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 Recently, the industry of healthcare started generating a large volume of 

datasets. If hospitals can employ the data, they could easily predict the 

outcomes and provide better treatments at early stages with low cost. Here, 

data analytics (DA) was used to make correct decisions through proper 

analysis and prediction. However, inappropriate data may lead to flawed 

analysis and thus yield unacceptable conclusions. Hence, transforming the 

improper data from the entire data set into useful data is essential. Machine 

learning (ML) technique was used to overcome the issues due to incomplete 

data. A new architecture, automatic missing value imputation (AMVI) was 

developed to predict missing values in the dataset, including data sampling 

and feature selection. Four prediction models (i.e., logistic regression, support 

vector machine (SVM), AdaBoost, and random forest algorithms) were 

selected from the well-known classification. The complete AMVI architecture 

performance was evaluated using a structured data set obtained from the UCI 

repository. Accuracy of around 90% was achieved. It was also confirmed from 

cross-validation that the trained ML model is suitable and not over-fitted. This 

trained model is developed based on the dataset, which is not dependent on a 

specific environment. It will train and obtain the outperformed model 

depending on the data available. 
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1. INTRODUCTION 

Data analytics (DA) is a new technology used to make correct decisions through proper analysis and 

prediction. The DA model will help to reduce cost of health care and enhance patient care process. However, 

the main concern is to have clean data to get valuable and accurate outcomes. There could be a chance for risk 

if data quality (DQ) is low, as it will lead to incorrect or unwanted decisions and actions. Consequently, this 

risk may affect the company's data processing time and cost over billions of dollars every year [1]. Data issues 

are becoming more problematic, as around 60% of organizations face critical issues from bad DQ, and every 

individual organization may contain 10-30% of inaccurate data in their databases. As stated by [2] “DQ is 

generally described as the capability of data to satisfy stated and implied needs when used under specified 

conditions”. Low-level DQ can cause inaccurate or missing data. It may lead to incorrect or misleading 

decisions, predictions, or instruction. In 2010, Dey and Kumar [1] stated that dirty data could slow down any 

processing depending on DA and even affect the organization's total cost; the cost can be over billions of dollars 

https://creativecommons.org/licenses/by-sa/4.0/
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per year. Around 60% of the data in an organization contains data issues. Hence organizations are now worried 

about those dirty data. When it comes to the medical environment, these dirty data may kill patients or take 

towards the patient's long-lasting health issue. An organization of medicine [3] reported in 1999 that 

approximately 44,000 to 98,000 patients died every year due to errors present in medical records. It also costs 

more than 17 to 29 billion dollars annually. Other than wasting money and health, these insufficient data can 

affect the patient's privacy. However, it is still challenging to handle this type of incomplete data in healthcare 

system [4]. 

Some researches [5]–[8] focused on one specific issue of DQ, i.e., duplicate identification and 

elimination. It is only one aspect of data issue, hence the complete process of cleaning data had little attention 

in the research community. Before training final DA process to obtain meaningful outcome, it is important to 

concern almost all the dirty data issues, especially the common dimensions: Incomplete data, Inaccurate data, 

Duplicate data and Inconsistent data [9]. There are other dirty data dimensions found by different organization's 

dataset [10], [11], i.e., incomplete, ambiguous, inconsistent, and inaccurate data. It is essential to clean at least 

the common four dimensions, hence there was scope of obtaining enhance process of cleaning data. To make 

this process automatic a system is introduced using machine learning (ML) model [12] had modified the 

random forest (RF) algorithm to handle missing data; similarly [13] had developed a model to address the 

support vector machine (SVM). However, in this paper, ML is used to predict the missing value instead. Many 

of them are currently using Hadoop file system (HDFS) to reduce the data storing and retrieving cost [14], 

[15]. In this study, sampling method is introduced to make sure the model works for different data size after 

obtaining data from HDFS. Sampling helps to train model with data sample until ML model is trained to get it 

maximum performance. This ML model will then use to predict the missing values for the proposed framework 

automatic missing value imputation (AMVI). Before training the model, the system will also automatically 

select the important features. The sampling technique, feature selection methods, and automatically ML model 

selection will help to blend with different domain without involving human. 

Contributions. This research focuses on improving the performance of DA by considering data errors 

that cause domain value violations in the context of supervised classification models. The system is developed 

using python language. The proposed system's main contribution will make the cleaning phase automatic by 

using appropriate predictive methods for different domains. The model is trained in such a way it will be able 

to predict the missing class. It may also reduce the high computational cost required to process the massive 

amount of data in ML during the cleaning phase of DA by introducing the proposed system. The cost is reduced 

by allowing only the sampled data to be used for training. Sampling is achieved by the divide-and-conquer 

technique in this proposed system. Moreover, human error could be avoided by introducing the proposed 

approach in life-critical applications such as healthcare management. 

 

 

2. IMPLEMENTATION OF DATA ANALYTICS 

Due to changes in food habits in this modern time, humans are facing different health issues. With the 

increase in health issues, hospital readmission has resulted in unaffordable, and it is essential to prevent this by 

taking the required measurements [16]. Here, if a patient is frequently admitted into the hospital in a short 

duration (say, within 30 days), he/she is considered to be readmitted. Readmission may happen due to different 

reasons, such as improper medication, patient diagnosis, follow-up surgery, transferring to another and 

hospital. In this use case, the essential purpose is to reduce the risk of readmission. To complete this intention, 

it is necessary to build a system providing an accurate tool for prediction analyzing patterns for hospital 

readmission. For developing this model, it was challenging to deal with data issues. Depending on hospital 

data, a DA model is designed and developed to predict according to the patient condition will readmit within 

30 days to the hospital. This use case is selected to test whether the proposed cleaning phase in the system 

enhances the prediction or not. The DA process was implemented by steps presented in Figure 1. 

 

 

 
 

Figure 1. DA process overviews 
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2.1.  Data collection and storing 

Collecting data from a reliable source is very important to make sure data in real-world data. 

Typically, collected data contains data issues. It is essential to examine the dataset to obtain accurate results. 

For this research, a dataset was selected from the UCI repository [17]. The selected data set is initially stored 

in Hadoop file system (HDFS) in files to keep and read data with a lower computational cost. Then, data is 

retrieved from the file using 'PANDAS' library. 'InsecureClient' function in 'hdfs' library is used to connect 

(write and read) with HDFS. For testing purpose Hadoop is installed in the client desktop. 'hdfs’ library act as 

a bridge between Hadoop and Python language used for scripting. 
 

2.2.  Data preprocessing  

Data combined from heterogeneity sources can contain data inconsistencies and missing values. Few 

steps of data preprocessing and cleaning is done as follows: 

 Dropping features that contain a high percentage (i.e. >50%) of data missing values  

 Dropping features that do not help this process is completed by feature selection 

 Unique IDs or unique values in every row of a feature is not useful for classification. Hence these columns 

also dropped (such as patient_nbr and encounter_id) 

 Substitute missing values 

 Adding a class label is required to set to indicate that the patient is readmitted or not. Here value 0 means 

readmitted within 30 days, and 1 means not readmitted within 30 days. 

 Encode categorical values into numerical values, as selected ML can train using numerical values. 

A new architecture is developed and able to input any structured dataset. Using the data, the ML 

models are trained for predicting missing values and then impute missing value in the dataset, known as AMVI, 

is presented in the following section. The automatic cleaning phase also can encode categorical values into 

numerical values, which is very important to training ML algorithms. Not only missing values, it also solves 

inconsistent data and duplicate data. In the case of massive data, to develop the model, a faster sampling 

technique is involved. The model is trained using sample data until the model prediction accuracy reaches a 

stable level. 

 

2.3.  Data analysis and modelling 

Predictive modelling has been executed using fully scripted Python language. Once an ML model is 

trained for prediction purposes, in this stage, the accurate classification predictive algorithm is selected for 

further use for predicting readmission status. The classification algorithm in the DA stage applied for the 

experiment is logistic regression (LR), decision tree-based method (CART), and RF classifier. Finally, to 

evaluate dataset is classified into train and test data set into 70% and 30% respectively and followed by model 

effectiveness using model accuracy and receiver operating characteristic (ROC) Curve. 
 

 

3. DESIGN OF AUTOMATIC CLEANING PHASE 

When humans enter data into a system, then it is usual to get incomplete and inconsistent data. Even 

data from sensors can provide data error due to failure. However, analysis processed by ML cannot accept 

these data errors. The dataset was selected to make sure it has missing and inconsistent values. If the dataset 

has only a missing value (means the value is unknown or ‘?’), it is inconsistent (such as changing date format). 

Therefore, to avoid manual suggestions, a system was developed to overcome missing values and inconsistent 

data issues in this research. Hence, a method is designed aiming at auto-cleaning for data analytics that will 

improve DQ. The developed cleaning phase is presented in Figure 2. The complete framework contains list of 

function F = {f1, fn} to solve dirty data dimensions. The cleaner function does the following: i) selects the best 

solving missing values from predictive (AMVI) or drops or mode (categorical variables) or median (continuous 

values) or set a unique value, ii) encodes non-numerical variables, iii) reformats any date-time inconsistencies, 

and iv) removes duplicates 

The easiest and most popular solution to the missing data problem (i.e., fNAN) is removing all the rows 

with any missing data. Unfortunately, deleting rows with missing data could add a significant bias to the data 

set. If all the rows that have been deleted are for males, that data is biased against males. Another example is 

when different columns have missing values in other rows. By removing all the rows with missing values, one 

could potentially remove a significant portion of the usable data, reducing accuracy. The second standard 

treatment for missing value is to add a constant. That approach only works in some cases and is best made by 

a person with a strong background in the problem the data represents. The third common approach is to replace 

the missing values with a median, mean or mode. This approach works if the data is well-balanced/normalized. 

It is also best processed by someone with a good understanding of the information they are dealing with. One 

exciting and straightforward way to enhance missing data using the mean is to calculate the mean using a 

specific condition. However, the approach is not dependent on its features. The solution is using ML 
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techniques. First, the collection of missing values needs to be separated from the actual set. Next, by using 

another dataset, the ML model must train and finally predict the values missing. Here, the ML model learns 

from the data patterns available between the features and output (by using rows that do not contain any missing 

data) and uses those patterns to predict the missing class of all affected rows (details described in the following 

section). 

 

 

 
 

Figure 2. Data cleaning approach in da phase cleaning missing data 

 

 

3.1.  Design of automatic missing value imputation (AMVI) approach 

The few challenges faced after implementing DA process are stated [18]. An automatic cleaning phase 

was developed to overcome a few of the challenges (i.e., volume and incompleteness). The auto-cleaning will 

allow the users to train predictive models while progressively cleaning data and preserve convergences 

guarantees. The proposed architecture AMVI for the auto-cleaning tool is shown in Figure 3. The algorithm is 

presented in the following section. 

 Data sample. The ML models will be trained on the previously formed subset. In this way, data analysis 

algorithms performance with minimum computing and stock resources can be maintained and improved. 

Every sample was tested until a stable ML accuracy was obtained to find the minimum consistent subset. 

For data sampling, the divide-and-conquer strategy is implemented, which has a good effect in practical 

application.  

 Removing rows with issues. For training purposes, it is essential to separate the rows containing missing 

values. These rows may cause the problem to get a better predictive model. 

 Splitting data. Considering, the dataset contains clean data. This data set is spat into the training and testing 

data set. The percentage is usually around 80/20 or 70/30. Here, 70/30 selected to split data for training 

purposes. It is implemented using the Scikit-learn library and precisely the train_test_split method. 

 Feature selection. Firstly, before selecting features, it is essential to find out which column contains issues. 

Considering that column ‘C’ to be class/output and other columns are features. The best parts are then 

selected using Gini values obtain from the trained random forest model. It is an important step, as it affects 

the outcome of the final trained model [19] 

 Train/Test model. The selected models were trained and tested using a training and testing data set where 

features were obtained from the feature selection method. 
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 Evaluation method. By using the evaluation technique (presented in Section VII), the best model is selected. 

Different datasets will perform differently due to data structure. Finally, the best model is stored and used 

for future prediction. 

 Prediction phase. The prediction phase can be integrated into the DA system's cleaning phase, identifying 

and imputing the missing class.  

 

 

 
 

Figure 3. AMVI auto-cleaning architecture 

 

 

3.2.  Implemented algorithm for AMVI 

Here, four best trained ML model training approach is integrated to detect numerical and categorical 

data. The missing value column is considered as class and rest data are features. Initially, a clean dataset (Dclean) 

is used to insert into the system. If the dataset is not cleaned, it will be cleaned manually. Next, consider DNAN 

to be set of containing data with missing value and can be solved using fNAN function, as mentioned earlier. 

The system developed for fNAN function is as:  

Step 1.  Let Cnull be the missing value columns and considered missing class, Detect Cnull containing missing 

values using FNAN (Function to detect is column contains null/NaN/?) 

Step 2.  Obtaining, Dclean (the sample dataset cleaned previously) and let Cclean is the list of features for each 

record containing clean data 

Step 3.  Split Dclean into Dclean_train (Train input data) and Dclean_test (Test input data), and split Cclean into Cclean_train 

(Train output data) and Cclean_test (Test output data) 

Step 4.  Train selected model (models represented in Section VI) with selected data set and labels  

  Train (Dclean_train, Cclean) 

  if obtained best features 

  go to step 6 

else 

  go to next step 

Step 5.  Important feature selection using Gini index value obtained from RF. Gini index is defined as in (1). 

Using the algorithm presented in section VI. 
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𝑔𝑖𝑛𝑖(𝐶) = ∑ 𝑝𝑖(1 − 𝑝𝑖)
𝑛𝑙
𝑖=1  (1) 

 

where nl is the number of classes in set C (the target variable) and pi refers ratio of this class i. 

Step 6.  Repeat step 3 

Step 7.  Test the trained classifier by using test data to obtain accuracy 

Ptest=Predict(Dclean_test)  

accuracy_score(Cclean_test, Ptest) 

Step 8.  Repeat the process from step 3 until Four selected model accuracy is obtained 

Step 9.  Store the best-trained ML model 

Step 10. Applying the best-trained ML model used to predict the missing class for the set of rows DNAN 

P=Predict(DNAN)  

Step 11. Predicted P data are appended to the Dclean data, Goto step 2. 

Dclean=Dclean ∪ P 

The script was implemented using Python Language. Moreover, for data retrieval and presentation 

using pandas and Matplotlib library was integrated. 

 

3.3.  Feature selection using Gini index 

Once the system has all the features, it is crucial to select the essential features for training and testing 

the ML model. All features are not helpful to train the ML model for accurate prediction. Therefore, in this 

stage, the RF Gini index values can be used for feature selection. The outcome of feature importance values is 

plotted in the graph shown in the result and discussion section, containing the calculation of the best features 

selected for training ML algorithms. Here, in Figure 4 (step 5), the threshold value 0.95 was chosen by testing 

the system with different threshold values. The best features will be selected for each column containing the 

missing value. 

 

 

 
 

Figure 4. Basic steps of feature selection 

 

 

4. TRAINING ML CLASSIFIERS  

The supervised ML models are known approach to train the model using labelled dataset. Four 

selected ML techniques were used for training the model, i.e., RF, Linear SVM, Adaboost, and LR. These are 

selected initially by comparing eight well-known technologies (i.e., LR, linear regression, Linear SVM, 

AdaBoost, K-nearest neighbour, SGDClassifier, gradient boosting, and RF). The selection is processed by 

training and testing the model and comparing its accuracy. 

 

4.1.  Random forest algorithm 

RF contains more than one decision trees. RF is one of the excellent choices; it is tolerable in data 

noise and trains with reasonable accuracy. The decision trees are independent of each other [20]. The tree rules 

can be generated using two techniques. The techniques are i) Sampling indiscriminately by negating loop 

replacement and ii) broadly selecting the best subset of features from a complete set of features for the splitting 

node. The splitting node process helps to acquire the optimal set of features at each node, depending on its 
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impurity. These impurities of parent and children’s nodes are calculated by using the Gini index. Consider the 

classes 𝐶 for samples from set 𝑙; then the Gini index values are calculated using (2). 
 

𝑔𝑖𝑛𝑖(𝐶) = ∑ 𝑝𝑖(1 − 𝑝𝑖)
𝑛𝑙
𝑖=1   (2) 

 

where 𝑛𝑙 are the number of classes in set 𝐶 (the target variable), and pi refers ratio of this class 𝑖. 
Therefore, for two classes with a quantity of data split into N1 and N2 for each class, the Gini index 

for C is calculated using (3). 

 

ginisplit(C) =
N1

N
Gini(C1) +

N2

N
Gini(C2)   (3) 

 

The smallest split Gini (C) is selected to split the node, as it has lower impurities. The Gini index 

value of one class node will be 0. Feature importance can be classified using these Gini Index. The outcome is 

selected from checking the decision trees results. The final classifier gathers the majority votes for class C, and 

then provides the final prediction.  

 

4.2.  Support vector machine (SVM) algorithm  

The second method selected is SVM, due to its capability of single and multiclass classification. The 

main task to train SVM algorithm is to find a hyperplane in an N-dimensional space, where N is the number of 

features/fields. The line will discriminate different data points in the group. The output is obtained in the linear 

function. To get an accurate trained model, it is important to obtain the maximum distance between data points 

and the hyperplane. The cost function calculated by using (4) to maximize the margin, 

 

𝐽(𝜃) = ∑ 𝑦(𝑖)𝐶𝑜𝑠𝑡1(𝜃𝑇𝑥(𝑖)) + (1 − 𝑦(𝑖))𝐶𝑜𝑠𝑡0(𝜃𝑇𝑥(𝑖))𝑛
𝑖=1    (4) 

 

where  𝐶𝑜𝑠𝑡(ℎ𝜃(𝑥), 𝑦) = {
max(0,1 − 𝜃𝑇𝑥)  𝑖𝑓 𝑦 = 1

max(0,1 + 𝜃𝑇𝑥)  𝑖𝑓 𝑦 = 0
   

 

where n is the total number of data. ℎ𝜃(𝑥) is the SVM hypothesis from the raw model output 𝜃𝑇 𝑥. Here y is 

the predicted value. If 𝜃𝑇𝑥 ≥ 0, then y=1, else y=0. For further regulation, (7) is calculated and added with (5). 
 

𝑟𝑒𝑔 =
1

2
∑ 𝜃𝑗

2𝑚
𝑗=1   (5) 

 

Here, m is the total number of features/fields used to train the SVM model 

 

4.3.  Logistic regression algorithm  

One of the most common classification ML algorithms is LR. It is one of the probabilistic 

classification models. Here, LR contains a sigmoidal curve, which helps plot the data patterns to get the label 

as output. The sigmoid function graph is plotted using (6): 

 

𝑆(𝑥) =
1

1+𝑒−𝑧 (6) 

 

Equation (7) is required to cast the problem to obtain the LR model in the generalized form structure. 
 

�̂� =  𝛽0 + 𝛽1𝑥1 + ⋯ + +𝛽𝑛𝑥𝑛 (7) 
 

where predicted value is indicated by ŷ , is independent variables indicated by x and the β are coefficients to 

be trained. Finally, (10) is compacted to vector form. Thus, the logistic link function can be used to cast LR 

into the Generalized Linear Model. To able to work with Multiclass classification with LR, the one-vs-rest 

(OvR) scheme was used. In OvR scheme for every class, a binary classification process is executed whether 

the data contains belonging or not. The loss function also does it to cross-entropy loss. 

 

4.4.  Adaboost classifier 

AdaBoost, a short form of Adaptive Boosting, is an ML meta-algorithm that is the first practical 

boosting algorithm proposed by [21]. It helps to convert weak classifiers into the string. For final classification 

is presented in (8). 

 

𝐹(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝜃𝑚𝑓𝑚(𝑥)𝑀
𝑚=1 ) (8) 
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where fm contains a value for mth weak classifier and θm holds corresponding weight. The equation includes a 

summation of a combination of weight and M weak classifiers. The process of the AdaBoost algorithm is as: 

For n points of the inputted dataset, and 𝑥𝑖 ∈ ℝ𝑑, 𝑦𝑖 ∈ {−1,1}. negative class is indicated by -1, and a 

positive class is characterized by 1. The weight for every data point is initialized by using (9). 

  

𝑤(𝑥𝑖 , 𝑦𝑖) =
1

𝑛
, 𝑖 = 1, … , 𝑛  (9) 

 

For every iteration m=1, …., M: Find the classifier and fit it to the data set. Concerning distribution, select one 

of the lowest weighted classification errors by using (10). 

 

∈𝑚= 𝐸𝑤𝑚
[1𝑦≠𝑓(𝑥)] (10) 

 

Here, 𝐸 is exponential loss function for weight 𝑤 of 𝑚th classifier. If 𝑦 is not equal to 𝑓(𝑥) it is considered as 

misclassification (i.e., 1) 

Prerequisite <0.5; otherwise stop 

Calculate the weight for the mth weak classifier by using (11). 

 

𝜃𝑚 =
1

2
ln(

1−∈𝑚

∈𝑚
)   (11) 

 

The weight is considered positive; if the classifier accuracy is greater than 50%, the weight is deemed to be 

negative. The combination of prediction is processed by flipping the sign. By using (12), the weight was 

updated for all points. 

 

𝑤𝑚+1(𝑥𝑖 , 𝑦𝑖) =
𝑤𝑚(𝑥𝑖,𝑦𝑖)exp [−𝜃𝑚𝑦𝑖𝑓𝑚(𝑥𝑖)]

𝑍𝑚
  (12) 

 

To ensure the total weight instances are equal to 1, Zm is a normalization factor. Here, the term ‘exp’ in the 

numerator would be greater than 1 (yi*fi is always -1, the θm is positive) if any misclassified case occurs from 

a positive weighted. Hence, after an iteration, the misclassified values will be updated with larger weights. 

Once, iteration is completed, the predictive weight of all classifiers is summarized for the final prediction. 

 

 

5. SYSTEM EVALUATION TECHNIQUES 

Accuracy, confusion matrix, and cross-validation techniques are used to evaluate the performance of 

the prediction model. Classification accuracy method used for evaluation is by retrieving predictive outcomes. 

By using confusion matric, the terms true positive (TP), true negative (TN), false negative (FN), and false 

positive (FP) can be presented as shown in Table 1. A confusion matrix clarifies that these terms are about 

actual and classified outcomes given by a trained ML model. 

 

 

Table 1. Confusion matrix of a classifier [20] 
 Classified Positive Outcome Classified Negative Outcome 

Actual Positive Outcome The amount of readmitted patients that are 
correctly identified as readmitted  

TP 

The amount of readmitted patients that are 
incorrectly identified as not readmitted  

FN 

Actual Negative Outcome The amount of not readmitted patients that 
are incorrectly identified as readmitted 

FP 

The amount of not readmitted patients that are 
correctly identified as not readmitted 

TN 

 

 

The essential measurements can be calculated once TP, TN, FN, and FP values are obtained. These 

accuracy measurements (The probability of correct classification) are obtained using (13) for evaluating the 

trained model. 

 

Accuracy =
TP+TN

TP+FP+FN+TN
  (16) 

 

Next, the K-Folds cross-validation technique is also used and confirmed that the trained model does not have 

unreliable issue. Here, the complete dataset was broken into k section (where, k=5). In this K-Folds Cross-

Validation, the sample data was split into k different subsets/folds. At first, fold-2 to fold-5 is used for training 
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purposes, leaving the fold-1 for testing purposes. Next, fold-1, fold-3, fold-4, and fold-5 were used for training 

and fold-2 used to test the model. This process goes on until every fold is used for testing purposes. Finally, 

the average accuracy (Cross-validation Score) is compared, and the final model was selected. This testing helps 

overcome the over-fitting model issue.  

 

 

6. RESULT AND DISCUSSION 

6.1.  Feature importance 

The first set of data used to find its feature importance is diabetics data [18]. This data set is used to 

predict whether a patient is getting readmitted or not. The features to be selected to train AMVI to predict the 

missing values of a column labeled as ‘rosiglitazone’ are shown in Figure 5. Best features are obtained based 

on cumulative values of features' importance. This technique also helps to reduce fluctuation [22]. It is evident 

from the graph that features are ranked from most important to least necessary according to their Gini values. 

They are diag_1, medical_speciality, DiabetesMed, metformin, age, and so on.  

 

 

6.  
 

Figure 5. Calculated feature importance using Gini index 

 

 

6.2.  Performance AMVI architecture with selected classifiers 

Classifier’s performance depends on the type of dataset selected for training. The inclusion of four 

different ML algorithms in the AMVI gives the ability to choose the best ML algorithm according to the type 

of dataset presented. The results obtained after training and testing AMVI with the four different datasets 

separately are shown in Figure 6.  

This accuracy refers to the amount of correctly predicted missing values for each column; for example, 

in the graph in Figure 6(a), prediction accuracy values plotted for ‘rosiglitazone’ column are presented. The 

results obtained while training and testing RF in AMVI with Diabetics Data are shown in Figure 6(a), where 

the trained RF Algorithm recorded more than 90% accuracy. The Trained LinearSVM model and Adaboost 

model results are shown in Figures 6(b) and 6(c), respectively. It indicates that they are unstable and low in 

prediction accuracy. LR trained algorithm recorded more than 85% accuracy Figure 6(d). 

 

6.3.  Cross-validation analysis for AMVI  

Cross-validation testing is done to measure the performance of AMVI by giving training and testing 

to ML models of AMVI. The entire dataset was divided into 5-folds; and four of them were used for training, 

and the remaining one was used for testing. It is repeated for all the folds, and total accuracy is calculated to 

get a Cross-validation score. The results obtained are shown in Table 2 along with classification accuracy 
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obtained for predicting the missing value(s) of the column rosiglitazone. It is proved from the table that the 

trained model is not over-fitted because of the closeness between model accuracy and cross-validation 

accuracy. It also indicates that the model is more dependable. 

 

 

  

(a) (b) 

 

  

(c) (d) 

 

Figure 6. Accuracy percentage vs data volume for trained ML: (a) RF, (b) Linear SVM,  

(c) Adaboost, and (d) LR 

 

 

Table 2. Cross-validation comparison for ‘rosiglitazone’ 
Number of data row Accuracy Cross-Validation percentage accuracy 

20000 88.10% 86.082% 
40000 92.65% 88.233% 

60000 90.05 87.285% 

80000 90.84 87.043% 
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6.4.  Comparing with existing work 

The implemented DA's performance is compared with the results obtained from different published 

papers used the same dataset. The obtained outcome from these papers is presented in Table 3 for comparison 

with developed AMVI framework. In Table 3, the column titled ‘Paper’ was used to refer to the research paper 

from which the result was obtained. The column titled ‘results’ presents the results obtained from their papers. 

The last column represents the information used to compare with existing work and the proposed system. 

However, the techniques used are different from the methods used in this research, but the dataset and use case 

is similar. It clearly shows that the final DA outcome for the proposed system performs better than the existing 

ones. The main reason for the difference is the cleaning phase. An enhanced and automatic cleaning phase 

tends to improve the DA process. 

 

 

Table 3. Comparison with existing readmission prediction research 
Paper Accuracy Compared with AMVI 

[23] Accuracy using SVM model 82.70% Final DA prediction ~91% accuracy for RF, SVM and LR 

[24] Overall AUC: 0.56 using Tree Classifiers The developed system for overall data set is AUC:0.64 using the tree 
classifier (Random Forest) [0-30): Precision 0.3651 Accuracy 84.81% 

[30-70): Precision 0.2288, Accuracy 78.5% 

[30-70): Precision 0.1857, Accuracy 68.49% 
[25] the accuracy obtained by the model is 63.38% Used SVM technique. However, ignored the cleaning phase 

 

 

In paper [23], they had predicted using SVM and found less accuracy then the model developed in 

this paper. For further comparison [26] is compared by finding AUC value. Here AUC value is Area under 

curve of receiver operating characteristic plotted graph, i.e., true positive rate (TPR) vs false positive rate 

(FPR). TPR is rate of output positive correctly identified, by calculating TP/(TP+FN). Whereas FPR is rate of 

wrongly identifying positive output by using equation FP/(FP+TN). 

 

 

7. CONCLUSION AND FUTURE WORK 

An approach was designed and developed for the automatic cleaning phase to enhance DA' overall 

performance. How to extract knowledge is one of the most frequently discussed issues. Considering an 

important use case from healthcare, the comprehensive system was evaluated. This research was initiated to 

identify the critical phase in DA processing. It was derived with a conclusion that data cleaning is the most 

potential phase, which many researchers ignore. A ML technique is implemented in the cleaning phase of Data 

analytics to achieve the objective. ML is an advanced artificial intelligence technique used in areas where data 

needs to be analyzed for accurate prediction. It can learn from the data analyzed and determine or predict 

something about the researched subject. Even though data cleaning is possible by software implementation, it 

isn't easy to make it adaptive without ML ability. Software data cleaning techniques are usually based on rules 

applicable to a specific domain. Hence, any changes in the environment might fail the data cleaning process, 

affecting DA performance drastically. The data cleaning process with ML can withstand any domain changes 

because of learning from the data. Hence, the automatic cleaning of dirty data is possible with the ML-based 

data cleaning process. Firstly, if the cleaning process is automated, it is also expected to reduce human fault 

occurrences and improve the analysis outcomes with more meaningful visions. Secondly, the trained model 

will select features and get the best-trained model automatically according to the dataset. Moreover, other 

researcher had already proved the importance of feature selection. Accuracy and cross-validation techniques 

were used for evaluating the cleaning stage. Around 90% accuracy is achieved for missing values prediction 

in the cleaning phase alone. While comparing Adaboost Classifier, linear SVM, LR, and random forest with 

the same data set, it was found that Adaboost Classifier and linear SVM performance far better than the other 

two. The reason may be due to the non-linearity in the decision boundaries and the complexity in the time-

sequence dependent interactions. It was also confirmed from the results of cross-validation that the trained 

model is not over-fitted. Even though the proposed system had been tested in all essential aspects and proved 

useful in performance after comparing with existing techniques, there could be some space for further 

improvement. It could be achieved by introducing an auto-tuning facility to the parameters of the ML model. 

The proposed system is designed to work with only structured data containing data issues. Hence, to make it 

suitable for unstructured data, an appropriate module could be added in the future for converting the 

unstructured data to structured data, if required. Future enhancement is also necessary to this approach to have 

the ability to auto-detect and correct the inaccurate data, if any, stored in the data set. Furthermore, the method can 

be evaluated with other common method of imputing missing values, such as mean, median and unique value. 
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