided, and the population is overhauled 

based on (10a) and (10b).  

 For the predefined number of iterations, step 3 is done repetitively.  

The convergence conditions are explored, and at last the leading arrangement is appeared within the 

output. Then number of iterations is 15, the number of populaces is 5, c1= c2=2 is considered. The ideal 

parameters are compiled within the Table 1. 

 

 

Table 1. The optimal parameters 
Sampling time Height of valve 1 Cross-section of valves Maximum height Area of each tank Num P Time(S) 

10 s 0.1 m 1.00E-05 0.5 0.001 m^2 10 189 

 

 

T is the required time to reach a certain height of the liquid. As presented, the number of control law 

polyhedral reduces from 42 to 10. In Figure 6, the output flow variation of the first tank is shown. These 

changes are linear. After 100 seconds, output flow increases to 10 cubic meters. In Figure 7, the liquid height 

in the first tank is shown. These changes are nonlinear and incremental. After 90 seconds, the liquid height of 

the first tank reaches 50 meters. Figure 8 shows the output flow variation of the second tank. These changes 

are linear. At the last moment, there was a change in the function of the output valve.  

 

 

  
  

Figure 6. The output flow variation of tank 1 Figure 7. The liquid height in tank 1 

 

 

Figure 9 shows the liquid height changes of the second tank. As you can see, this change is 

nonlinear and incremental. The height of the liquid in both tanks reached a certain value in 189 seconds. 
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Figure 10 shows the unique convergence of the objective function using the PSO algorithm. It converges 

after 4 iterations. Figure 11 shows the controller partition with 10 regions. Concurring to the comes about, it 

can be concluded that by tuning the physical parameters utilizing PSO, the number of polyhedral of  

MPC-based control law is minimized; in this way, the related complexity of arrangement to CFTOC will be 

diminished together with the change of yield details at the same time so that the fluid tallness in both tanks 

reach craved esteem in 189 seconds. 

 

 

  
  

Figure 8. The output flow variation of tank 2 Figure 9. The liquid height in tank 2 

 

 

 

  
  

Figure 10. Convergence diagram of objective 

function 

Figure 11. Controller with minimum partitions 

 

 

5. CONCLUSION  

Several analytical methods have been used for the CFTOC solution. Their main disadvantage is the 

computational complexity of the solution; therefore, the problem can be considered as NP-hard. The meta-

heuristic algorithm is used to solve NP-hard optimization problems that have strategies to escape the local 

optimal solution and are applied to a wide range of problems. In general, the developments of meta-heuristic 

methods are done with the study and inspiration of optimization in nature, such as particle swarm 

optimization. By using PSO and an appropriate definition of the objective function, the complexity of the 

MPC-based solution of CFTOC was reduced and the system performance was improved simultaneously. The 

most massive advantage of the recommended method is that if the mentioned purposes were not in one 

direction, we can define a multi-objective function to fulfill aims. According to the simulation results, it is 

demonstrated that the number of polyhedral and the dependent complexity of CFTOC solution are reduced, 

the system performance such as reaching the liquid height at a certain time is desirable and the obtained 
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steady-state error reaches zero. The number of control law polyhedral reduces from 42 to 10. The liquid 

height in both tanks reaches desired value in 189 seconds. 
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