
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 12, No. 2, April 2022, pp. 1139~1146 

ISSN: 2088-8708, DOI: 10.11591/ijece.v12i2.pp1139-1146      1139  

 

Journal homepage: http://ijece.iaescore.com 

Predicting the technical condition of the power transformer 

using fuzzy logic and dissolved gas analysis method 

 

 

Vladimir Mikhailovich Levin1, Ammar Abdulazeez Yahya1,2, Diana A. Boyarova1 
1Department of Energy, Novosibirsk State Technical University, Novosibirsk, Russia 

2Engineering Projects Department, University of Technology, Baghdad, Iraq 

 

 

Article Info  ABSTRACT 

Article history: 

Received Mar 14, 2021 

Revised Oct 28, 2021 

Accepted Nov 15, 2021 

 

 Power transformers are one of the most important and complex parts of an 

electric power system. Maintenance is performed for this responsible part 

based on the technical condition of the transformer using a predictive 

approach. The technical condition of the power transformer can be 

diagnosed using a range of different diagnostic methods, for example, 

analysis of dissolved gases (DGA), partial discharge monitoring, vibration 

monitoring, and moisture monitoring. In this paper, the authors present a 

digital model for predicting the technical condition of a power transformer 

and determining the type of defect and its cause in the event of defect 

detection. The predictive digital model is developed using the programming 

environment in LabVIEW and is based on the fuzzy logic approach to the 

DGA method, interpreted by the key gas method and the Dornenburg ratio 

method. The developed digital model is verified on a set of 110 kV and  

220 kV transformers of one of the sections of the distribution network and 

thermal power plant in the Russian Federation. The results obtained showed 

its high efficiency in predicting faults and the possibility of using it as an 

effective computing tool to facilitate the work of the operating personnel of 

power enterprises. 
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1. INTRODUCTION 

To ensure the reliability of the power supply system, the electrical equipment forming this system is 

monitored and diagnosed. power transformers (PT) are among the most important and expensive of this 

equipment [1]–[5]. There are many methods for diagnosing the technical condition of the PT, for example, 

dissolved gases (DGA), furan analysis, measurement of the polarization-depolarization current, partial 

discharge, frequency response analysis, infrared analysis. Many gases are formed as a result of the 

decomposition of liquid insulators (oil) and solid insulators (paper) as a result of thermal and electrical 

stresses in the PT [6], [7]. Using the data of these gases dissolved in oil, it is possible to determine the 

technical condition of the PT and the type of primary defect by the DGA method. There are also various 

interpretations and standards for the DGA method, such as the duval triangle, the duval pentagon, the IEC 

ratio, the key gas criterion, the Dornenburg ratio, and the Rogers ratio [8]–[12]. 

In previous years, many studies have been proposed in which fuzzy logic (FL) was used to diagnose 

the technical condition of PT. FL is an effective method for determining the technical condition of a 

transformer, which can work with uncertain and fuzzy information [13]–[17]. FL can combine the practical 

knowledge of expert diagnosticians with a variety of test data. The FL system is an ideal way to map inputs 
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and outputs based on the grammatical rules constructing human understanding rather than on strict 

mathematical equations. 

This paper discusses the use of the DGA method, the key gas criterion, and the Dornenburg ratio 

method. This complex combination is due to the following factors:  

− The DGA method is the most informative among the methods of early detection of defects in oil-filled 

transformer equipment. It allows diagnosing more than 70% of faults in the active part of the PT without 

disconnecting and removing the voltage [18].  

− The Key Gas method provides the function of pre-filtering DGA tests for the presence/absence of signs of 

developing defects. This very important condition ensures the separation of PT in a defect-free state 

("norm") from PT in a defective state ("deviation from the norm"). Despite the sufficient 

conservativeness, the key gas method guarantees a satisfactory level of filtration of defective PT states, 

subject to additional control of the increase in the key gas release rate [19].  

− The Dornenburg ratio method is a fairly stable and reliable tool for recognizing the type of single defects 

in PT. In the case of superposition of several defects, the Dornenburg ratio method fails, as does the vast 

majority of known methods for interpreting DGA results [20].  

The expected contribution of the authors of the article is the development of a fuzzy predictive 

model for recognizing defects in power transformers. The extended functionality and sufficient reliability of 

the FL model are provided by the complex application of well-known methods of interpreting DGA results. 

Software implementation of the FL model in the LabVIEW environment is considered as a decision support 

tool for fault-free operation of transformers in power facilities. 

 

 

2. THE MAIN THEORETICAL PROVISIONS  

The DGA method is based on measuring the concentrations of seven (or more) major gases: 

hydrogen, methane, acetylene, ethylene, ethane, carbon monoxide, and carbon dioxide [21]. The developed 

FL model and its software implementation at the initial stage determine the presence/absence of signs of a 

developing defect based on the key gas method. The key gas method is based on the amount of defective 

gases released from the PT insulation structure. The method uses a set of rules to diagnose anomalies such as 

overheating, corona, and arc discharges.  

Detection of a sign of a developing defect in the PT is carried out by comparing the measured values 

of the concentrations of defective gases with some of the limit values proposed as shown in Table 1, for 

example, in [22]. These values are in the best agreement with the logical scheme of the Dornenburg ratio 

method. If the measured values of the concentrations of faulty gases do not exceed the permissible limits, this 

is a sign of the absence of a defect, i.e., the PT is in a "normal" state. If at least one of the gases has a 

concentration exceeding the specified limit, this indicates the presence in the RT of a sign of a developing 

defect and the need to determine the type and degree of danger of the defect.  

When a sign of a developing defect is detected in the PT, four ratios of gas concentrations are 

calculated by the Dornenburg interpretation method. The output data of each gas pair ratio is encoded into a 

specific code proposed by the authors. For example, if the output of the relationship R1(CH4/H2) is greater 

than 1, the code is A1. If R1 is less than 0.1, code is B1, as shown in Table 2. The resulting codes represent 

the input data for the FL model. The codes in Table 2 are used to develop rules of decision making, each of 

which indicates a specific type of fault, for example, a rule of the form R1=C1, R2=B2, R3=B3, R4=B4 

indicates an arc (high-intensity arc discharge), as shown in Table 3. 

 

 

Table 1. Limit concentrations of dissolved gas 
Key Gases H2 CH4 C2H6 C2H4 C2H2 CO 

Concentrations limits (ppm) 100 120 65 50 1 350 

 

 

Table 2. Dornenburg ratio codes 
Ratio 1 (R1)  

CH4/H2 

Ratio 2 (R2)  

C2H2/C2H4 

Ratio 3 (R3)  

C2H2/CH4 

Ratio 4 (R4)  

C2H6/C2H2 

R1>1=A1 R2<0.75=A2 R3<0.3=A3 R4>0.4=A4 
R1<0.1=B1 R2>0.75=B2 R3>0.3=B3 R4<0.4=B4 

0,1<R1<1=C1    

 

 

The formation of the FL model involves three sequential processes: fuzzification, fuzzy inference, 

and defuzzification [23]–[28]. The fuzzification process aims to convert the gas ratios into fuzzy input 
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memberships. The curve that determines the correlation of the input value with the degree of membership is 

called the membership function (MF). The curve can have various shapes, such as triangular, Gaussian, 

Sigmoidal, and others. The values of this function belong to the range from 0 to 1. MF is described using (1). 

Figure 1 shows a graphical interpretation of the trapezoidal MF and its generalized parameters that 

characterize the fuzzy interval of changes in the input variables. The input membership for a fuzzy model 

using developed codes of the four Dornenburg ratios: R1, R2, R3, R4 is shown in Figure 2. 

 

𝑀𝐹 = 𝑚𝑎𝑥 {𝑚𝑖𝑛 (
𝑥 − 𝑎

𝑐1 − 𝑎
, 1,

𝑏 − 𝑥

𝑏 − 𝑐2
) , 0} 

(1) 

 

 

Table 3. Fault classification based on codes 
N R1 R2 R3 R4 Suggested fault diagnosis 

1 B1 - A3 A4 Partial discharge (low-intensity PD) 

2 C1 B2 B3 B4 Arcing (high-intensity PD) 

3 A1 A2 A3 A4 Thermal decomposition 

 

 

 
 

Figure 1. Generalized representation of the trapezoidal MF 

 

 

The minimum and maximum limits of the MF of the input variable x are a and b. The coordinates c1 

and c2 are the centers of the MF. The MF reaches the maximum degree of membership (DOM) whenever the 

input variable is located between c1 and c2. If the value of the input variable is located between a and c1, as 

well as between b and c2, then the DOMs values can be in the range from 0 to 1. The software 

implementation of the FL model using the LabVIEW package provides built-in scaling of the ranges of input 

and output variables. Figure 2 shown, as an example, the scaling of the R2 ratio range for the previously 

described codes A2 and B2. The used fuzzy inference system (FIS) is responsible for selecting inferences 

from a knowledge-based set of linguistic variables of the "if-then" type of fuzzy rules. In the system of FL 

proposed by the authors, 12 rules were formulated, as shown in Figure 3. 

 

 

 
 

Figure 2. Scaling the range of the input variable R2 to describe the membership functions for codes A2, B2 
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Figure 3. Fuzzy rules for the proposed FL model 

 

 

The defuzzification then converts the fuzzy output values back into clear output actions, the fuzzy 

value obtained from the MF of the truncated output signal is calculated at the defuzzification stage of the FL 

system using the Mamdani formula (2). Figure 4 shows the ranges of variation of the fuzzy output variable of 

the FL model for the three codes that characterize the types of faults in the transformer, which are indicated 

in Table 3, by the Dornenburg interpretation. 

 

𝑍0 =
∫ 𝑧, 𝜇(𝑧)𝑑𝑧

∫ 𝜇(𝑧)𝑑𝑧
 

(2) 

 

Here, z the fuzzy output variable, Z0 the centroid of the truncated output of the MF, μ(z) the degree of 

membership of the truncated MF. 

The result of fuzzy inference can be obtained using the Mamdani Max-Min composition technique. 

Here the logical "AND" is replaced by the minimization operator, and the logical "OR" is replaced by the 

maximization operator. The developed set of fuzzy rules connects the input and output variables for the 

Dornenburg ratio method and shown in 3D surface plots as shown in Figure 5. 

 

 

 
 

Figure 4. The ranges of variation of the fuzzy output variable for different types of faults 

 

 

 
 

Figure 5. 3D surface plots for Dornenburg ratio method 
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A simulation program was created using LabVIEW 2018 to apply and test the proposed approach to 

FL, the Dornenburg method. Figure 6 shows the program interface. The interface of the program consists of 

units for entering the values of the five main gases (H2, CH4, C2H2, C2H4, and C2H6) and four lamps-

indicators in different colors. Each lamp represents a specific condition such as normal, thermal defect, arc 

defect and partial discharge. A dialogue box that gives the code of defect, and a dialogue box that gives a 

message of the type of defect also take place. Figure 7 shows the algorithm of the program. 

 

 

 
 

Figure 6. Front panel for the program interface 

 

 

 
 

Figure 7. The algorithm of the program 

 

 

3. CALCULATION RESULTS ANALYSIS AND DISCUSSION 

The developed fuzzy model and its software implementation were tested on a transformer of the 

type TDN-250000/220 kV of one of the thermal power stations (TPS) of Russia. At the same time, testing 

was carried out on a retrospective of 146 DGA protocols for the twenty years of the transformer operation. 

The results obtained showed that 39% of the samples indicated a normal state (defects-free) and 61% of the 

samples indicate a deviation from normal. 89% of the deviation samples indicate a thermal defect, and 11% 

indicate an electrical defect. Table 4 shows some of the results obtained from the model and program test. As 

a sample for comparing ratings when checking the developed model and program, the operating conclusions 

based on the diagnostic test reports and the acts of opening the transformer during repairs are accepted. For 

each of the 146 DGA tests (gas concentrations are given in ppm), the developed FL model and its software 
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implementation demonstrated maximum agreement with the operational conclusions used. The results 

obtained allow us to count on the fact that the developed program meets the requirements for reliable 

detection of defects in power transformers and will significantly simplify the work of the power plant 

maintenance personnel. 

For more convincing confirmation of the reliability of the FL model developed by the authors and 

the program for assessing the state of transformers according to the DGA data, the article compares it with 

the results of a well-known study [29]. The results of the comparison showed a 90% coincidence of the 

results of the developed program with the results given in the study [29]. The difference between the results 

in samples 6 and 7 is shown in Table 5 in red. Sample 6 in [29] indicates a thermal defect, and the program 

result indicates no deviations ("normal"). Gas concentrations in sample 6 as shown in Table 5 are very small 

and do not exceed the permissible limit values as shown in Table 1. This indicates that there is no reason to 

recognize the condition of the transformer as faulty, which is consistent with the result of the evaluation 

according to the developed program. 
 

 

Table 4. DGA protocols of the transformer TDN-250000/220 kV of the TPS (fragment) 
Data Н2 CH4 C2H4 C2H6 C2H2 CO Operating Conclusions Program Verification 

26.10.1994 47.2 27.4 28.5 0.1 0.1 150 Normal Normal 

17.05.1995 4.24 1.5 2.18 0.57 0.03 130 Normal Normal 
04.06.1998 1 3.76 18 12.9 0.5 45 Normal Normal 

18.11.2003 2.1 83.5 49.9 51.3 0.7 210 Normal Normal 

21.06.2006 111 100.1 100.6 37.9 10.6 290 Thermal Thermal 
30.06.2006 18 100.1 111.6 43.1 11.9 290 Thermal Thermal 

14.07.2006 19.1 72.7 91.5 33.2 24.7 170 Thermal Thermal 

26.02.2007 12.9 329 49.9 20.7 15.1 100 Thermal Thermal 
10.07.2007 31.9 25.9 157 25.6 12.1 240 Arcing Arcing 

13.09.2007 68.2 211.7 229.4 86.7 40.9 200 Thermal Thermal 

13.02.2008 71.4 178.3 461.6 93.9 21 30 Thermal Thermal 
04.03.2008 117.7 278.8 527.8 136.8 28.1 170 Thermal Thermal 

10.04.2008 105.5 313.9 619.9 119.2 23.1 150 Thermal Thermal 

28.12.2009 88.5 263.5 531.2 61.2 8.9 380 Thermal Thermal 
22.06.2010 15.3 231.9 466.8 58.9 3.1 360 Thermal Thermal 

02.12.2010 8.1 131.5 289.9 52.6 1 260 Thermal Thermal 

05.06.2011 15.9 147.9 257.1 34 1.4 370 Thermal Thermal 
26.09.2011 4 169.9 316.6 66.8 0.8 400 Thermal Thermal 

26.04.2012 26.7 230.1 562.6 163 12.7 460 Thermal Thermal 

14.08.2012 14.5 734 1398.7 227.6 5.8 1860 Thermal Thermal 

 

 

Table 5. DGA data (ppm) and comparison of the results of the study [29] and this study 
N Н2 CH4 C2H2 C2H4 C2H6 CO Model [29] Program Verification 

1 495 1775 2 2438 276 293 Thermal Thermal 
2 80 619 1 2480 326 268 Thermal Thermal 

3 21 24 1 98 23 159 Thermal Thermal 

4 231 3997 1 5584 1726 0 Thermal Thermal 
5 127 24 81 32 1 0 Arcing Arcing 

6 2 7 1 1 1 0 Thermal Normal 

7 217 286 884 458 14 176 Thermal Arcing 
8 54 1 1 4 1 106 Normal Normal 

9 246 43 53 21 1 218 Arcing Arcing 

10 9474 4066 12.997 6552 353 553 Arcing Arcing 
11 507 1053 17 1440 297 22 Thermal Thermal 

12 416 695 1 867 74 200 Thermal Thermal 

13 47 12 1 8 1 115 Normal Normal 
14 441 207 261 224 43 161 Arcing Arcing 

15 18.9 46.9 1 61.54 6.9 371 Thermal Thermal 

16 116.6 623 2.87 1683.5 416 317 Thermal Thermal 
17 200 700 1 740 250 N Thermal Thermal 

18 300 490 95 360 180 N Arcing Arcing 

19 56 61 31 32 75 N Thermal Thermal 
20 33 26 0.2 5.3 6 N Normal Normal 

 

 

As for result 7, it indicates a thermal defect in the study [29]. The evaluation of the state of the PT 

according to the program indicates an electrical defect (arc). The excess of the concentration of acetylene 

(C2H2) of its limit norm indicates an electrical defect (arc), which meets the requirements of [22] and is in 

agreement with the result of the proposed program. Thus, the results of testing the FL model and the software 

for recognizing defects in the PT give reason to expect that with successful additional tests on independent 
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and verified data, they will be able to take a prominent position as a decision support tool for the defect-free 

operation of equipment. 

 

 

4. CONCLUSION 

Methods of monitoring and diagnosing power transformers are designed to ensure their working 

condition and reliable operation of electrical installations. The DGA method is the most informative method 

for early detection of developing defects in oil-filled transformer equipment. It allows detecting defects at an 

early stage of development before they pass into a critical phase and lead to catastrophic consequences. A 

software implementation of the FL model for assessing the technical condition of power transformers as an 

expert system for predicting faults is proposed. The fuzzy predictive model based on the application of the 

Key Gas and Dornenburg ratio methods to interpret the results of the analysis of gases dissolved in oil. The 

use of the key gas criterion at the initial stage of assessing the condition of the transformer allows you to 

identify signs of the presence or absence of a developing defect in it. Then, in the case of a detected deviation 

from the norm, the Dornenburg ratio method and fuzzy logic used to predict the type of defects in the 

transformer. Verification of the developed FL model was carried out on 146 tests of the DGA of a 220 kV 

transformer of a thermal power station in Russia. The results of the assessments obtained with the help of the 

program are as consistent as possible with the operational conclusions of specialists in the operation and test 

reports. This indicates the high accuracy of the program for interpreting the results of the DGA of 

transformers when evaluating and predicting their technical condition. In addition, to confirm the reliability 

of the program, gas data were taken from a case study and compared with the results of a well-known 

publication. Between the results of the published study and the study of the authors of the article, a large 

overlap was found, up to 90%. The comparison of the revealed differences in the tests as shown in samples 6, 

and 7 in Table 5 is made in favor of the developed model since it provides a greater number of reliable expert 

assessments. 
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