
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 12, No. 2, April 2022, pp. 2079~2086 

ISSN: 2088-8708, DOI: 10.11591/ijece.v12i2.pp2079-2086      2079 

 

Journal homepage: http://ijece.iaescore.com 

Crop leaf disease detection and classification using machine 

learning and deep learning algorithms by visual symptoms: a 

review 
 

 

Pallepati Vasavi1,2, Arumugam Punitha1, T. Venkat Narayana Rao2 
1Department of Computer Science and Engineering, Annamalai University, Chidambaram, Tamilnadu, India 

2Department of Computer Science and Engineering, Sreenidhi Institute of Science and Technology, Hyderabad, Telangana, India 

 

 

Article Info  ABSTRACT 

Article history: 

Received Apr 21, 2021 

Revised Jul 18, 2021 

Accepted Aug 10, 2021 

 

 A quick and precise crop leaf disease detection is important to increasing 

agricultural yield in a sustainable manner. We present a comprehensive 

overview of recent research in the field of crop leaf disease prediction using 

image processing (IP), machine learning (ML) and deep learning (DL) 

techniques in this paper. Using these techniques, crop leaf disease prediction 

made it possible to get notable accuracies. This article presents a survey of 

research papers that presented the various methodologies, analyzes them in 

terms of the dataset, number of images, number of classes, algorithms used, 

convolutional neural networks (CNN) models employed, and overall 

performance achieved. Then, suggestions are prepared on the most 

appropriate algorithms to deploy in standard, mobile/embedded systems, 

drones, robots and unmanned aerial vehicles (UAV). We discussed the 

performance measures used and listed some of the limitations and future 

works that requires to be focus on, to extend real time automated crop leaf 

disease detection system. 
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1. INTRODUCTION 

India is an agrarian economy, with Arable land accounting for more than 54% of the total land 

area. India ranks among the world's top producers of rice, wheat, cotton, fruits and vegetables, and dairy 

products in terms of volume. The demand for agricultural products is growing at an unprecedented rate as 

our population grows. Good nutrition make sure that human body gets all of the nutrients, vitamins, and 

minerals it needs to work optimally. Maintaining essential vitamins and minerals is also essential for good 

health. Preventing and monitoring crop diseases plays crucial role for providing nutrias food. Since they can 

damage crops, decreasing food supply and chain while also raising food prices. Plant pests and diseases can 

also reduce the palatability of foods, causing populations to alter their conventional food preferences. In 

1970, a disease in soya bean crops, “Sudden Death Syndrome” rapidly increased across the United States 

(US) and eventually reaching on the whole agricultural areas of the US. So, quick and precise crop leaf 

disease recognition is dangerous to increasing agricultural yield in a sustainable manner. The motto of Food 

and Agriculture Organization of United Nations (FAO) is “let be bread”. 

Crop leaf diseases vary in shape, size, and color. Certain diseases might have the identical color, but 

dissimilar shapes; while some have dissimilar colors but identical shapes. The model can be developed by 

capturing the diseased leaves and recognize the patterns about the disease is helpful to get free of crop loss 
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due to disease spread or increase [1]. In this approach, the images are often sent to a core crop leaf disease 

system for analysis; the system can recognize. The system generates information about the crop leaf disease. 

 In order to explore the use of Image processing for classifying citrus leaf diseases, a research [2] on 

2006, was conducted. For this analysis, four distinct citrus leaf disease groups were used, namely greasy spot, 

melanose, healthy, and scab. For feature extraction and classification the proposed algorithms based on 

image-processing techniques were developed. The process of extraction of features used the technique of 

color co-occurrence, which uses an image's color and texture to achieve specific characteristics that reflect 

the image. On all data models using intensity features, SAS discriminant analysis, hue and saturation 

features, hyperspectral image (HSI) features presented the results above 81 percent, and above 95.8 percent 

respectively. 

In 2007 Tellaeche et al. [3] proposed two mechanisms: segmentation of images and decision 

making. To divide cells from the image as low-level parts, image segmentation incorporates simple image 

processing techniques. 2 area-based attributes computing the relationships between crop rows and weeds 

define each part. A hybrid supervisory methodology decides, from these properties, whether or not a cell 

must be sprayed. The decision is depends on the merger of two well-known classifiers (SVM and FM) under 

the Bayesian system. 

To recognize cucumber crop leaf disease based on IP and SVM was introduced in 2008 [1]. To 

reduce noise from the obtained cucumber disease leaves color images, the vector median filter was initially 

used. The color picture of the cucumber disease spot on the leaf was derived from the texture, shape and 

color characteristics. The system used SVM and neural networks classifiers. Shape feature gives more 

accuracy than the texture and color feature gives faster results. The results showed that SVM performance is 

better than neural networks. Linear kernel of SVM gives better results than polynomial, radial basic, and 

sigmoid functions.  

In 2014, Gavhale et al [4] developed a system that contains four-part image preprocessing model 

involving (red, green, blue) RGB to different color conversion, image enhancement techniques; segmenting 

the region of interest (ROI) using K-means clustering for algebraic use to assess the defect and acute areas of 

crop leaves, extraction and classification of features. Using statistical GLCM and color function by means of 

mean values, texture feature extraction. Finally, the classification obtained using SVM (polynomial and 

RBF). 

The proposed model in 2015, Mokhtar et al. [5] uses the GLCM to detect, whether safe or 

contaminated, and to classify tomato leaf status. For the classification process, the SVM algorithm with 

popular kernel functions is used. Datasets of 800 healthy and diseased tomato leaves in total. The N-fold 

cross-validation technique was used to test the accuracy of the presented method with 99.83 percent accuracy 

of classification using linear kernel functionality. 

Mohanty et al. [6] proposed a system in 2016 to recognize plant leaf diseases using DL. They built a 

deep CNN to classify 14 crop varieties and 26 diseases by a dataset of 54,306 images of PlantVillage dataset. 

They compared various CNN architectures on transfer learning and scratch training. In the case of the 

colored version of the dataset, the models work better. The limitation is that the classification of single 

leaves, facing up, in a homogeneous context, is currently limited. 

Rançon et al. [7] compared SIFT encoding and DL feature extractors which are already pre trained, 

for the recognition of Esca disease in Vineyards. 91 percent overall accuracy was obtained using deep 

extracted features from the ImageNet database trained MobileNet network, exhibiting the efficacy of transfer 

learning methods without the need to build a feature extractor of ad-hoc specialized features. The next part 

was aimed at the identification of diseases (using bounding boxes) inside complete images of the plant. The 

deep learning core network has been incorporated into a "one-step" detection network (RetinaNet) for this 

reason, enabling us to execute recognition queries in near real time (approximately 6 frames per second on 

GPU). 

This paper [8] proposes a deep neural network-based real time detection system for pests and 

diseases of Cole. A bounding box generator first determines to provide bounding boxes of size, location, and 

class by training the input image with a region-based neural network. Then, for verification, the presenting 

bounding boxes from each class are fed into the CNN filter bank. The problem of false positives generated by 

bounding box generators and class inequalities in data sets with incomplete data can be solved by proposed 

method. 

Goncharov et al. [9] to provide the solution for the problem of tiny image databases, the deep 

siamese convolutional network was created. The identification of the 3 diseases namely Esca, Black rot, and 

Chlorosis disease on grape leaves had an accuracy of over 90%. Panigrahi et al. [10] the research focused on 

traditional machine learning techniques for the recognition of maize crop diseases, such as NB, DT, KNN, 

SVM, and RF. In order to choose the most apt model with the highest precision for plant disease prediction, 

the aforementioned classification techniques are analyzed and compared. The RF algorithm provides the best 
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results, with 79.23% accuracy. Sagar et al. [11] compared five different architectures: ResNet50,VGG16, 

InceptionV3, Inception, ResNet, and DenseNet169.They discovered that the best result on the test set was 

ResNet50 with 94% accuracy, it uses skip connections using a residual layer archive. They computed 

performance by precision, accuracy, recall and F1 score. 

 

 

2. RESEARCH METHOD  

To detect crop leaf diseases and classification by visual symptoms, there are 5 steps existed in the 

crop leaf disease detection and classification model architecture: image acquisition, image preprocessing, 

image segmentation, feature extraction, classification. Table 1 represents various acronyms used in the crop 

leaf disease detection. Table 2 interprets the model of crop leaf disease detection and classification. 

 

 

Table 1. Acronyms 
Acronym Abbreviation   Acronym Abbreviation 

ML Machine learning   KNN K nearest neighbors 

DL Deep learning   RF Random forest 

IP Image processing   SURF Speed up robust features 
CNN Convolutional neural networks   LR Logistic regression 

UAV Unmanned aerial vehicles   BPNN Back propagation neural networks 
FAO Food and agriculture organization   ANN Artificial neural networks 

SVM Support vector machine   R-FCN Region-based fully convolutional network 

FM Fuzzy K means   R- CNN Region based convolutional neural networks 
GLCM Gary level co-occurrence matrix   LBP Local binary patterns 

RBF Radial basis function     

SGD Stochastic gradient descent     
HSV Hue, saturation, and value     

HOG Histogram of an oriented gradient     

SIFT encoding Scale invariant feature transform     
GPU Graphical processing unit     

NB Naïve Bayes     

DT Decision tree     

 

 

Table 2. List of the methods used for the detection of crop leaf diseases 
Image acquisition Image Preprocessing Image Segmentation Feature 

Extraction 

Classification 

Capturing the images 

from drones, smart 

mobiles phones, 
digital cameras and 

UAVs 

Image augmentation K-means, Principal 

component analysis 

Clustering 

Texture, 

shape and 

color are the 
features 

Machine Learning 

Collecting the images 
from public datasets 

Image resizing, rotations, 
Flipping, shift, shear, zoom 

Thresholding RGB feature 
extraction 

PNN, SVM, ANN, RBF, 
KNN, BPNN, NN, DT, RF, 

NB 

PlantVillage Image Annotations Color segmentation color co- 
occurrence 

Deep Learning 

Image database of 

plant disease 
symptoms (PDDB) 

Image Enhancement Learning based 

segmentation 

GLCM 

texture 
extraction 

CNN, Optimized CNN 

Bugwood image 

database system 

Removing noise Edge detection SIFT LSTM 

Wheat Disease 

Database 2017 

Smoothing Model based 

segmentation 

SURF Transfer Learning 

IPM Images Histogram equalization foreground/background HOG VGG19, GoogLeNet, 
AlexNet, ResNet50, 

Inception_V3, MobileNet 

Kaggle Median filtering Otsu thresholding 
 

NASNet 
UCI repository Color transformations Sobel edge detection 

 
SqueezeNet  

contrast Image 

Enhancement 

semantic segmentation 
 

Deep Siamese Neural 

Networks  
perspective, affine image 

transformations 

contours-based 

segmentation 

 
Ensemble Models 

 
Clipping 

  
F-RCNN, SSD, R-FCN 

 

 

2.1.  Image acquisition 

This is the first step of crop leaf disease detection and classification. The purpose of this stage is to 

collect and prepare images dataset that will be used in the further process. This is done by capturing the 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 2, April 2022: 2079-2086 

2082 

images from mobile phone cameras, digital cameras, drones and UAV either on real time (site) or in 

controlled conditions. 

 

2.2.  Image preprocessing 

Image preprocessing is very important to obtain the better results. To remove the noise color 

transformations were used. To reduce the size of the image acquired by digital cameras resizing techniques 

were used. It also helps to reduce memory size. The frequently used image preprocessing techniques in this 

literature includes cropping the leaves from the acquired images, color transformations, rescaling, 

background removal, image enhancement, flipping, rotating, Shear, and image smoothing. 

 

2.3.  Image segmentation 

Image segmentation plays an essential role in crop leaf disease detection and classification. It splits 

the image into various parts or zones. It explores the image data to extract helpful information for feature 

extraction. Image segmentation can be done in 2 ways, one is based on similarities and the other one is based 

on discontinuities. 

 

2.4.  Feature extraction 

Extracting the features of the substances of an image is called as feature extraction. The most 

common features found in plant disease detection and classifications are shape, color, and texture. The crop 

diseases may differ in appearances of the image due to multiple classes. The crop leaf disease system can 

easily recognize the diseases from the shape of the crop leaf image. The second feature is color is an 

important. It distinguishes the crop leaf diseases from each other. The last feature, texture portrays the 

various patterns of the color are spotted in the crop leaf images. The common texture features are energy, 

entropy, contrast, correlation, sum of squares, sum entropy, cluster shade, cluster prominence, homogeneity.  

 

2.5.  Classification 

Two types of classification methods were used to classify crop leaf diseases: ML and DL. The 

important dissimilarity between traditional machine learning and deep learning methods is by means of 

feature extraction. In traditional ML, the features are not computed automatically whereas in DL the feature 

extraction automatically takes place and it is considered as learning weights. So, in DL the system itself 

learns the needed features by providing sufficient data. The most common machine learning algorithms used 

for classification of plant diseases are KNN, SVM, DT, RF, BPNN, NN, NB and ensemble learning. The 

frequently used deep learning algorithms present in the literature were CNN, CNN models which were Pre 

trained on ImageNet and used transfer learning. 

Chowdhury et al. [12] proposed a plant disease detection and classification system, it uses transfer 

learning and deep feature extraction in. The authors were compared the obtained results of VGG16, 

GoogLeNet, ResNet50 CNN architectures with deep feature extraction by SVM and KNN. Experiment 

results shown that classification with SVM and ResNet50 given best results (98%) than the remaining 

combinations. The authors also compared the results of traditional machine learning algorithms i.e. SVM and 

KNN, SVM shown better accuracy (80.6%) than KNN (71.8%) but it is lesser than the proposed. 

 

 

3. RESULTS AND DISCUSSION 

It is observed from the Table 3 is the number of images used for the detection of crop leaf diseases 

by machine learning techniques are very less compared to deep learning techniques but generated remarkable 

accuracies.” represents that the information is not mentioned in the paper. By using modified CNNs, 

optimized deep learning models and transfer learning models gives better results than the basic CNNs. 

Modified DL techniques gives better performance than traditional ML techniques. Modified CNN i.e.  

Multi-channel model gives highest accuracy [13] i.e., 99.5% in DL and SVM with linear kernel gives 

accuracy of 99% in ML techniques.  

Figure 1(a) and Figure 1(b) represents the performance of the crop disease prediction system by 

using DL, ML techniques. The most used performance measures mentioned in the survey are accuracy, 

precision, K-fold cross validation technique for example k=10, recall, F1-score, sensitivity, specificity, dice 

similarity coefficient (DSC), minimum square error (MSE), and structural similarity index measurement 

(SSIM), categorical cross-entropy, Matthew’s correlation coefficient (MCC) and leave one out cross 

validation scheme. Table 3 interprets the details of the various researches on crop leaf disease prediction and 

classification. 
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(a) 
 

(b) 

 

Figure 1. The performance of the crop disease prediction system (a) performance of the DL techniques and 

(b) performance of the ML techniques 

 

 
Table 3. Details of the surveyed papers for the detection and classification of Crop leaf diseases 

Year Reference 

No 

Crop Number 

of images 

Number 

of Classes 

Algorithm Accuracy 

2018 [14] __ __ 2 SVM, KNN, RF, NB, LR 58 
2019 [15] Multiple 800 

 
SVM-Multi class 65 

2018 [16] Papaya 160 __ RF, SVM, LR, LDA, NAÏVE BAYES, KNN, 

CART 

70 

2020 [17] Multiple 54305 27 Faster R-CNN with Inception Resnet v2 70.53 

2020 [10] Maize 3423 4 Naïve Baye's 77.46 

2020 [12] Grape 62286 5 Faster R-CNN, Inception-v1-ResNet-v2, SE 
blocks and RPN 

81.1 

2019 [18] Mulberry __ 3 CNN 82 

2017 [19] Cotton 900 7 SVM (regression) 83 
2020 [20] papaya 10000 3 ResNet 85 

2018 [21] Tomato 1400 7 CNN 86.9 

2018 [22] Paddy __ 
 

Alex Net 87 
2018 [23] Multiple __ 38 CNN 88.6 

2019 [9] Grape 130 4 Deep Siamese convolution network 90 

2019 [24] Potato 2465 2 Faster R-CNN 90 
2020 [25] tomato 4,671 3 MobileNet 90 

2020 [26] Multiple 148,775 38 Inception v3 transferred to target domain SVM 90.6 

2020 [27] Tomato 10000 10 CNN 91.2 
2016 [28] Cucumber 300 4 global-local SVD (single value decomposition)--

SVM classifier 

91.63 

2019 [29] Maize 100 4 CNN 92.85 
2016 [30] Alfalfa 899 4 SVM 94.7 

2016 [31] alfalfa 899 4 SVM, RF, KNN 94.74 

2013 [32] Multiple 500 30 SVM 95 
2019 [33] Wheat 8178 4 ResNet50 96 

2018 [34] Cassava 760 3 GMLVQ 97 
2020 [35] Multiple 54,305 38 VGG16 97.8 

2020 [36] Multiple 54,305 38 VGG16 97.8 

2020 [37] Maize 6866 5 Optimized VGG16 97.9 
2020 [38] Maize 6866 5 Ensemble model of two pre-trained CNN 97.9 

2020 [38] 
 

20,000 19 CNN 98 

2019 [39] Multiple 120,000 
 

ResidualNet 98 
2020 [11] Multiple 54,305 38 Pre trained ResNet50, 98.2 

2020 [40] Maize 1152 3 CNN model with optimized trainable parameters 98.4 

2019 [35] Tomato 17929 10 CNN 98.6 
2020 [41] __ 400 

 
CNN (ReLu, Tanh, Softsign, linear, sigmoid) 98.8 

2015 [5] Tomato __ __ SVM (linear kernel) 99 

2017 [42] Tomato 60 2 NN 99 
2019 [43] Banana 18,000 18 Faster R-CNN/SSD+ResNet50 99 

2019 [44] Apple 1192 4 Alex Net, Google Net and DenseNet201 Layer 99.2 

2018 [45] Multiple 85000 58 CNN 99.5 
2019 [13] Multiple 54000 38 Multichannel CNN 99.5 

2018 [46] Potato 300 3 SVM __ 

2018 [47] Lentil 300 2 LBP, HBBP (Brightness Bi-Histogram 
Equalization) 

__ 

2021 [48] Multiple 54,305 38 CNN __ 

2016 [49] Brinjal __ 4 ANN __ 
2018 [50] Soyabean 16207 9 CNN __ 

50 60 70 80 90 100

NN

Random Forest

SVM(RBF)

KNN

GMLVQ

SVM

SVM(Regression)

Naïve Bayes

SVM(Gaussian kernel)

BPNN

SVM(linear kernel)

Accuracy

50 60 70 80 90 100

Deep siamese…

Small CNN

MobileNet V2

ResNet50

CNN

Faster R-…

GoogLeNet

Multichannel CNN

VGG16

NASNet

Inception_V3

Accuracy



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 2, April 2022: 2079-2086 

2084 

4. LIMITATIONS AND FUTURE WORKS  

The most common limitations of crop leaf disease prediction system based on visual symptoms are 

Lack of sufficient datasets mentioned in the papers since the PlantVillage is the only public dataset that is 

generated under controlled conditions. Some of the authors developed their own dataset but they are not 

giving the access to others to compare the results and PlantVillage dataset could not provide the images for 

the commercial crops like chili with abundant number of diseases. The second most common limitation is the 

method of developing the dataset by image acquisition and image preprocessing. The common problems are 

Un-even illumination, Clutter field background and real cultivation condition and other parts of the plant 

images were not used to detect the plant diseases. Thirdly, apply the knowledge of ensemble algorithms, 

tuning of hyper parameters and diversity of pooling operations [19]. Fourthly, the prediction system needs 

enormous resources if the prediction was based on deep learning methodologies [25]. So, there is a 

significance to develop squeeze models to run the application in mobile phones, drones, UAVs and robots. 

The frequent future works were, to develop real time enormous images and classes of plant diseases. 

Crop disease dataset can be integrated to incorporate location, weather and soil data of the diseased plant to 

examine crop and yield monitoring in support of smart agriculture. The crop disease prediction system can be 

enhanced for detecting the plant diseases in large scale horticultural fields.  

 

 

5. CONCLUSION 

The system for identifying the crop leaf diseases can be developed in 5 steps. These are including 

Image acquisition; image pre-processing, image segmentation, feature extraction and classification. In this 

survey we analyzed various methodologies versus accuracies, datasets, crops, requirements of number of 

images and classes, also analyzed performance measures, limitations and future works. The conclusion of the 

study enhances the importance of integrating computer vision, machine learning, deep learning to the 

automated devices like UAVs, smart mobiles in the era of agriculture. More investigations, datasets have to 

be developed to detect the diseases at the instant time even if the yield is large scale and containing multiple 

diseases also, with the squeezable resources. 
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