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 The increasing demand for electricity every year makes the electricity 

infrastructure approach the maximum threshold value, thus affecting the 

stability of the electricity network. The decentralized smart grid control 
(DSGC) system has succeeded in maintaining the stability of the electricity 

network with various assumptions. The data mining approach on the DSGC 

system shows that the decision tree algorithm provides new knowledge, 

however, its performance is not yet optimal. This paper poses an ensemble 
bagging algorithm to reinforce the performance of decision trees C4.5 and 

classification and regression trees (CART). To evaluate the classification 

performance, 10-fold cross-validation was used on the grid data. The results 

showed that the ensemble bagging algorithm succeeded in increasing the 
performance of both methods in terms of accuracy by 5.6% for C4.5 and 

5.3% for CART. 
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1. INTRODUCTION 

At present, global electricity demand is increasing every year. This makes the electrical 

infrastructure close to the maximum threshold so that it significantly affects the stability of the electricity 

network. Maintaining the electricity network stability requires a balance between production and 

consumption of electricity. This requires an integrated power generation system that can control the system 

by utilizing information and communication technology reliably and efficiently [1]. 

Smart grid is a modern electricity network system that integrates starting from generation, 

transmission equipment, and consumers of all users who are connected in the system to deliver electricity 

efficiently, sustainably, and economically [2] covering a variety of energy operations and measurements 

including smart meters, smart appliances, renewable energy resources, and energy-saving resources [3], [4]. 

The focus of the smart grid is on technical infrastructure [5] where electronic power conditioning, production 

control and electricity distribution are important aspects of the smart grid [3]. 

The decentralized smart grid control (DSGC) system proposed in [6] has succeeded in controlling 

electricity prices by switching to grid frequency so that it was available to all consumers and electricity 

producers. Then, the DSGC system is developed by conducting simulations with various assumptions about 

the stability of the electricity network [7]. One of them is subjecting consumer behavior in response to price 

changes that affect the grid stability. The results showed that the DSGC system supports a decentralized 

production system by providing a decrease in line capacities and average time compared to centralized 

https://creativecommons.org/licenses/by-sa/4.0/
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production. Data mining methods have been investigated in [8] by gathering various assumptions and 

identifying issues regarding the DSGC system. After the simulation process with various input values using 

the Kleijnen approach [9], it was found that the application of decision trees to the data generated gave new 

insights and resulted in an accuracy rate of 80%. Some ensemble research conducted by [10]–[13] with 

several cases finding that the ensemble technique succeeded in increasing the performance of a single 

classification in measuring accuracy, precision, and recall. 

This paper proposes the application of a new algorithm in this case by performing an ensemble that 

is improving the performance of decision trees using bagging techniques. We have also experimented to 

implement classification and regression trees (CART) and ensemble classification and regression trees 

(CART) algorithms to compare our proposed algorithm with the criteria of splitting, pruning, noise handling, 

and other features. 

 

 

2. RESEARCH METHOD 

2.1.  Decision tree C4.5 algorithm 

Decision tree algorithm is the fundamental classifier model using tree graph or hierarchical 

structure. The main idea of decision tree is to transform data into a rooted-tree graph as the decision rules. 

Some stages in making a decision tree with the C4.5 algorithm is given as follows [14]–[16]: 

a. Prepare training data that has been grouped or labeled into certain classes (e.g., stable and unstable 

classes). 

b. The root of a tree is determined by computing the highest gain value (or the lowest entropy) of each 

attribute. The entropy of the attribute x of classes in C is computed using (1). 

 

Entropy(𝑥) = – ∑ 𝑝(𝑐|𝑥) ∙ log 𝑝(𝑐|𝑥)𝑐∈𝐶  (1) 

 

c. The gain value is calculated using (2). 

 

Gain(𝑥) = Entropy(𝑥) −  ∑
𝑁(𝑥𝑖)

𝑁(𝑥)
∙ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑥𝑖)𝑖  (2) 

 

d. To calculate the gain ratio, we first need to know the Split Information using (3). 

 

SplitInformation(𝑥) = − ∑
𝑁(𝑥𝑖)

𝑁(𝑥)
∙ log2 (

𝑁(𝑥𝑖)

𝑁(𝑥)
)𝑖  (3) 

 

e. Then, we can calculate the gain ratio using (4). 

 

GainRatio(𝐶, 𝑥) =
Gain(𝐶,𝑥)

SplitInformation(𝐶,𝑥)
 (4) 

 

f. Repeat step 2 until all records are partitioned. The partition process will be stopped if, i) all pairs of 

records in node n are in the same class, ii) there are no more partitionable attributes in the record, and iii) 

there are no records in the empty branch. 

 

2.2.  Classification and regression trees (CART) 

In the decision tree technique there are several methods, one of which is classification and 

regression trees (CART). CART explains the relationship between response variables with several predictor 

variables. The use of this method depends on the shape of the response variable. When the response variable 

is continuous, the regression trees method is used while the categorical form is used the classification trees 

method [17], [18]. CART classification tree consists of three stages that require learning sample L, namely 

selection of the selection, determination of terminal nodes, and labeling of each terminal node. 

a. The first stage is the selection of sorters. Each sorting depends only on the value derived from one 

independent variable. For continuous independent variables Xj with sample space of size n and there are 

𝑛 different sample observation values, then there will be n-1 different sorting. Whereas for Xj is the 

nominal category variable with L level, 2L - 1 -1 will be obtained. But if the Xj variable is an ordinal 

category, L-1 might be obtained as possible. The sorting method that is often used is the Gini index with 

the functions: 
 

𝑖(𝑡) = ∑ 𝑝(𝑖|𝑡)𝑝(𝑗|𝑡)𝑖≠𝑗 ,
 (5) 
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where i(t) is the heterogeneous function of the Gini index, p(i│t) is the proportion of class i at node t, and 

p(j│t) is the proportion of class j at node t. Goodness of split is an evaluation of sorting by sorting s at 

node t. Goodness of split ∅(s,t) is defined as a decrease in heterogeneity. 

 

∅(𝑠, 𝑡) = ∆𝑖(𝑠, 𝑡) = 𝑖(𝑡) − 𝑃𝐿𝑖(𝑡𝐿) − 𝑃𝑅𝑖(𝑡𝑅).
 (6) 

 

The tree development is carried out by searching for all possible sorters at node t1 so that a s* 

sorter is found which gives the highest heterogeneity reduction value, namely: 

 

∆𝑖(𝑠∗, 𝑡1) = max𝑠∈𝑆∆𝑖(𝑠, 𝑡1),
 (7) 

 

where ∅(s,t) is the goodness of split criterion, PLi(tL) and PRi(tR) are the proportion of observations from 

node t to the left node and to the right node, respectively. 

b. The second step is determining the terminal node. Node t can be used as a terminal node if there is no 

significant decrease in heterogeneity in sorting, there is only one observation (n = 1) at each child node or 

there is a minimum limit of n and a limit on the number of levels or the maximum level of tree depth. 

c. The third stage is labeling each terminal node based on the rule for the highest number of class members, 

namely: 

 

𝑝(𝑗0|𝑡) = max𝑗 𝑝(𝑗|𝑡) = max𝑗

𝑁𝑗(𝑡)

𝑁(𝑡)
,
 (8) 

 
where p(j│t) is the proportion of class j at node t, Nj(t) is the number of observations of class j at node t, 

and N(t) is the number of observations at node t. The terminal node class label t is j0, which gives the 

largest estimated error in classifying node t. 

The process of forming a classification tree stops when there is only one observation in each 

child node or there is a minimum limit of n, all observations in each child node are identical, and there is 

a limit on the number of levels or maximum tree depth. After the maximum tree formation, the next stage 

is tree pruning to prevent the formation of very large and complex classification trees, in order to obtain 

an appropriate tree size based on cost complexity pruning, then the magnitude of the resubstitution 

estimate of the T tree on the complexity parameter α is: 

 

𝑅𝛼(𝑇) = 𝑅(𝑇) + 𝛼|�̅�|,
 (9) 

 

where Rα(T) is the resubstitution of a T tree at complexity α, R(T) is the resubstitution estimate, α is the 

cost-complexity parameter for adding one final node to the T tree, and |�̅�| is the number of terminal 

vertices of the T tree. 

The pruning cost complexity determines the subtree T(α) that minimizes Rα(T) in all part trees 

for each α value. The value of the complexity parameter α will slowly increase during the trimming 

process. Next, to look for the subtree T(α) < Tmax that can minimize Rα(T), i.e.: 

 

𝑅𝛼(⋯ ((𝑇)) ⋯ ) = min𝑇<𝑇max
𝑅𝛼(𝑇).

 (10) 

 
After pruning the optimal classification tree is obtained which is simple in size but provides a fairly small 

replacement value. 

 

2.3.  Bagging 

Bagging is the earliest and simplest ensemble-based algorithm, but it is very effective. It combines 

several sets of classifier models to strengthen the weak classification results. Bagging overcomes the 

instability of complex models with relatively small datasets. Pasting small vote is a bagging variant for 

handling large datasets by dividing them into smaller segments. A process called bites trains these segments 

to build independent classifiers and then combines them with a majority vote [19]. Ensemble bagging 

algorithm works [20]: 

a. Enter the training sample order (𝑥1: 𝑦1), … , (𝑥𝑛: 𝑦𝑛) with the label 𝑦 ϵ 𝑌 = (−1,1). 

b. Initialize the probability of each instance in the learning set 𝐷1(𝑖) =
1

𝑛
 and 𝑡 = 1. 

c. The iteration process where 𝑡 < 𝐵 = 100 is a member of the ensemble 

− The training is in form of n sets with replacement sampling where t in the 𝐷𝑡 distribution 
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− Determine hypothesis, ℎ𝑡: 𝑋 → 𝑌 

− Set 𝑡 = 𝑡 + 1 

End the loop 

d. The final hypothesis ensemble 

 

𝐶∗(𝑥𝑖) = ℎ𝑓𝑖𝑛𝑎𝑙(𝑥1) = 𝑎𝑟𝑔𝑚𝑎𝑥 ∑ 𝐼(𝐶𝑡(𝑥) = 𝑦).𝐵
𝑡=1  

(11)
 

 

2.4.  Boosting 

Boosting is an effective method to build an accurate classifier by combining weak classifiers [21]. 

One of the popular boosting methods used is adaptive boosting (AdaBoost). AdaBoost trains the basic 

classifier iteratively using training data with weight coefficients that depend on the performance of the 

classifier in the previous iteration, which gives greater weight to the misclassified data. If the classifier has 

been set to be trained, then all the classifiers will be combined to form a final decision on the model that 

shows the best performance [22]. 

 

2.5.  Random forest 

Random forest is a classification algorithm used for large amounts of data because the classification 

accuracy results depend on the number of trees [23]. The combination of tree formations is done randomly. 

The random forest procedure [24], [25]: i) the process of taking a random sample of size n with returns. This 

stage is the bootstrap stage; ii) using a bootstrap sample, the tree is constructed until it reaches its maximum 

size (without pruning). Tree construction is done by applying random feature selection to each selection 

process, where k explanatory variables are chosen randomly; and iii) repeat steps 1 and 2, forming a forest 

consisting of several trees. 

 

2.6.  Performance evaluation 

The performance of the proposed classifier method was evaluated using a confusion matrix. Table 1 

describes performance measures such as precision, recall, and accuracy. The measurement results are 

obtained using the predicted and actual values of a class [26], [27]. 
 

 

Table 1. Confusion matrix 
 Predicted: Stable Predicted: Unstable Recall 

Actual: Stable True Stable (TS) False Unstable (FU) TS / (TS + FU) 

Actual: Unstable False Stable (FS) True Unstable (TU) TU / (FS + TU) 

Precision TS / (TS +FS) TU / (FU + TU) Accuracy = (TS + TU) / N* 
*N is the number of testing data, i.e., N = TS + FU + FS + TU 

 

 

3. EXPERIMENTAL 

3.1.  Dataset 

We use the benchmark electrical grid stability simulated dataset obtained from the UCI machine 

learning repository so that our results can be compared with other methods. The data label is the system 

stability with predictors consist of 11 predictive features and 1 composite (P1) as described in Table 2. The 

total data is 9,999 records with 6,379 represents stable class and 3,620 unstable. Class stability of dataset is 

illustrated in Figure 1. 
 

 

Table 2. Description of electrical grid stability simulated data set 
Variable Attribute Description 

Response Variable Y Label of the system stability.  

(Categorical data type: 0 = Unstable; 1 = Stable) 

Predictor Variable Tau1 

Tau2 

Tau3 

Tau4 

Reaction time of participant (data type: real from the range [0.5, 10]s). 

Tau1 - the value for electricity producer. 

P1 

P2 

P3 

P4 

Nominal power consumed (negative)/produced (positive) (data type: real).  

For consumers from the range [-0.5,-2]s^-2;  

P1 = abs(P2 + P3 + P4) 

G1 

G2 

G3 

G4 

Coefficient (gamma) proportional to price elasticity (data type: real from the range 

[0.05, 1]s^-1). 

G1 - the value for electricity producer. 
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Figure 1. Stability system data set 

 

 

3.2.  Data partition 

The total data used is 9,999. The dataset is then partitioned into 6,999 training data for building 

model and 3,000 testing data for performance evaluation. Stratified random strategy is used for data partition 

with portion of 70% training data and 30% testing data as given in Table 3. 

 

3.3.  Parameter setting 

The experiment uses the default parameters of the algorithm. Determination of each of these 

parameters to obtain fair results on all classifiers of the decision tree. Parameter value settings are given in 

Table 4. 

 

 

Table 3. Training and testing data composition 
Class Partition Stable Unstable Total 

Training 4,432 2,567 6,999 

Testing 1,947 1,053 3,000 

Total 6,379 3,620 9,999 

 

 

Table 4. Parameter setting of the experiment 
Parameter Value Parameter Value 

criterion_C45 entropy max_features None 

criterion_CART Gini random_state None 

Splitter best max_leaf_nodes None 

max_depth None min_impurity_decrease 0 

min_samples_split 2 min_impurity_split None 

min_samples_leaf 1 class_weight None 

min_weight_fraction_leaf 0 ccp_alpha 0 

 

 

4. RESULTS 

The performance of the experiment results is evaluated using confusion matrix as the basis for all 

metrics, i.e., accuracy, recall and precision. For the sake of simplicity, performance metrics are included in 

the confusion matrix to easily check their values. Tables 5 and 6 showed the performance results for C4.5 and 

CART decision trees, respectively, with their ensembled classifiers.  

 

 

Table 5. Confusion matrices for decision tree C4.5 and its ensembled classifiers 
Classifier  Stable Unstable Recall 

C4.5 Stable 1701 246 87.00% 

Unstable 215 838 80.00% 

Precision 89.00% 77.00% 84.63% 

Bagging C4.5 Stable 1848 99 95.00% 

Unstable 196 857 81.00% 

Precision 90.00% 90.00% 90.16% 

Adaboost C4.5 Stable 1773 174 91.00% 

Unstable 250 803 76.00% 

Precision 88.00% 82.00% 85.86% 

Random Forest C4.5 Stable 1845 102 95.00% 

Unstable 238 815 77.00% 

Precision 89.00% 89.00% 88.66% 

 

3620

6379

Stable

Unstable
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Table 6. Confusion matrices for CART and its ensembled classifiers 
Classifier 

 
Stable Unstable Recall 

CART Stable 1700 247 87.00% 

Unstable 222 831 79.00% 

Precision 88.00% 77.00% 84.36% 

Bagging CART Stable 1850 97 95.00% 

Unstable 213 840 80.00% 

Precision 90.00% 90.00% 89.66% 

Adaboost CART Stable 1773 174 91.00% 

Unstable 250 803 76.00% 

Precision 88.00% 82.00% 85.86% 

Random forest CART Stable 1846 101 95.00% 

Unstable 245 808 77.00% 

Precision 88.00% 89.00% 88.46% 

 

 

Figure 2 shows that the ensemble bagging method proposed to improve the performance of the 

Decision Trees C4.5 and CART methods gives the best performance results among other ensemble methods. 

The bagging ensemble succeeded in increasing the accuracy of decision trees C4.5 by 5.6% and CART by 

5.3% as well as increasing recall values for the stable and unstable classes, in contrast to the adaboost and 

random forest ensembles which experienced a decrease in recall values for the stable class as shown in 

Figures 3(a) and 3(b). Figures 4(a) and 4(b) show that the bagging ensemble provides significant 

performance by improving the accuracy of the decision trees C4.5 and CART models in classifying stable 

and unstable classes which result in higher precision values among other ensemble methods. 

 

 

 

Figure 2. Accuracy comparison of decision trees C4.5 and CART with their ensembles 

 

 

  
(a) (b) 

 

Figure 3. Comparison of recall performances for stable and unstable actual labeled data that contributes to the 

actual value of accuracy for both decision trees C4.5 and CART algorithms (a) recalls and accuracy of 

decision tree and (b) recalls and accuracy of CART 
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(a) (b) 

 

Figure 4. Comparison of precision performances for stable and unstable labeled data that contributes to the 

prediction value of accuracy for both decision trees C4.5 and CART algorithms (a) precisions and accuracy 

of decision tree and (b) precisions and accuracy of CART 

 

 

5. CONCLUSION  

In this paper, we have proposed an ensemble bagging technique to reinforce the performance of the 

decision tree algorithms of C4.5 and CART Dataset consists of 12 features with a total of 9,999 records. The 

data was splitted into 70% as for training data and 30% for testing data. The experiment results showed that 

the proposed bagging succeeded in improving performance by correcting the misclassifications of the 

original decision tree classifier C4.5 with 90.16% accuracy, which increases about 5.6%. Bagging C4.5 also 

has better performance compared to Bagging-CART which only produces an accuracy of 89.66%. Although 

the experimental evaluation result of the Bagging C4.5 showed a superior performance achievement by 

successfully increasing the accuracy, this is only in one data partition. In the future, it is interested to 

investigate the performance of the Bagging C4.5 in various data partitions. 
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