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 Recently, deep neural networks (DNNs) have been increasingly deployed in 

various healthcare applications, which are considered safety-critical 

applications. Thus, the reliability of these DNN models should be remarkably 

high, because even a small error in healthcare applications can lead to injury 

or death. Due to the high computations of the DNN models, DNNs are often 

executed on the graphics processing units (GPUs). However, the GPUs have 

been reportedly impacted by soft errors, which are extremely serious issues 

in the healthcare applications. In this paper, we show how the fault injection 

can provide a deeper understanding of DenseNet201 model instructions 

vulnerability on the GPU. Then, we analyze vulnerable instructions of the 

DenseNet201 on the GPU. Our results show that the most significant 

vulnerable instructions against soft errors PR, STORE, FADD, FFMA, SETP 

and LD can be reduced from 4.42% to 0.14% of injected faults, after we 

applied our mitigation strategy. 
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1. INTRODUCTION  

Recently, the success of deep neural network (DNN) in challenging perception tasks makes them a 

powerful tool for many applications, including safety critical system such as healthcare application [1]. For 

instance, DNN is used in surgical procedures where it gives a better understanding of surgical practices and 

automatic recognition of workflow [2], [3]. This and other potential DNN applications are associated with 

high risk of humam injury or death, especially if there is a malfunction. Hence, it should be exceptionally 

reliable [4]-[6]. However, with the growing complexity of modern digital hardware platforms (i.e., GPUs), it 

has become increasingly difficult to guarantee the reliability of hardware operations when DNN models are 

run on top of the hardware (i.e., GPUs) [7]-[9]. Notably, soft errors are caused by a transient signal. This is 

induced by a single energetic particle strike when the collected charge is greater than the critical charge 

required to cause a change in the state of a memory cell, register, latch, or flip-flops [10], [11]. As a result, 

this could eventually lead to misclassification of objects in DNNs, and the consequences would be disastrous. 

Therefore, when the DNNs is performed in GPUs, their reliability implication is not well understood in the 

healthcare applications, because the errors propagate from the GPUs to DNNs (i.e., DenseNet201) [7], [12]. 

Several techniques have been proposed to reduce the soft errors in the GPUs such as double modular 

redundancy (DMR), triple modular redundancy (TMR), and algorithm-based fault tolerance (ABFT) [13], [14]. 

Nevertheless, the main issue with these solutions is that they have runtime overhead and are not cost 
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effective. To address the above issues, we identified the soft errors propagated in the DNNs to mitigate the 

soft errors. To achieve this, we propose an analysis methodology to inject the DenseNet201 to identify the 

vulnerable instructions to soft errors. As the first aim, we proposed mitigation strategy to reduce the soft 

errors, and we implement it on DenseNet201.  

The main contributions of this work are; i) A methodology to evaluate the probability of fault in 

specific parts of the source code due to errors at the output; ii) Experimental evaluation of the behavior of 

DenseNet201 executed on GPUs exposed to soft errors; iii) Identification of the most vulnerable instructions 

of the DenseNet201 through fault injection; iv) Concretely propose mitigation strategies on how to increase 

DenseNet201 instructions reliability for healthcare applications; v) Validation of DenseNet201 mitigation 

strategies through SASSIFI fault injection. This paper is structured as follows: Previous studies are presented 

in section 2, while our proposed strategies are presented in section 3. Section 4 contains the method, while 

section 5 is the analyses and explanation of findings. Furthermore, evaluation of strategies is presented in 

section 6, after which the conclusion is presented in section 7. 

 

 

2. PREVIOUS WORKS  

Several studies have been conducted on the performance and accuracy issues of DNN accelerators 

and healthcare applications. Jie et al. [15] proposes a novel method to predict heart diseases from 

electrocardiogram (ECG) signals with cardiology, signal processing methods and deep learning model 

(ResNet-34). But the authors did not consider the reliability of such model for the intended application, 

which is actually a safety-critical application, based on real-time convolutional neural network (CNN) model 

detection. Keno et al. [16] compared 15 different CNNs of five different architectures (ResNet, DenseNet, 

VGG, SqueezeNet, Inception v4, and AlexNet) on two chest radiograph classification datasets. This was 

done with the PyTorch and Fast AI libraries on a workstation, running on Ubuntu 18.04 with two Nvidia 

GeForce RTX 2080ti, and all training was done using the Python programming language. However, the 

authors did not consider the reliability of such models for the intended application. In another study by 

Zhiwen et al. [17], a lightweight hybrid neural network (DenseNet) for medical image classification was 

proposed. This consisted of a modified PCANet, cascaded with a simplified DenseNet. The updated PCANet 

has two phases in which at each point, the network produces successful feature maps by combining inputs 

with different learned kernels. With a small number of weights, the following simplified DenseNet will take 

all feature maps provided by the PCANet as inputs and use the dense shortcut links to achieve accurate 

classification of medical images. Experimental results showed that the proposed hybrid neural network is 

simple to train, and in terms of classification accuracy, sensitivity, and specificity, it outperforms 

conventional CNN models such as PCANet, ResNet and DenseNet. Both networks were made for 

acceleration with Python, based on TensorFlow 1.9.0 and Keras 2.2.4 on Ubuntu 16.04, and are run on the 

NVIDIA GTX 1080Ti GPU with CUDA 10.1. Nonetheless, the reliability of the models was not been 

considered. 

Wenping et al. [18], conducted a study on the classification of five major trends of interstitial lung 

disease in healthy tissue, emphysema, ground glass, fibrosis and micronodules. The proper diagnosis of 

interstitial lung disease is helpful in improving the effect of treatment on patients. The paper introduces an 

improved DenseNet called the DenseNet small kernel (SK-DenseNet), to improve the efficiency of interstitial 

lung disease classification. The results of the experiment showed that the proposed SK-DenseNet achieves 

outstanding performance (~98.4 per cent), which increases its performance by 5 % compared to DenseNet. 

The proposed approach has been implemented using the Tensorflow framework and encoded in the Python 

programming language. All experiments were conducted on GPU NVIDIA under the Linux OS. However, 

the authors did not consider the reliability of such model for the intended use. Ahmet et al. [19] intended to 

diagnose brain tumours using a CNN model (Resnet 50). The last 5 layers of the Resnet50 model were 

removed, and 8 new layers were added. With this model, the accuracy value of 97.2 percent was obtained. 

The findings are also consistent with those obtained with the Alexnet, Resnet50, Densenet201, InceptionV3 

and Googlenet models. Among these models, the most effective model was used to categorisze brain tumour 

images. The experiment was carried out in the MATLAB environment with GPU card. However, the authors 

did not consider the reliability of such model for safety-critical application applications. 

There have been relatively few reports that addressed the reliability problems of DNNs through 

DNN accelerators (e.g. GPUs) [20], [21]. One of the major sources of unreliability in modern systems is soft 

errors [22]. This is typically caused by high-energy particles, striking electronic devices, and causing them to 

malfunction (e.g., a single bit flip) [23]. Therefore, most of the traditional applications that are based-on 

GPUs are fault tolerant. More recently however, GPUs are widely used to accelerate safety critical 

applications that are dominated by DNNs models as shown in Table 1. Therefore, it becomes essential to 

understand the behaviour of these applications in the presence of hardware faults [24]. A few studies have 
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evaluated the reliability of DNNs models on GPUs. Specifically, DNN models such as ResNet, VGGNet, and 

GoogLeNet have been examined [10], [25]. However, to the best of our knowledge, this is the first research 

to evaluate the soft error resilience of the DenseNet201 model from the perspective of vulnerability to instructions. 

 

 

Table 1. The summary of the related work 
Ref Addressed Issues Characteristics Technology Limitations 

[15] This study focused on predicting 
heart diseases from ECG signals 

with cardiology. 

CNNs model 
architecture (ResNet-34). 

Not 
mentioned  

The authors did not consider reliability. 
Fault injection to evaluate reliability. 

CNN model DenseNet201 was used 

GPUs with logic units more sensitive to 
soft errors was used. 

[16] This study focused on classification 

of chest radiographs by comparing 
15 different convolutional neural 

networks (CNNs) 

CNNs models  ResNet, 

DenseNet, VGG, 
SqueezeNet, Inception 

v4 and AlexNet 

Nvidia 

GeForce 
RTX 2080ti 

The authors did not consider reliability.  

Fault injection was used to evaluate the 
reliability of GPUs where the logic units 

more sensitive to soft errors 

[17] This study focused on  medical 
image classification in the case of a 

small amount of training image 

data 

CNNs model DenseNet NVIDIA 
GTX 1080Ti 

GPU 

The authors did not consider reliability.  
We used fault injection to evaluate the 

reliability of GPUs where the logic units 

more sensitive to soft errors. 
[18] This study focused on classification 

of five main patterns of interstitial 
lung disease healthy tissue, 

emphysema, ground glass, fibrosis, 

and micronodules 

CNNs model DenseNet GPU 

NVIDIA 

The authors did not consider reliability. 

[19] This study aimed to diagnose the 

brain tumor using MRI images. 

CNNs model ResNet50 GPU 

NVIDIA 

The authors did not consider reliability. 

Fault injection to evaluate reliability by 

used CNN model DenseNet201 

 

 

3. PROPOSED MITIGATION  STRATEGY 

In this section, we propose our mitigation strategy by identifying the most vulnerable instructions 

for DenseNet201, via fault injection (soft errors). In order to identify the most vulnerable instructions in the 

DenseNet201 model, we present a method (in section 4.1). The key concept of our mitigation strategy is that 

it is based on the well-known triple modular redundancy (TMR), and it intertwines three copies of the 

instructions and adds majority voting. In short, this strategy mitigation consists of triple instructions, by 

means of majority voters. Based on this concept, our mitigation strategy is a selective solution that protects 

only the vulnerable instructions instead of duplicating the whole as in TMR, to reduce the overheads, and 

thereby offering more flexibility to designers.  

 

 

4. METHOD 

4.1.  Fault injection settings 

Fault injection experiments are very reliable method to measure the soft errors (SDCs, Masked and 

DUEs). However, to correlate soft errors to a particular resource or code region, it is important to employ 

fault injection. In this study, we used NVIDIA GPU, SASSIFI “fault injector” and DenseNet201 (see section 

4.2). We injected errors at the GPU to test the program vulnerability factor (PVF) of the DenseNet201, which 

is the likelihood that the performance of a program will be propagated by a single fault that modifies the 

outcome of instruction. Thus, to measure PVF of the program, we inject errors with; i) instruction output 

address (IOA) mode to study the probability that the address instruction has errors, and ii) instruction output 

value (IOV) mode to study the probability that the value executed instruction has errors. Then, we injected 

1000 injections at IOA and IOV, but we are interested in faults that are not masked and make their way to the 

application (e.g., Masked SDC). 

 

4.2.  DENSENET201 

Convolutional neural networks (CNNs) are used for all state-of-the-art vision tasks such as image 

recognition, object detection and localization, and segmentation. The latest new architecture is from 

Facebook AI research (FAIR), and it won the best paper at the most prestigious conference on computer 

vision in 2017: computer vision and pattern recognition (CVPR) [26]. Their architecture was called 

DenseNet, which implemented a new block called dense block and stacked these blocks on top of each other, 

with some layers in between, to create a deep network. These dense blocks took the idea of residual networks 

a step further and linked each layer to other. In other words, for a dense block, we consider all the dense 

blocks before it to be input, and we generate the output that we feed into all the subsequent dense blocks. We 

apply convolutions and batch normalizations to render layers consistent with each other. The advantage of 
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this is that we promote the reuse of features, overcome the gradient problem, and have less overall 

parameters. This arrangement ensures the optimal flow of information between all layers on the network, and 

directly links all layers (matching the size of the function map). In order to maintain the characteristics of 

forward spread, each layer receives additional feedback from all the layers ahead and transfers its own 

character mapping to all subsequent layers Figure 1. The L layer receives the feature-maps of all preceding 

layers, 𝑋0……… . . 𝑋𝐿−1 as input: 

 

𝑥1 = 𝐻1(𝑥0, 𝑥1, ……… , 𝑥𝑙−1)  
 

where 𝑋0……… . . 𝑋𝐿−1 refers to the concatenation of the features-maps produced in 0,.(l-1) layers. We use 

densenet201, which consists of 4 dense blocks of 201 layers in total. Each layer involves the application of a 

convolution philtre followed by ReLU, activation and line-wise batch normalisation. For each dense block, a 

growth rate of 6, 12, 48, and 32 features-maps were used. Details of the network structure are shown in Figure 1. 

 

 

 
 

Figure 1. Five layers of a DenseNet block with a growth rate of 4 feature-maps per layer [26] 

 

 

5. RESULTS AND ANALYSIS DISCUSSION  

Based on the method discussed in section 4, in this section we show our result dissection by 

analysing the DenseNet201 instructions vulnerability. 

 

5.1.  Instruction group’s vulnerability analysis 

In this subsection, we evaluate the resilience of the DenseNet201 models from low-level instructions 

perspective. It is worth mentioning that this metric will be achieved by injecting errors into addresses and 

values of the executing instructions. Here, we intended to evaluate the sensitivity of various instructions by 

measuring the instruction vulnerability factor (IVF), which is the probability that a single soft error that 

modifies the result of an instruction will propagate to a program output. SASSIFI provides many predefined 

instruction groups, and based on our application (DenseNet201), we evaluate and analyze the IVF of the 

following instruction groups: 

 Instructions that write to general-purpose registers (GPR). 

 Instructions that write to condition-code registers (CC). 

 Instructions that write to predicate registers (PR). 

 Store instructions (STORE). 

 Integer add and multiply instructions (IADD_IMUL_OP). 

 Single-precision floating-point add and multiply instructions (FADD_FMUL_OP). 

 Integer fused multiply and add instructions (MAD_OP). 

 Single-precision floating-point fused multiply-add instructions (FFMA_OP). 

 Load instructions (LD_OP). 

 Register (SETP_OP). 
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We performed 1000 injections using the single bit-flip model in the IOA and IOV modes and show 

the results in Figures 2 and 3, respectively. We noticed that IOA mode is based on only two predefined 

instruction groups-GPR and STORE, which are enough to disturb the address of the destination register. On 

the other hand, IOV mode is based on many instruction groups. We can easily observe the amount of SDC 

and DUE errors that are produced by each instruction group in both injection modes (i.e. IOA and IOV). 

In the Figure 2, injections into both instructions GPR and STORE were masked (32.65%) and 

(35.05%) respectively, while producing the same amount of SDCs (9.80%). In contrast, GPR producing 

DUEs (7.45%) and STORE producing (5.5%) DUE errors. Thus, both instructions seem to have the same 

vulnerability in IOA mode. 

In Figure 3 starting PR, STORE, FADD, FFMA, SETP, and LD appears to be the most vulnerable 

instructions at all with average of SDCs 4.42%. This is an extremely high percentage, and it is unacceptable 

for safety-compliant systems. Injections with these six instructions PR, STORE, FADD, FFMA, SETP, and 

LD in DenseNet201 masked only (6.66%, 5.29%, 5.17%, 5.42, 6.83% and 3.97%) of the errors, respectively. 

On the other hand, PR and SETP produced small DUEs. These findings indicates that PR, STORE, FADD, 

FFMA, SETP in DenseNet201 are the most vulnerable instructions against soft errors. There are two 

probable reasons for this: i) as CNN models are basically built of many layers (i.e., computationally hungry), 

they load data (i.e., with LD instructions) as many times as the number of layers in the model; ii) most of the 

CNN architectures including DenseNet201 greatly relies on instructions (i.e., SETP DenseNet201) in their 

operations. These require the attention of researchers who work on GPU architecture designing or CNN 

model building to take the reliability issue into considerations. This is particularly important when the CNN 

model is intended to be used in some safety-critical environments. Meanwhile, GPR, IADD, and MAD 

instructions have moderate error resilience, where each of these instructions produced number of SDC errors 

on the average of 1.32% and masked 4.14%, 3.08% and 4.12% respectively. Injecting fault into the value 

(IOV) of the STORE instruction is not same as injecting into its address (IOA). Significantly, at least 4.71% 

of the injected IOV STORE faults became SDCs, while masking about 5.29%. However, it is surprising that  

no DUE has been generated. It is worth mentioning that CC instruction is a one-bit operations. In other 

words, they only perform toggle between zero and one, thus, we can only inject single-bit-flip faults. From a 

reliability perspective, every single fault has been injected to CC instruction was masked, therefore, no SDC 

or DUE has been observed.  

Thus, we can identify the vulnerable instruction groups in DenseNet201, and some key observations 

include: i) in our application (DenseNet201), injecting errors in GPR and STORE in IOA mode often results 

in higher SDC and DUE probabilities when compared to respective IOV; ii) injecting errors in STORE in 

IOV does not result DUE errors; ii) injecting errors into CC registers did not have any effect on the program 

output; iv) PR, STORE, FADD, FFMA, SETP, and LD are the top-6 vulnerable instruction groups in models. 

 

 

  
 

Figure 2. Outcomes of injections in instruction 

groups (IOA mode) DenseNet201 

 

Figure 3. Outcomes of injections in instruction groups 

(IOV mode) DenseNet201 

 

 

6. EVALUATION OF THE MITIGATION STRATEGY 

In this section we duplicated only the vulnerable instruction groups in the model, by applying our 

mitigation strategy in the DenseNet201 via executing the instruction three times and voting afterwards. 

Figures 4 and 5 shows the instructions group after applying the mitigation strategy. As can be seen, PR, 

STORE, FADD, FFMA, SETP, and LD are the most vulnerable instructions in DenseNet201, and most of the 

SDCs errors transformed to mask. In Figure 4, both instructions GPR and STORE was masked on the 

average of 42.38% from the errors that were injected. On another hand, both instructions produced small 

SDCs errors on the average of about 0.8% errors. However, in Figure 5, instructions PR, STORE, FADD, 
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FFMA, SETP, and LD masked errors that was injected, with an average SDCs of about 0.14% for all. This is 

a significant improvement after we applied our mitigation strategy solution. In contrast, all the instructions 

masked errors on an average of about 9.84% from the errors that was injected.  

 

 

  
 

Figure 4.  Outcomes of hardened instruction groups 

(IOA mode) DenseNet201 

 

Figure 5. Outcomes of hardened instruction groups 

(IOV mode) DenseNet201 

 

 

6.1.  Mitigation strategy before vs N-modular redundancy  

N-Modular Redundancy (i.e., Triple Modular Redundancy) has been widely used for soft errors 

masking for high reliablity GPUs application (DenseNet). It is implemented by instantiating 3 copies of all 

the given DNNs model kernels (i.e., instructions) and by performing a majority voting on the outputs of all 

instructions. The output given by the majority of the DNNs model will propagate through the voter and if the 

majority gives the correct output, faults in the other modules are being masked. Nevertheless, the main issue 

with these solutions is that they have runtime overhead and are not cost effective. Therefore, it is important to 

better identify the vulnerable instruction portions of the DNNs application (DenseNet) and to reduce the SDC 

rate with cost-effective and low overhead (see section 3). Tables 2 and 3 summarizes the errors injection, and 

the instruction groups after applying our mitigation strategy solution. 

 

 

Table 2. IOA mode instructions group before and after mitigation strategy 
 IOA IOA* 
IGID Masked DUE SDC Masked DUE SDC 

GPR 32.65% 7.45% 9.80% 42.30% 7.15% 0.65% 
STORE 35.05% 5.15% 9.80% 42.45% 0.95% 0.95% 

IOA = With fault injection (soft errors) 

IOA* = After applying Mitigation Strategy 

 

 

Table 3. IOV mode instructions group before and after mitigation strategy 
 IOV IOV* 

IGID Masked DUE SDC Masked DUE SDC 

GPR 4.14% 4.42% 1.44% 4.98% 4.96% 0.06% 
CC 10.00% 0.00% 0.00% 10.00% 0.00% 0.00% 

PR 6.66% 0.05% 3.29% 9.74% 0.04% 0.22% 

STORE 5.29% 0.00% 4.71% 9.82% 0.00% 0.18% 
IADD 3.08% 5.90% 1.02% 3.53% 6.39% 0.08% 

FADD 5.17% 0.00% 4.83% 9.81% 0.00% 0.19% 

MAD 4.12% 4.39% 1.49% 4.90% 5.02% 0.08% 
FFMA 5.42% 0.00% 4.58% 10.00% 0.00% 0.00% 

SETP 6.83% 0.07% 3.10% 9.77% 0.07% 0.16% 

LD 3.97% 0.00% 6.03% 9.89% 0.00% 0.11% 

IOV = With fault injection (soft errors) 

IOV* = After applying Mitigation Strategy 

 

 

7. CONCLUSION 

In this paper, we have analyzed the error resilience of DenseNet201, a well-known DNNs model, 

from the perspective of instructions level. Our analysis showed that DenseNet201 is more prone to SDC than 

DUE errors, which are more crucial because they modify th emodel’s final output. Accordingly, we found 
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that PR, STORE, FADD, FFMA, SETP and LD are the top vulnerable instructions against soft errors for IOV 

mode. Specifically, these instructions generate 3.29%, 4.41%, 4.83%, 4.58, 3.10% and 6.03% SDC errors 

respectively in the injection mode. In contrast, these instructions generated only 0.22%, 018%, 0.19%, 

0.00%, 0.16% and 0.11% SDC errors respectively, after applying our mitigation strategy. ThereforeHence, 

our mitigation strategy solution shows high capacity to mitigate soft errors in the instruction levels of the 

DenseNet201 model. For DUE errors, we suggest GPU architects who design specialized GPUs in deep 

learning to design watchdog circuits integrated into the GPU to detect crashes, and to promote the reliability 

of DNN models in mission-critical environments 
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