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 This paper aims to solve the nonlinear two-point fuzzy boundary value 

problem (TPFBVP) using approximate analytical methods. Most fuzzy 

boundary value problems cannot be solved exactly or analytically. Even if 

the analytical solutions exist, they may be challenging to evaluate. 

Therefore, approximate analytical methods may be necessary to consider the 

solution. Hence, there is a need to formulate new, efficient, more accurate 

techniques. This is the focus of this study: two approximate analytical 

methods-homotopy perturbation method (HPM) and the variational iteration 

method (VIM) is proposed. Fuzzy set theory properties are presented to 

formulate these methods from crisp domain to fuzzy domain to find 

approximate solutions of nonlinear TPFBVP. The presented algorithms can 

express the solution as a convergent series form. A numerical comparison of 

the mean errors is made between the HPM and VIM. The results show that 

these methods are reliable and robust. However, the comparison reveals that 

VIM convergence is quicker and offers a swifter approach over HPM. 

Hence, VIM is considered a more efficient approach for nonlinear 

TPFBVPs. 
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1. INTRODUCTION 

Real-life applications investigate the meaning of fuzzy as a generalization of crisp common sense 

because it is a solid instrument for modeling the vagueness, and in specific, to treat uncertainty with a 

mathematical model [1]. In many real well-determined dynamic issues, a system of ordinary or partial 

differential equations may represent the mathematical model. On the contrary, fuzzy differential equations 

(FDEs) are a valuable tool to model a dynamic system that is ambiguous in its existence and comportments. 

Since the FDEs have been used widely to model scientific and engineering problems, they have become a 

popular topic among researchers [2]. There are many practical problems with the solution of FDEs that 

satisfy initial [3] or boundary [4] values conditions. The main reason why finding the approximate solutions 

to the fuzzy problems becomes necessary is that most of the problems are too complicated to be solved 

exactly, or there are no analytical solutions at all [4]. Hence, FDEs will be suitable mathematical models for 

dynamic systems where complexity and ambiguity occur. For this reason, we may find FDEs exist in several 

fields of mathematics and science, including population models [5]–[7] and mathematical biology and 

https://creativecommons.org/licenses/by-sa/4.0/
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physics [8]–[10]. As an alternative to the analytical solutions to such problems, approximate solutions such 

as homotopy perturbation method (HPM) and variational iteration method (VIM), and Adomian 

decomposition method (ADM) are listed as some of the approximate analytical methods [11]. 

In the last decade, some researchers have started to explore the numerical solutions for two-point 

fuzzy boundary value problem (TPFBVP) [12], [13]. Semi-analytical approaches have been used over recent 

years to overcome linear TPFBVP by various methods [14]–[16]. He implemented the HPM in 1999, and the 

method was applied to a wide range of mathematical and physical problems [17], [18]. This method provides 

the solution into components of a short convergence series, which are elegantly determined. HPM is now 

known as a standard tool for overcoming all kinds of linear and nonlinear equations, such as differential or 

integral equations. Another significant advantage is that the measurement size can be reduced while 

increasing the exactness of approximate solutions, so it is regarded as a robust process. Along with the HPM, 

VIM was introduced and also proposed by He [19]. This approach differs from specific classical techniques 

utilizing which nonlinear equations are quickly and accurately resolved. VIM has been used in many physics 

and engineering sectors recently [20], [21]. This approach is helpful for directly solving linear and nonlinear 

problems with 𝑛-th order boundary value problems (BVPs) without reducing them to a BVP system. It has 

been reported by many authors, such as [22], that VIM is more robust than other analytical approaches, like 

ADM and HPM. Compared to HPM and ADM, where computer algorithms are commonly used for nonlinear 

terms, VIM is used explicitly without any nonlinear terms requirement or restrictive assumptions [23]. 

Without restrictive assumptions, the VIM solves differential equations that can change the structure of 

solutions. In VIM, the calculation is simple and straightforward [24]. The VIM overcomes the difficulty of 

measuring Adomian polynomials [23], a significant advantage over ADM.  

According to [24], one significant disadvantage of VIM is that the terms obtained are longer than 

those obtained by decomposition and perturbation methods. For this reason, we are seeking and investigating 

the proposed approximate analytical solutions for nonlinear FDEs by HPM and VIM for comparison 

purposes. This study will develop an innovative approach to modifying the nonlinear TPFBVP based on the 

framework of fuzzy problems. This modification is tested on two existing FDEs and compared with the exact 

solution and the numerical solution. A comparative study will be given to show the capabilities of the 

proposed methods. According to the results, the modified schemes were found to be feasible and more 

accurate. 

 

 

2. PRELIMINARIES 

In this section, we provide some fundamental concepts and definitions that are necessary for this 

work. This includes some propositions, properties, and explanations of fuzzy sets and numbers and FDEs that 

will be used later in this work. 

Definition 2.1 [25]: the relation: 

 

𝜇(𝑥; 𝛼, 𝛽, 𝛾) =

{
 
 

 
 

0 ,                       if 𝑥 < 𝛼
𝑥 − 𝛼

𝛽 − 𝛼
,                       if 𝛼 ≤ 𝑥 ≤ 𝛽

𝛾 − 𝑥

𝛾 − 𝛽
,                       if 𝛽 ≤ 𝑥 ≤ 𝑦

0 ,                      if 𝑥 > 𝛾

 

 

is a form of the membership function for a trapezoidal fuzzy number 𝜇 =  (𝑥; 𝛼, 𝛽, 𝛾), which is presented as 

shown in Figure 1. 

 

 

 
 

Figure 1. Triangular fuzzy number 
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And its r-level is: [𝜇]𝑟 = [𝛼 +  𝑟 (𝛽 − 𝛼), 𝛾 −  𝑟 (𝛾 − 𝛽)], 𝑟 ∈  [0, 1]. 
Definition 2.2 [25]: The relation 

 

𝜇(𝑥; 𝛼, 𝛽, 𝛾, 𝛿) =

{
 
 

 
 

0 ,                     if 𝑥 < 𝛼
𝑥−𝛼

𝛽−𝛼
,                          if 𝛼 ≤ 𝑥 ≤ 𝛽

1,                               if  𝛽 ≤ 𝑥 ≤ 𝑦
𝛿−𝑥

𝛿−𝛾
,                        if 𝑦 ≤ 𝑥 ≤ 𝛿

0 ,                    if 𝑥 > 𝛿

    

 

Is a form of the membership function for a trapezoidal fuzzy number 𝜇 =  (𝑥; 𝛼, 𝛽, 𝛾, 𝛿), which is presented 

as in Figure 2. 

 

 

 
 

Figure 2. Trapezoidal fuzzy number 

 

 

This can be used to describe an r-level set of the trapezoidal fugitive number as;  

 
[�̃�]𝑟 = [(𝛽 − 𝛼)𝑟 + 𝛼, 𝛿 − (𝛿 − 𝛾)𝑟]  

 

This paper describes the class of all fuzzy subsets of ℝ is being marked by �̃� that satisfies the characteristics 

fuzzy number properties [26]. 

Definition 2.3 [27]: Let  𝑓: ℝ → �̃�, 𝑓(𝑥) is called fuzzy function if �̃� is a set of fuzzy numbers.  

Definition 2.4 [28]: The r-level set defined as [𝑓(𝑥)]𝑟 = [𝑓(𝑥; 𝑟), 𝑓(𝑥; 𝑟)] , 𝑥 ∈ 𝐾, 𝑟 ∈ [0,1] for a fuzzy 

function 𝑓: 𝑇 → �̃� where 𝑇 ⊆ �̃�. A fuzzy number is more effective than the r-level sets as representational 

types of fuzzy sets. Fuzzy sets can be described based on the resolution identity theorem by the families in 

their r-level sets. 

Definition 2.5 [29]: If 𝑓: 𝑋 → 𝑌 is function induces another function 𝑓: 𝐹(𝑋) → 𝐹(𝑌) For each interval, 𝑈 in 

𝑋 is defined by: 

 

𝑓(𝑈)(𝑦) = {
Sup𝑥∈𝑓−1(𝑦)𝑈(𝑥), 𝑖𝑓 𝑦 ∈ range (𝑓)

0                             , 𝑖𝑓 𝑦 ∉ range (𝑓)
  

 

This is recognized as the theory of Zadeh extension principle. 

Definition 2.6 [30]: Let �̃� = �̃� ⊝ �̃� be the H-difference of the fuzzy numbers �̃� and �̃� if the fuzzy number �̃� 

exist with the property�̃� = �̃� + �̃�. 

Definition 2.7 [13]: If 𝑓: 𝐼 → �̃� and 𝑡0 ∈ 𝐼 , where 𝐼 ∈ [𝑎, 𝑏]. 𝑓 ′̃ is said to be Hukuhara differentiable at 𝑡0, if 

there exists an element [𝑓′̃]
𝑟
∈ �̃� to be small enough for all ℎ > 0 (near to 0), exists 𝑓(𝑡0 + ℎ; 𝑟) ⊝

𝑓(𝑡0; 𝑟), 𝑓(𝑡0; 𝑟) ⊝ 𝑓(𝑡0 − ℎ; 𝑟) and limits in metric(�̃� , 𝐷) are taken and exist in such a way that 

 

𝑓 ′̃(𝑡0) = lim
h→0+

 �̃�(𝑡0+ℎ;𝑟)⊝�̃�(𝑡0;𝑟)

ℎ
= lim

h→0+

 �̃�(𝑡0;𝑟)⊝𝑓(𝑡0−ℎ;𝑟) 

ℎ
.  

 

For more details, see [30]. 
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Definition 2.8 [31]: Settle 𝑓 ∶ 𝐼 → �̃� and 𝑡0 ∈ 𝐼 , for ∈ [𝑎, 𝑏]. 𝑓(𝑛) is said to be Hukuhara differentiable  

𝑥 ∈ �̃�, if there exists an element [𝑓(𝑛)]
𝑟
∈ �̃� to be small enough for all ℎ > 0(near to 0), exists 

 �̃�(𝑛−1)(𝑡0 + ℎ; 𝑟) ⊝ 𝑓(𝑛−1)(𝑡0; 𝑟), 𝑓
(𝑛−1)(𝑡0; 𝑟) ⊝ 𝑓(𝑛−1)(𝑡0 − ℎ; 𝑟) and limits in metric (�̃� , 𝐷) are taken 

and exist in such a way that 

 

𝑓(𝑛)(𝑡0) = lim
ℎ→0+

 �̃�(𝑛−1)(𝑡0+ℎ;𝑟)⊝�̃�
(𝑛−1)(𝑡0;𝑟)

ℎ
= lim

ℎ→0+

 �̃�(𝑛−1)(𝑡0;𝑟)⊝�̃�
(𝑛−1)(𝑡0−ℎ;𝑟) 

ℎ
  

 

There is a second order of the derivatives of Hukuhara for 𝑛 = 2 and equivalent to 𝑓(𝑛). 

Theorem 2.1 [31]: Let 𝑓: [𝑡 + 𝛼, 𝑏] → �̃� be Hukuhara differentiable and denote 

 

[𝑓 ′̃(𝑡)]
𝑟
= [𝑓′(𝑡), 𝑓′(𝑡)]

𝑟
= [𝑓′(𝑡; 𝑟), 𝑓′(𝑡; 𝑟)]   

 

Then we can define the differentiable boundary functions 𝑓′(𝑡;𝑟) and 𝑓′(𝑡; 𝑟) can be written in the nth order of 

nth fuzzy derivatives. 

 

[𝑓(𝑛)(𝑡)]
𝑟
= [(𝑓(𝑛)(𝑡; 𝑟)) , (𝑓

(𝑛)
(𝑡; 𝑟))], ∀ 𝑟 ∈ [0,1]   

 

 

3. DESCRIPTION OF THE FUZZY HPM 

The overall HPM structure for solving crisp nonlinear TFBVP is mentioned in [17], [18]. Consider 

the defuzzification of the following general nth order TPFBVP [15]. 

 

�̃�(𝑛)(𝑡) = 𝑓 (𝑡, �̃�(𝑡), �̃�′(𝑡), �̃�′′(𝑡), … �̃�(𝑛−1)(𝑡)) + �̃�(𝑡),   𝑡 ∈ [𝑡0, 𝑇]  (1) 

 

{
�̃�(𝑡0) = �̃�

(0), �̃�′(𝑡0) = �̃�
(1), … . �̃�(𝑘)(𝑡0) = �̃�(𝑘),               

�̃�(𝑇) = 𝛽(0), �̃�′(𝑇) = 𝛽(1), … . , �̃�(𝑛−𝑘−2)(𝑇) = 𝛽(𝑛−𝑘−2),
  (2) 

 

To solve (1) by using HPM, we need to fuzzify HPM and then defuzzify it back to (1) as in [15]. According 

to [32], the HPM and for all  𝑟 ∈ [0,1]. HPM must ensure the convergence of the HPM solution series 

function through the correct choice of initial guess and the auxiliary linear operator [33]. From [15], HPM 

form for solving (1) is given by solving the lower bound as follows: 

 

𝑝0:

{
 
 

 
 𝐿𝑛 [𝑦0(𝑡; 𝑟) − 𝑦0(𝑡; 𝑟; ∑ 𝑐𝑠(𝑟)

𝑛
𝑠=1 )] = 0,         

𝑦(𝑡0; 𝑟) = [𝛼0]𝑟 , 𝑦
′(𝑡0; 𝑟) = [𝛼1]𝑟 , … , 𝑦

(𝑛−1)(𝑡0; 𝑟) = [𝛼𝑛−1]𝑟        

𝑦(𝑇; 𝑟) = [𝛽0]
𝑟
, 𝑦′(𝑇; 𝑟) = [𝛽1]

𝑟
 , … , 𝑦(𝑛−𝑘−2)(𝑇; 𝑟) = [𝛽𝑛−𝑘−2]

𝑟
 .

  

 

𝑝1:

{
 
 

 
 𝐿𝑛 [𝑦1(𝑡; 𝑟) + 𝑦0(𝑡; 𝑟; ∑ 𝑐𝑠(𝑟)

𝑛
𝑠=1 )] − 𝐹 (𝑡, �̃�0(𝑡; 𝑟, ∑ 𝑐𝑠(𝑟)

𝑛
𝑖=1 ))

−𝑔(𝑡; 𝑟) = 0,        

𝑦1(𝑡0; 𝑟) = 0𝑟 , 𝑦1
′(𝑡0; 𝑟) = 0 , … , 𝑦1

(𝑛−1)(𝑡0; 𝑟) = 0,   

𝑦1(𝑇; 𝑟) = 0𝑟 , 𝑦1
′(𝑇; 𝑟) = 0 , … , 𝑦1

(𝑛−𝑘−2)(𝑇; 𝑟) = 0.  

  

 

𝑝2:

{
 
 

 
 𝐿𝑛𝑦2(𝑡; 𝑟) − 𝐹 (𝑡, �̃�1(𝑡; 𝑟, ∑ 𝑐𝑠(𝑟)

𝑛
𝑖=1 )) = 0,        

𝑦2(𝑡0; 𝑟) = 0𝑟 , 𝑦2
′(𝑡0; 𝑟) = 0 , … , 𝑦2

(𝑛−1)(𝑡0; 𝑟) = 0,     

𝑦2(𝑇; 𝑟) = 0𝑟 , 𝑦2
′(𝑇; 𝑟) = 0 , … , 𝑦2

(𝑛−𝑘−2)(𝑇; 𝑟) = 0.   

    

⋮ 

𝑝𝑛+1:

{
 
 

 
 𝐿𝑛𝑦𝑛+1(𝑡; 𝑟) − 𝐹 (𝑡, �̃�𝑛(𝑡; 𝑟, ∑ 𝑐𝑠(𝑟)

𝑛
𝑖=1 )) = 0,        

𝑦𝑛+1(𝑡0; 𝑟) = 0𝑟 , 𝑦𝑛+1
′(𝑡0; 𝑟) = 0 , … , 𝑦𝑛+1

(𝑛−1)(𝑡0; 𝑟) = 0,     

𝑦𝑛+1(𝑇; 𝑟) = 0𝑟 , 𝑦𝑛+1
′(𝑇; 𝑟) = 0 , … , 𝑦𝑛+1

(𝑛−𝑘−2)(𝑇; 𝑟) = 0 .   
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Similarly for the upper bound  

 

𝑝0:

{
 

 
�̅�𝑛[𝑦0(𝑡; 𝑟) − 𝑦0(𝑡; 𝑟; ∑ 𝑐𝑠(𝑟)

𝑛
𝑠=1 )] = 0,         

𝑦(𝑡0; 𝑟) = [𝛼0]𝑟 , 𝑦
′
(𝑡0; 𝑟) = [𝛼1]𝑟  , … , 𝑦

(𝑛−1)
(𝑡0; 𝑟) = [𝛼𝑛−1]𝑟 ,   

𝑦(𝑇; 𝑟) = [𝛽
0
]
𝑟
, 𝑦
′
(𝑇; 𝑟) = [𝛽

1
]
𝑟
 , … , 𝑦

(𝑛−𝑘−2)
(𝑇; 𝑟) = [𝛽

𝑛−𝑘−2
]
𝑟
.

  

 

𝑝1:

{
 
 

 
 �̅�𝑛[𝑦1(𝑡; 𝑟) + 𝑦0(𝑡; 𝑟; ∑ 𝑐𝑠(𝑟)

𝑛
𝑠=1 )] − 𝐺 (𝑡, �̃�0(𝑡; 𝑟, ∑ 𝑐𝑠(𝑟)

𝑛
𝑖=1 )) ,

−𝑔(𝑡; 𝑟) = 0,        

𝑦
1
(𝑡0; 𝑟) = 0, 𝑦1

′
(𝑡0; 𝑟) = 0 , … , 𝑦1

(𝑛−1)
(𝑡0; 𝑟) = 0,

𝑦
1
(𝑇; 𝑟) = 0, 𝑦

1

′
(𝑇; 𝑟) = 0 , … , 𝑦

1

(𝑛−𝑘−2)
(𝑇; 𝑟) = 0.

  

 

𝑝2:

{
 
 

 
 �̅�𝑛𝑦2(𝑡; 𝑟) − 𝐺 (𝑡, �̃�𝑛(𝑡; 𝑟, ∑ 𝑐𝑠(𝑟)

𝑛
𝑖=1 )) = 0,             

𝑦
2
(𝑡0; 𝑟) = 0, 𝑦2

′
(𝑡0; 𝑟) = 0 , … , 𝑦2

(𝑛−1)
(𝑡0; 𝑟) = 0,    

𝑦
2
(𝑇; 𝑟) = 0, 𝑦

2

′
(𝑇; 𝑟) = 0 , … , 𝑦

2

(𝑛−𝑘−2)
(𝑇; 𝑟) = 0.   

    

⋮ 

𝑝𝑛+1:

{
 
 

 
 �̅�𝑛𝑦𝑛+1(𝑡; 𝑟) − 𝐺 (𝑡, �̃�𝑛(𝑡; 𝑟, ∑ 𝑐𝑠(𝑟)

𝑛
𝑖=1 )) = 0,             

𝑦
𝑛+1

(𝑡0; 𝑟) = 0, 𝑦
𝑛+1

′
(𝑡0; 𝑟) = 0 , … , 𝑦𝑛+1

(𝑛−1)
(𝑡0; 𝑟) = 0,

𝑦
𝑛+1

(𝑇; 𝑟) = 0, 𝑦
𝑛+1

′
(𝑇; 𝑟) = 0 , … , 𝑦

𝑛+1

(𝑛−𝑘−2)
(𝑇; 𝑟) = 0,

  

 

where �̃�(𝑡) = �̃�(𝑡), �̃�′(𝑡), �̃�′′(𝑡), … �̃�(𝑛−1)(𝑡) and the initials guessing �̃�(𝑡0; 𝑟) is given in [16] for all 𝑟 ∈
[0,1] and then the approximate solution is given by setting 𝑝 = 1 as in (3):  

 

�̃�(𝑡; 𝑟; ∑ �̃�𝑠(𝑟)
𝑛
𝑠=1 ) = 𝑆𝑚(𝑡; 𝑟; ∑ �̃�𝑠(𝑟)

𝑛
𝑠=1 ) = ∑ �̃�𝑖(𝑡; 𝑟; ∑ �̃�𝑠(𝑟)

𝑛
𝑠=1 )𝑚−1

𝑖=0   (3) 

 

Therefore, the exact solution of (1) can now be obtained by setting p=1: 

 

�̃�(𝑡; 𝑟) = lim
𝑝→1

�̃�(𝑡; 𝑟; ∑ �̃�𝑠(𝑟)
𝑛
𝑠=1 ) = lim

𝑝→1
{∑ 𝑝𝑖�̃�𝑖(𝑡; 𝑟; ∑ �̃�𝑠(𝑟)

𝑛
𝑠=1 )∞

𝑖=0 }  

= ∑ �̃�𝑖(𝑡; 𝑟; ∑ �̃�𝑠(𝑟)
𝑛
𝑠=1 )∞

𝑖=0   (4) 

 

 

4. DESCRIPTION OF THE FUZZY VIM 

VIM general structure for resolving problems TFPBVP is stated in [19]. In order for the (1) to be 

solved using VIM, we must fuzzify and defuzzify the VIM as defined in (2) [34]. According to VIM in [22] 

and for all  𝑟 ∈ [0,1] we rewrite (1) in the following correction functional forms: 

 

𝑦𝑖+1(𝑡; 𝑟; ∑ 𝑐𝑠(𝑟)
𝑛
𝑠=1 ) = 𝑦𝑖(𝑡; 𝑟; ∑ 𝑐𝑠(𝑟)

𝑛
𝑠=1 ) +  

∫ 𝜆(𝑡; 𝜂) {𝑦𝑖
(𝑛)(𝜂; 𝑟) +   𝐹 (𝜂, �̃�⏞ (𝜂; 𝑟)) + 𝑔(𝜂; 𝑟)} 𝑑𝜂,

𝑡

0
  (5) 

 

𝑦
𝑖+1
(𝑡; 𝑟; ∑ 𝑐𝑠(𝑟)

𝑛
𝑠=1 )  

= 𝑦
𝑖
(𝑡; 𝑟; ∑ 𝑐𝑠(𝑟)

𝑛
𝑠=1 ) + ∫ 𝜆(𝑡; 𝜂) {𝑦

𝑖

(𝑛)
(𝜂; 𝑟) +  𝐺 (𝜂, �̃�⏞ (𝜂; 𝑟)) + 𝑔(𝜂; 𝑟)} 𝑑𝜂,

𝑡

0
  (6) 

 
where 𝑖 = 1,2, … , 𝑟 ∈ [0,1]. The Lagrange multiplier is 𝜆(𝑡; 𝜂) which can be optimally defined via 

variational theory [33]. Now we let  

 

𝐹∗ 𝑦�̃�⏞ = 𝐹 (𝜂, �̃�
⏞ (𝜂; 𝑟)) + 𝑔(𝜂; 𝑟),  

𝐺∗ 𝑦�̃�⏞ = 𝐺 (𝜂, �̃�
⏞ (𝜂; 𝑟)) + 𝑔(𝜂; 𝑟) , 
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where 𝐹∗ and 𝐺∗ are nonlinear operators including the nonlinear terms F and G and the inhomogeneous term 

�̃�(𝜂; 𝑟). In the following forms we will rewrite (5) and (6) as: 

 

𝑦𝑖+1(𝑡; 𝑟; ∑ 𝑐𝑠(𝑟)
𝑛
𝑠=1 ) = 𝑦𝑖(𝑡; 𝑟; ∑ 𝑐𝑠(𝑟)

𝑛
𝑠=1 ) + ∫ 𝜆(𝑡; 𝜂) {𝑦𝑖

(𝑛)(𝜂; 𝑟) + 𝐹∗ 𝑦�̃�⏞} 𝑑𝜂
𝑡

0
,  

𝑦
𝑖+1
(𝑡; 𝑟; ∑ 𝑐𝑠(𝑟)

𝑛
𝑠=1 ) = 𝑦

𝑖
(𝑡; 𝑟; ∑ 𝑐𝑠(𝑟)

𝑛
𝑠=1 ) + ∫ 𝜆(𝑡; 𝜂) {𝑦

𝑖

(𝑛)
(𝜂; 𝑟) + 𝐺∗ 𝑦�̃�⏞} 𝑑𝜂,

𝑡

0
  

 

where restricted variation is 𝑦�̃�⏞, i.e 𝛿 𝑦�̃�⏞ = 0 [21]. The general multiplier 𝜆(𝑡; 𝜂) applied to (1) according to 

[23] can be described in the following: 

 

𝛿𝑦𝑖+1(𝑡; 𝑟; ∑ 𝑐𝑠(𝑟)
𝑛−1
𝑠=1 )   = 𝛿𝑦𝑖(𝑡; 𝑟; ∑ 𝑐𝑠(𝑟)

𝑛−1
𝑠=1 ) +  𝛿 ∫ 𝜆(𝑡; 𝜂) {𝑦𝑖

(𝑛)(𝜂; 𝑟) + 𝐹∗ 𝑦�̃�⏞} 𝑑𝜂 
𝑡

0
  

 
=  𝛿𝑦

𝑖+1
(𝑡; 𝑟; ∑ 𝑐𝑠(𝑟)

𝑛−1
𝑠=1 ) =     𝛿𝑦𝑖(𝑡; 𝑟; ∑ 𝑐𝑠(𝑟)

𝑛−1
𝑠=1 ) + 𝛿 ∫ 𝜆(𝑡; 𝜂) {𝑦𝑖

(𝑛)(𝜂; 𝑟)} 𝑑𝜂.
𝑡

0
  

 

According to [23], we obtain the followings by integrating by part: 

 

 𝑦𝑖+1(𝑡; 𝑟; ∑ 𝑐𝑠(𝑟)
𝑛−1
𝑠=1 ) = [1 − 𝜆(𝑡)(𝑛−1)]𝛿𝑦𝑖(𝑡; 𝑟; ∑ 𝑐𝑠(𝑟)

𝑛−1
𝑠=1 ) +  ∑ 𝛿𝑦𝑖

(𝑛−1−𝑘)(𝑡; 𝑟)𝑛−2
𝑘= +

∫ 𝜆(𝑡; 𝜂)(𝑛)𝛿𝑦𝑖(𝑡; 𝑟; ∑ 𝑐𝑠(𝑟)
𝑛−1
𝑠=1 )𝑑𝜂

𝑡

0
.  

 

The following stationary conditions can therefore be reached [35]. 

 

{

𝜆(𝜂)(𝑛) = 0,                                     

1 − 𝜆(𝑡)(𝑛−1) = 0,                           

𝜆(𝑡)(𝑘) = 0 , 𝑘 = 0,1,2, … , 𝑛 − 2 .

 

 

Under these terms and the order of the (1) the general Lagrangian multiplier can be calculated as [35]: 

 

𝜆(𝑡; 𝜂) =
(−1)𝑛(𝜂−𝑡)𝑛−1

(𝑛−1)!
) 

 

Therefore, all the above parameters 𝜆(𝑡; 𝜂) and �̃�0(𝑡; 𝑟; ∑ �̃�𝑠
𝑛
𝑠=1 (𝑟)) will be easily obtained in the series of 

approximations of VIM. The exact solution can therefore be obtained: 

 

�̃�(𝑡; 𝑟) = lim
𝑖→1

�̃�𝑖(𝑡; 𝑟; ∑ �̃�𝑠(𝑟)
𝑛
𝑠=1 ). 

 

To determine the �̃�𝑠(𝑟), we use the same HPM technique as in [15] by substituting these constants with the 

initial estimates in series solution function and then using the boundary conditions of (1) to determine the 

values of these constants for each fuzzy r-level set. 

 

 

5. NUMERICAL EXAMPLES 

The approximate solution by HPM and VIM in the next examples are obtained by formulating the 

given equations as presented in sections 3 and 4. The formula is then solved and analyzed by using 

Mathematica 11: 

Example 5.1: Let us consider the following nonlinear second order TPFBVP: 

 

�̃�′′(𝑡) + �̃�2(𝑡) = 𝑡4 + 2 , �̅�(0) = �̃�, �̃�(1) = �̃�  (7) 

 

where �̃� and 𝑏 ̃ are triangular fuzzy numbers having r-level sets [0.1𝑟 − 0.1,0.1 − 0.1𝑟] and  

[0.9 + 0.1𝑟, 1.1 − 0.1𝑟] for all 𝑟 ∈ [0,1]. The linear operator in compliance with section 2 is �̃�2 =
𝑑(2)

𝑑𝑡2
 with 

the inverse operator �̃�2
−1

, and the initial guesses for all 𝑟 ∈ [0,1] are given by: 

 

{
𝑦0(𝑡; 𝑟) = 𝑐1(𝑟) + 𝑐2(𝑟)𝑡,

𝑦
0
(𝑡; 𝑟) = 𝑐1(𝑟) + 𝑐2(𝑟)𝑡.
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5.1.  HPM formulation  

According to section 3, the values of �̃�1(𝑟) =  [0.1𝑟 − 0.1,0.1 − 0.1𝑟] and the homotopy functions 

of (7) are  

 

ℋ(𝑡, 𝑝; 𝑟) = (1 − 𝑝)𝐿2 [𝑦(𝑡; 𝑟) − 𝑦0 (𝑡; 𝑟; 𝑐2(𝑟))] + 𝑝 [𝐿2𝑦(𝑡; 𝑟) +    (𝑦(𝑡; 𝑟))
2

− (𝑡4 + 2)] = 0, 

ℋ(𝑡, 𝑝; 𝑟) = (1 − 𝑝)𝐿2 [𝑦(𝑡; 𝑟) − 𝑦0 (𝑡; 𝑟; 𝑐2(𝑟))] + 𝑝 [𝐿2𝑦(𝑡; 𝑟) +     (𝑦(𝑡; 𝑟))
2

− (𝑡4 + 2)] = 0, 

ℋ(𝑡, 𝑝; 𝑟) = (1 − 𝑝)�̅�2[𝑦(𝑡; 𝑟) − 𝑦0(𝑡; 𝑟; 𝑐2(𝑟))] + 𝑝 [𝐿2𝑦(𝑡; 𝑟) +    (𝑦(𝑡; 𝑟))
2
− (𝑡4 + 2)] = 0.  

 

The 𝑛 components are specified as the HPM in section 3 of �̃�𝑘(𝑡; 𝑟) for 𝑘 = 1,2, . . , 𝑛 and 𝑟 ∈ [0,1] 
calculated by evaluating the lower limit as follows: 

 

𝑝0: {𝑦0(𝑡; 𝑟) = 0.1𝑟 − 0.1 + 𝑐2(𝑟)𝑡,  

𝑝1: {
𝑦1(𝑡; 𝑟) = 𝐿2

−1 [(−𝑦0 (𝑡; 𝑟; 𝑐2(𝑟)))
2

+ 𝑡4 + 2] ,

𝑦1(0; 𝑟) = 0, 𝑦1(1; 𝑟) = 0.      

    

𝑝2: {
𝑦2(𝑡; 𝑟) = −𝐿2

−1 [2𝑦1 (𝑡; 𝑟; 𝑐2(𝑟)) 𝑦0 (𝑡; 𝑟; 𝑐2(𝑟))] ,   

𝑦2(0; 𝑟) = 0, 𝑦2(1; 𝑟) = 0.          
  

⋮ 

𝑝𝑘+1: {
𝑦𝑘+1(𝑡; 𝑟) = −𝐿2

−1∑ 𝑦𝑘 (𝑡; 𝑟; 𝑐2(𝑟))
𝑛−1
𝑘=0 𝑦𝑛−1−𝑘 (𝑡; 𝑟; 𝑐2(𝑟)) ,    

𝑦𝑘(0; 𝑟) = 0, 𝑦𝑘(1; 𝑟) = 0.    
  (8) 

 

For the upper limit, the values are obtained in the same way as follows: 

 

𝑝0: {𝑦
0
(𝑡; 𝑟) = 0.1 − 0.1𝑟 + 𝑐2(𝑟)𝑡,  

𝑝1: {
𝑦
1
(𝑡; 𝑟) = �̅�2

−1
[− (𝑦

0
(𝑡; 𝑟; 𝑐2(𝑟)))

2

+ 𝑡4 + 2] ,

𝑦
1
(0; 𝑟) = 0, 𝑦

1
(1; 𝑟) = 0.

    

𝑝2: {
𝑦
2
(𝑡; 𝑟) = −�̅�2

−1
[2𝑦

1
(𝑡; 𝑟; 𝑐2(𝑟))𝑦0(𝑡; 𝑟; 𝑐2(𝑟))],

𝑦
2
(0; 𝑟) = 0, 𝑦

2
(1; 𝑟) = 0.

  

⋮ 

𝑝𝑘+1: {
𝑦
𝑘+1

(𝑡; 𝑟) = −�̅�2
−1
[∑ 𝑦

𝑘
(𝑡; 𝑟; 𝑐2(𝑟))

𝑛−1
𝑘=0 𝑦

𝑛−1−𝑘
(𝑡; 𝑟; 𝑐2(𝑟))],

𝑦
𝑘
(0; 𝑟) = 0, 𝑦

𝑘
(1; 𝑟) = 0.     

  (9) 

 

Evaluating (8) and (9) to obtain fifth order HPM series solution in the following form such that 

 

�̃�5(𝑡; 𝑟; �̃�2(𝑟)) = �̃�0(𝑡; 𝑟, �̃�2(𝑟)) + ∑ �̃�𝑖(𝑡; 𝑟; �̃�2(𝑟))
5
𝑖=1 = �̃�(𝑡; 𝑟; �̃�2(𝑟))  (10) 

 

Now to obtain the values of �̃�2(𝑟) for all 𝑟 ∈ [0,1] , we solve the nonlinear series solution of (7) from the 

boundary condition [0.9 + 0.1𝑟, 1.1 − 0.1𝑟] then we substitute the values of �̃�2(𝑟) again in (10) to obtain 

fifth order HPM series solution. Since (7) is considered without exact analytical solution, to show the 

accuracy of fifth order HPM approximate series solution  �̃�5(𝑡; 𝑟) for all 𝑟 ∈ [0,1], the residual error must be 

specified: 

 

[�̃�(𝑡)]𝑟 = �̃�5(𝑡; 𝑟)
′′(𝑡) + �̃�5(𝑡; 𝑟)

2(𝑡) − 𝑡4 + 2, 

 

Then the fifth order HPM series solution is presented in the Tables 1-2 and Figure 3. According to Tables 1 

and 2 and Figure 3, we concluded that the fifth order HPM approximate solutions of (7) for all 𝑡 ∈ [0,1] 
and 𝑟 ∈ [0,1] fulfill the patterns of fuzzy numbers in the form of a triangular fuzzy number. 
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Table 1. Approximate solution 𝑦(𝑡; 𝑟) of fifth order HPM at 𝑡 = 0.5 and 𝑟 ∈ [0,1] 

r 𝑐2(𝑟) 𝑦(0.5; 𝑟) [𝐸(0.5)]
𝑟
 

0 −0.012233517979781578 0.14366068333554236 4.183283991154862 × 10−7 

0.25 −0.010209834659421881 0.16997259607001605 2.946362775008149 × 10−7 

0.5 −0.007505097713710612 0.19646322624295728 2.485028610110795 × 10−7 

0.75 −0.004110208069923338 0.22313542853095245 2.726826934945636 × 10−7 

1 −0.000016001865820840 0.24999204985486695 6.342108563664461 × 10−7 

 

 

Table 2. Approximate solution 𝑦(𝑡; 𝑟) of fifth order HPM at 𝑡 = 0.5 and 𝑟 ∈ [0,1] 
r 𝑐2(𝑟) 𝑦(0.5; 𝑟) [𝐸(0.5)]

𝑟
 

0 0.023538969063634813 0.35931908435924000 0.0000211620477442997 

0.25 0.016554919244886100 0.33169666727607905 0.0000108129304682291 

0.5 0.010307281584441760 0.30426986657956345 0.0000048897414700183 

0.75 0.004786740073139446 0.27703592414404127 0.0000018877716657511 

1 −0.000016001865820840 0.24999204985486695 6.342108563664461 × 10−7 

 

 

 
 

Figure 3. HPM approximate solution of (12) at 𝑡 = 0.5 and 𝑟 ∈ [0,1] 
 

 

5.2.  VIM formulation  

The variational formula of this problem is given in accordance with section 4 as (11): 

 

{
  
 

  
 𝑦𝑖+1 (𝑡; 𝑟; 𝑐2(𝑟)) = 𝑦𝑖 (𝑡; 𝑟; 𝑐2(𝑟))

+ ∫ 𝜆(𝑡; 𝜂) {𝑦𝑖
′′ (𝜂; 𝑟; 𝑐2(𝑟)) + 𝑦𝑖 (𝜂; 𝑟; 𝑐2(𝑟))

2

− 𝜂4 − 2} 𝑑𝜂,
𝑡

0

𝑦
𝑖+1
(𝑡; 𝑟; 𝑐2(𝑟)) = 𝑦𝑖(𝑡; 𝑟; 𝑐2(𝑟))

+∫ 𝜆(𝑡; 𝜂) {𝑦
𝑖

′′
(𝜂; 𝑟; 𝑐2(𝑟)) + 𝑦𝑖(𝜂; 𝑟; 𝑐2(𝑟))

2
− 𝜂4 − 2}𝑑𝜂.

𝑡

0

  

  (11) 

 

The fourth-order VIM series solution is obtained in the form 12: 

 

�̃�4(𝑡; 𝑟; �̃�2(𝑟)) = ∑ �̃�𝑖(𝑡; 𝑟; �̃�2(𝑟))
4
𝑖=0 = �̃�(𝑡; 𝑟)  (12) 

 

The Lagrangian multiplier of (11) is described in section 4 such that 𝜆(𝑡; 𝜂) = 𝜂 − 𝑡. Now in order to obtain 

the values of �̃�2(𝑟) for all 𝑟 ∈ [0,1] , we solve the nonlinear series solution of (7) from the boundary 

condition [0.9 + 0.1𝑟, 1.1 − 0.1𝑟] then we substitute the values of �̃�2(𝑟) again in (12) to obtain fourth-order 

VIM series solution. For (1), the following residual error is described in order to demonstrate VIM accuracy 

in approximate fourth-order solution without an exact analytical solution: 

 

[�̃�(𝑡)]𝑟 = |�̃�4
′′
(𝑡; 𝑟) + [�̃�4(𝑡; 𝑟)]

2
−𝑡4 − 2   | 

 

In Table 3 and 4 and Figure 4, the fourth order VIM series solution is presented: 
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Table 3. Approximate solution 𝑦(𝑡; 𝑟) of fourth order VIM at 𝑡 = 0.5 and 𝑟 ∈ [0,1] 

r 𝑐2(𝑟) 𝑦(0.5; 𝑟) [𝐸(0.5)]
𝑟
 

0 −0.012227411850487582 0.14366373723600040 1.268180005453700 × 10−12 

0.25 −0.01020310975429537 0.16997595759445022 3.399442879969960 × 10−11 

0.5 −0.007496876529468979 0.19646732842074352 6.365820370834996 × 10−11 

0.75 −0.004099110842952412 0.22314095416570680 8.448242105885129 × 10−12 

1 5.9121871734293 × 10−8 0.25000002937629756 2.485910088889653 × 10−10 

 

 

Table 4. Approximate solution 𝑦(𝑡; 𝑟) of fourth order VIM at 𝑡 = 0.5 and 𝑟 ∈ [0,1] 
r 𝑐2(𝑟) 𝑦(0.5; 𝑟) [𝐸(0.5)]

𝑟
 

0 0.023538969063634813 0.35935808190205626 7.0343751656931630 × 10−9 
0.25 0.016554919244886100 0.33172332776916430 3.9969035997566850 × 10−9 
0.5 0.010307281584441760 0.30428777924960454 2.0336278494514910 × 10−9 

0.75 0.004810786651353893 0.27704784239391295 8.636787535154511 × 10−10 

1 5.9121871734293 × 10−8 0.25000002937629756 2.485910088889653 × 10−10 

 

 

 
 

Figure 4. VIM approximate solution of (13) at 𝑡 = 0.5 and 𝑟 ∈ [0,1] 
 

 

According to Tables 3-4 and Figure 4, we concluded that the fourth-order VIM approximate 

solutions of (7) for all 𝑡 ∈ [0,1] and 𝑟 ∈ [0,1] comply with the fuzzy numbers of properties as triangular 

fuzzy number. 

Example 5.2 [35]: Consider this non-homogenous second-order non-linear TPFBVP: 

 

�̃�′′(𝑡) + �̃�(𝑡) = �̃�3(𝑡) + 𝑓(𝑡), 𝑡 ∈ [0,1]  (13) 

�̃�(0; 𝑟) = �̃�, �̃�(1) = �̃�  
 

where �̃� = [
1

4
(
𝑟−2

10
) +

1

4
,
1

4
(
2−𝑟

10
) +

1

4
] and 𝑏 ̃ = [

5

4
(
𝑟−2

10
) +

𝑒−1

4
,
5

4
(
2−𝑟

10
) +

𝑒−1

4
] for all 𝑟 ∈ [0,1]. According to 

[30] the fuzzy function 𝑓(𝑡) have the following defuzzification: 
 

𝑓(𝑡; 𝑟) = [(𝑡 +
1

4
) (

𝑟−2

10
) −

𝑒−𝑡

4
]
3

+ (𝑡 +
1

4
) (

2−𝑟

10
) , [(𝑡 +

1

4
) (

2−𝑟

10
)  −

𝑒−𝑡

4
]
3

+ (𝑡 +
1

4
) (

𝑟−2

10
),  

 

Then the corresponding analytic solution of (13) is given by 

 

�̃�(𝑡; 𝑟) =
𝑒−𝑡

4
+ (𝑡 +

1

4
) (

𝑟−2

10
,
𝑟−2

10
)  (14) 

 

by following the initial guesses from Example 5.1, we have: 

 

{
𝑦0(𝑡; 𝑟) =

1

4
(
𝑟−2

10
) +

1

4
+ 𝑐2(𝑟)𝑡,

𝑦
0
(𝑡; 𝑟) =

1

4
(
2−𝑟

10
) +

1

4
+ 𝑐2(𝑟)𝑡.

  

 (15) 
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5.3.  HPM formulation  

From Section 4 the approximate solution of (13) can be determine by HPM from the followings: 

 

𝑝0: {𝑦0(𝑡; 𝑟) =
1

4
(
𝑟−2

10
) +

1

4
+ 𝑐2(𝑟)𝑡,  

 

𝑝1: {
𝑦1(𝑡; 𝑟) = 𝐿2

−1 [𝑦0(𝑡; 𝑟)1+ (𝑦0 (𝑡; 𝑟; 𝑐2(𝑟)))
3

+ 𝑓(𝑡; 𝑟)] ,

𝑦1(0; 𝑟) = 0, 𝑦1(1; 𝑟) = 0.      

   

⋮ (16) 

𝑝𝑘+1:

{
 

 
𝑦𝑘+1(𝑡; 𝑟) = 𝐿2

−1𝑦𝑘(𝑡; 𝑟) +∑∑𝑦𝑘−1−𝑖 (𝑡; 𝑟; 𝑐2(𝑟))

𝑖

𝑗=0

𝑦𝑗 (𝑡; 𝑟; 𝑐2(𝑟))

𝑘−1

𝑖=0

𝑦𝑖−𝑗 (𝑡; 𝑟; 𝑐2(𝑟)) ,    

𝑦𝑘(0; 𝑟) = 0, 𝑦𝑘(1; 𝑟) = 0.    

 

 

Similarly for the upper bound 

 

𝑝0: {𝑦
0
(𝑡; 𝑟) =

1

4
(
2 − 𝑟

10
) +

1

4
+ 𝑐2(𝑟)𝑡, 

 

𝑝1: {
𝑦
1
(𝑡; 𝑟) = �̅�2

−1
[𝑦
0
(𝑡; 𝑟) + (𝑦

0
(𝑡; 𝑟; 𝑐2(𝑟)))

3

+ 𝑓(𝑡; 𝑟)] ,

𝑦
1
(0; 𝑟) = 0, 𝑦

1
(1; 𝑟) = 0.  

  (17) 

⋮ 

𝑝𝑘+1: {
𝑦
𝑘+1

(𝑡; 𝑟) = 𝐿2
−1𝑦

𝑘
(𝑡; 𝑟) + ∑ ∑ 𝑦

𝑘−1−𝑖
(𝑡; 𝑟; 𝑐2(𝑟))

𝑖
𝑗=0 𝑦

𝑗
(𝑡; 𝑟; 𝑐2(𝑟))

𝑘−1
𝑖=0 𝑦

𝑖−𝑗
(𝑡; 𝑟; 𝑐2(𝑟)) 

𝑦
𝑘
(0; 𝑟) = 0, 𝑦

𝑘
(1; 𝑟) = 0.    

  

 

Next, the determination of the values of �̃�2(𝑟) for all 𝑟 ∈ [0,1] can be done by solving the nonlinear seventh 

order HPM series solution of (17) subject to the fuzzy boundary condition 𝑦(1; 𝑟) =
5

4
(
𝑟−2

10
) +

𝑒−1

4
 and 

 𝑦(1; 𝑟) =
5

4
(
2−𝑟

10
) +

𝑒−1

4
 of (13). Then, we substitute the values of �̃�2(𝑟) again in the seventh order series 

solution of (13) to obtain seventh order HPM series solution in Table 5. 

 

 

Table 5. Approximate solution of seventh order HPM of (13) at 𝑡 = 0.5 ∀ 𝑟 ∈ [0,1]  
r 𝑐2(𝑟) 𝑐2(𝑟) 𝑦(0.5; 𝑟) 𝑦(0.5; 𝑟) 

0 −0.44985575506896760 −0.04891373031802654 0.0016323384080985234 0.30163258314132690 

0.25 −0.42489220652617230 −0.07406371025083800 0.0203823093927938160 0.28288260102272034 

0.5 −0.39991573435157324 −0.09920243697696327 0.0391322807152672800 0.26413260400295260 

0.75 −0.37492630650497016 −0.12432965360921329 0.0578822454883946360 0.24538262188434600 

1 −0.34992391523689814 −0.14944512128297516 0.0766322059390083700 0.22663263231515884 

 

 

5.4.  VIM formulation  

The VIM to solve (13) is in compliance with section 4. The formulation shall be given as in (18): 

 

{
 
 
 
 

 
 
 
 𝑦𝑖+1 (𝑡; 𝑟; 𝑐2(𝑟)) = 𝑦𝑖 (𝑡; 𝑟; 𝑐2(𝑟))

+ ∫ [𝜂 − 𝑡] {
𝑦𝑖
′′ (𝜂; 𝑟; 𝑐2(𝑟)) − 𝑦𝑖 (𝑡; 𝑟; 𝑐2(𝑟))

−𝑦𝑖 (𝜂; 𝑟; 𝑐2(𝑟))
3

− 𝑓(𝑡; 𝑟)
} 𝑑𝜂,

𝑡

0

𝑦
𝑖+1
(𝑡; 𝑟; 𝑐2(𝑟)) = 𝑦𝑖(𝑡; 𝑟; 𝑐2(𝑟))

+∫ [𝜂 − 𝑡] {
𝑦
𝑖

′′
(𝜂; 𝑟; 𝑐2(𝑟)) − 𝑦𝑖(𝑡; 𝑟; 𝑐2(𝑟))

−𝑦
𝑖
(𝜂; 𝑟; 𝑐2(𝑟))

3
− 𝑓(𝑡; 𝑟)

} 𝑑𝜂.
𝑡

0

  

  (18) 

 

By following VIM formulation and analysis in Example 5.2, third-order VIM series solution is given in the 

following Table 6: 
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Table 6. Approximate solution of third order VIM of (13) at 𝑡 = 0.5 ∀ 𝑟 ∈ [0,1] 
r 𝑐2(𝑟) 𝑐2(𝑟) 𝑦(0.5; 𝑟) 𝑦(0.5; 𝑟) 

0 −0.4500000805284215 −0.05000128774459855 0.076632688439284070 0.30163199259313456 

0.25 −0.4250000216571309 −0.07500108858114996 0.057882686548291370 0.28288209737819590 

0.5 −0.3999999813340253 −0.10000090368612918 0.039132675010097500 0.26413219449035540 

0.75 −0.3749999595833066 −0.12500073372107165 0.020382653821232450 0.24538228361308428 

1 −0.3499999563806096 −0.15000057928658794 0.001632623001234793 0.22663236446104182 

 

 

In order to show efficiency of VIM and HPM methods in solving (13), numerical comparisons of the 

accuracy generated by RKHS in [35] are presented in Table 7. These comparisons are conducted at 𝑡 =  0.5 

and various 𝑟 fuzzy level that belongs to [0,1] by computing the mean of the average error. Here, �̃�(𝑡; 𝑟) is 

the mean of the average error between 𝐸(𝑡; 𝑟) and 𝐸(𝑡; 𝑟) such that  

 

{
𝐸(𝑡; 𝑟) = |𝑌(𝑡; 𝑟) − 𝑦(𝑡; 𝑟) | ,

𝐸(𝑡; 𝑟) = |𝑌(𝑡; 𝑟) − 𝑦(𝑡; 𝑟)|.
  

  (19) 

 

 

Table 7. Numerical comparison of mean errors �̃�(𝑡; 𝑟) at 𝑡 =  0.5 
r Third-order VIM Seventh order HPM RKHS [33] 

0 1.267224325474103 × 10−7 2.397203478878614 × 10−7 3.87851 × 10−6 

0.25 1.690374040186348 × 10−7 2.369393627074407 × 10−7 3.31263 × 10−7 

0.5 2.251369623368360 × 10−7 2.521985155955197 × 10−7 1.84790 × 10−7 

0.75 2.948819071355024 × 10−7 2.508378323807635 × 10−8 1.34477 × 10−7 

1 3.780944354508757 × 10−8 2.630438642283513 × 10−8 1.09977 × 10−7 

 

 

According to Tables 6 and 7 and Figure 5, we concluded that the third order VIM and seventh order 

HPM will successfully provide the approximate solutions to (7) for all 𝑡 ∈ [0,1] and 𝑟 ∈ [0,1]. This is shown 

by the results that comply with the fuzzy numbers of properties as triangular fuzzy number. 

 

 

    
 

Figure 5. Exact solution of (13) compared with third order VIM and seventh order HPM 

approximate solution of (13) at 𝑡 = 0.5 and 𝑟 ∈ [0,1] 
 

 

6. RESULTS COMPARISON 

In this section, we present a comparative explanation between the solutions of nonlinear TPFBVPs 

obtained by HPM and VIM as we illustrate from Examples 5.1 and 5.2: 

− The initial approximation guesses in HPM, and VIM are obtained in the same way. 

− The construction of VIM formula to solve nonlinear TPFBVP is faster and easier than HPM because 

HPM takes the advantage of the small parameter 𝑝 ∈ [0,1] that makes HPM suffers from the cumbersome 

work needed for the derivation of for nonlinear terms. This will increase the computational work 

especially when the degree of nonlinearity increases. 
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− As mentioned in section 4, VIM is used directly without any requirement or restrictive assumptions that 

the nonlinear terms make the series solution longer and time consuming in CPU. The third order VIM 

solved (7) within 31.2264607 seconds for reach r-level values. In HPM the use of embedding parameter 

𝑝 is decomposed for the nonlinear terms making the series solution shorter than the solution of VIM with 

less time consuming in CPU. The seventh order HPM solved (7) within  1.4882989 seconds for all  

r-level values. For illustration, the nonlinear term 𝑦2 in (7) which has been decomposed to 

∑ 𝑦𝑘
𝑛−1
𝑘=0 𝑦𝑛−1−𝑘 in HPM formulation but in VIM formula we substitute 𝑦2. 

− From the results obtained by HPM in Tables 1-2 and VIM in Tables 3-4, we conclude that VIM provides 

a better and more accurate solution than HPM, with less order of series solution for both 𝑡 ∈ [0,1] and 

 𝑟 ∈ [0,1]. 
− Finally, both Figure 3 and Figure 4 show the solution of (7) by using HPM and VIM respectively for all 

𝑡 ∈ [0,1] and 𝑟 ∈ [0,1] satisfy the fuzzy numbers properties in the form of triangular fuzzy number. 

 

 

7. CONCLUSION 

In this work, approximate analytical methods have been used for nonlinear TPFBVPs to achieve an 

approximate solution. Two schemes, HPM and VIM, were developed and reformulated to approximate the 

nonlinear TPFBVP solution. Numerical examples, including nonlinear TPFBVPs, demonstrate the efficacy of 

these approaches. Forgiven nonlinear TPFBVPs, a comparison of HPM and VIM results was presented. The 

comparison shows that VIM convergence is faster and provides an improved solution, particularly for the less 

approximate terms, nonlinear TPFBVPs over HPM. Even though these equations are without exact analytical 

solutions, the exactness of both HPM and VIM can be calculated from nonlinear TPFBVPs. The VIM 

Lagrangian multiplier for the nonlinear TPFBVPs is equivalent to the value for all the r-level sets. All 

outcomes of the experiments with HPM and VIM are achieved using a triangular shape to acquire the 

properties of the fuzzy numbers.  
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