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 To link DC power sources to an AC grid, converters are needed. Inverters are 

the power electronic devices, which are used for this purpose. Conventional 

inverters employ harmonic filters and transformers that are lossy and 

expensive. Multilevel inverters (MLIs) are an alternative to conventional 

ones, proposing reduced total harmonic distortion (THD), increased range of 

control, and inductor-less design. They generate a stepped waveform, with 

close similarity to a sine wave. Many distributed sources may be employed in 

a smart grid. If those sources have minimal THD, the filtering process could 

be reduced at the point of common coupling. This paper presents two 

switched capacitor based MLIs, proposing boost capability and low THD. 

Inverters have inherent charge balancing capability, which eliminates the 

need for auxiliary circuits and voltage sensors. Inverters switches are 

modulated using phase opposition disposition pulse-width modulation 
(PODPWM) method that ease the balancing of the voltage and decrease the 

losses of switching. Designs were verified by simulation and the output 

waveforms were introduced. 
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1. INTRODUCTION  

Recently, industries have needed equipments with higher power. To convert and control that power, 

power electronics are essential. These devices are nowadays the most important component in extracting 

power from renewable sources. During conversion of AC to DC or vice versa, efficiency plays an important 

role in high powered applications. Power electronics enables highly efficient conversion of power, reducing 

losses expended as heat and in turn, size of the devices. 

To convert DC voltages to AC waveform, inverters, which are power electronics modules, are 

needed. The output frequency maybe constant or variable depending on the application. The waveform that 

closely resembles a sinewave with least content of harmonic and it increases with increase in deviation of the 

output voltage waveform from this wave. In certain applications, that might lead to large losses and generate 

pulsating torques, such as, with the application to an AC motor [1]-[2]. 

THD is a measure of the harmonics that are present in a waveform. These harmonics are integral 

multiples of the fundamental frequency. Harmonics mitigation is crucial as they distort the output waveform 

https://creativecommons.org/licenses/by-sa/4.0/
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and produce losses in the system. Due to the presence of several distributed sources in smart grid, handling 

the harmonics at the point of common coupling (PCC) becomes an issue. MLIs are lucrative power 

conversion alternative as they are simple to control and are useful for low harmonics power injection. 

In order to reduce these harmonics, passive filters have been widely available. However, the main 

issue with these filters is that the size of the inductor and capacitor is too large to be feasible and efficient for 

lower order harmonics at a fundamental frequency. Power electronics provide the means to convert electric 

power generated into that required by the load. They are a crucial component in the power system which 

forms the power grid of a country. Multilevel inverters produce a stepped waveform, which is like to a sine 

wave. The required stepped waveform could be determined by applying one of PWM methods. The principle 

aim of a multilevel inverter is to produce a waveform that resembles a pure sine wave as much as  

possible [3].  

Cascaded H-bridge (CHB), neutral point clamped (NPC), and flying capacitors (FCs) are considered 

the three classical multilevel inverter topologies. The first type introduces a good performance and could 

achieve higher levels of voltage with high power quality [4], [5]. Traditional multilevel inverters require 

many auxiliary circuit devices to balance the capacitors charge [6], [7]. They do not have a boost function as 

the the output voltage magnitude could not be greater than the scalar superimposition of the DC link voltages 

[8]. Current trends in multilevel inverters are alternative topologies for CHBs with less switches number and 

improved THD reduction. In addition, other properties, such as, new applications, improvement of the 

efficiency, fault tolerant operation, and optimized control methods gain attention. Easy modules replacement 

in fault cases would be due to high modularity degree feature of the converters, which means that each 

inverter is a module with the same control scheme and circuit topology. 

Qualitative improvement is done by reducing THD by increased number of levels and improved 

PWM strategy in this work, two improved configurations of switched capacitor-based step-up Multilevel 

inverters are proposed. Quantitative and qualitative aspects of the multilevel inverter (MLI) are improved, 

along with analysis of THD of the output voltage under different modulation index and control strategies. 

Quantitative improvement is done by reducing the number of semiconductor switches and diodes [9]-[15]. 

Electronic power conditioning and control of the production and distribution of electricity are 

important aspects of the smart grid. Thus, some techniques such as load forecasting have been developed to 

cope up with the increase in demand of electric power. Targeting PHEV powertrains optimization, a plethora 

of energy management strategies (EMSs) have been proposed [16]. Varying in complexity and accuracy, 

these algorithms offer different solutions according to the need of the given system.A preliminary study of 

various topologies and working of multilevel inverters was done. General considerations, important 

topologies such as cascaded H-Bridge inverters, diode clamped inverters and switched-capacitor inverters 

were studied. Relevant control methods such as Phase disposition PWM, Phase opposition disposition PWM 

were considered. The circuit simulation was done using MATLAB/Simulink. The SIMSCAPE power 

systems toolbox enables simulation of complex PWM modulation techniques with relative ease. FFT 

analysis can be done on the output waveform for computing THD. The author in [17] presented a DC-DC 

boost converter which utilizes switched capacitors as the storage element unlike inductors in conventional 

boost converters. It also has self-balanced voltage of capacitors and is modular.  

Barzegarkhoo et al. [18] proposed a novel switched capacitor-based inverter with reduced number 

of circuit devices along with detailed analysis of cascaded topologies. The main structure of introduced 

converter was the capability of producing nine-level output voltage using the same two capacitors paralleled 

to a DC voltage source with variable loads. 

Multilevel inverters consisting of cascade of one or more units is done in [19]-[21]. In [19], it was 

presented a new family of cascaded multilevel inverters (CMLIs) that could produce a significant number of 

levels of the output voltage with minimum associated switching devices. Mohammed et al. [20] introduced a 

power inverter topology that generates 15 voltage levels by 4 DC-links and 8 power switches. In [21], a 

cascaded asymmetric multilevel inverter was introduced (25 output levels.) It had a minimum number of 

switches (10 switches) and could be employed in AC applications using solar energy. The circuit layout was 

optimized. 

Another topology is presented in [22] to consider the cost and size. A 15-level inverter was 

proposed. A 71-level inverter and an m-level inverter were proposed considering the basic unit development. 

Comparing the inverter with conventional MLIs, the inverter was capable of generating higher number of 

output levels using lower number of power electronic devices and DC voltage sources. A topology suggested 

by Hsieh et al. [23] requires additional circuitry to facilitate charge balancing of capacitors. It produced 

seven-level ac output voltage with the proper gate signals’ design. THD was reduced by using a low-pass 

filter. In [24], a topology consisting of modified H-bridge is proposed by Kamaldeep et al. Eight switches 

were needed to produce 15-level single phase output voltage. That was simple, with smaller size and cost 

effective. 
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A study of different PWM techniques employed in inverters is presented in [25] by Ilhami et al. to 

match inverter topology and the best control scheme. Kishore et al. has presented a study in [26] where 

performance improvement by implementing different PWM techniques. The PWM strategies include phase 

disposition PWM (PDPWM), alternate phase opposition disposition PWM (APODPWM), and PODPWM. It 

aimed to present two novel designs of switched capacitor-based inverters which have voltage boost capability 

and self-charge balancing of capacitors. First, the configuration proposed in the base paper is simulated and 

the expected output waveform and characteristics are verified. Then, a novel configuration is presented 

wherein the same 19-level voltage waveform is obtained using 2 DC voltage sources and 4 capacitors with 

only 10 power switches. The relevant switches are modulated on a new PDPWM technique which reduces 

switching losses considerably. Reduced complexity is also a feature of the proposed inverter. A second novel 

configuration based on the above design is presented, wherein a 17-level voltage waveform is obtained using 

2 DC voltage sources and 2 capacitors with 9 power switches and also uses a similar PDPWM technique. The 

first novel module focuses on producing the same performance and output characteristics as the base model, 

while reducing the number of components and power losses. The second novel module aims at producing 

nearly the same output, but also drastically reducing the number of components, thereby decreasing the cost 

of the inverter. It also thus increases its reliability. The circuits are verified under resistive loading conditions 

using MATLAB/Simulink. 

 

 

2. INVERTER CIRCUITS AND OPERATIONS 

Multilevel inverters with novel switched capacitor-based designs have been proposed by various 

authors [27]-[29]. These designs focus on reliability while reducing the costs of the components and power 

losses. A switched capacitor based 19-level inverter has been presented in [30] and has been analyzed and 

simulated first. The circuit proposed in the base paper is shown in Figure 1. The inverter can produce  

19-levels of output voltage stepped waveform is as in Figure 2 while operating at a low switching frequency 

[30]. The main features of switched capacitor-based circuits are; Boosting capability of the output voltage. 

Requiring only 4 electrolytic capacitors and 2 voltage sources to produce high number of voltage levels. Use 

of only 12 power switches and 10 gate drivers working at low switching frequency. 

Employing HPWM technique would Lessen total switching loss. Switched capacitor inverters offer 

many features such as high reliability, reduction in cost, easy swapping of components. However, the main 

disadvantage is that they require delicate voltage or charge balancing to be done. This can be done in open 

loop by natural charge balancing every cycle by providing suitable switching and current flow paths. It can 

also be done closed loop or by using a RLC filter tuned at the switching frequency in parallel with the load. 

However, this increases the cost and depreciates the dynamic response of the circuit. The PDPWM technique 

is considered the best method to be employed for a capacitor based MLI as it offers self-balancing property 

when applied to an ideal and symmetrical circuit. The SC cell unit can produce 9 levels (4 positive,  

4 negative and one zero level) using 2 passive diodes, 2 integrated capacitors, and 9 power switches. With 

series- parallel capacitors conversion along with the DC source (2 Vdc), positive levels 0, 2 Vdc, 4 Vdc,  

6 Vdc and 8 Vdc and the corresponding negative levels would be generated. The voltage across C1 and C2 is 

2 Vdc and 4 Vdc, respectively. The diodes are used to counteract the effect of the parasitic body diode 

present in the power switches and enable the reverse flow of load current.  

 

 

 
 

Figure 1. Proposed novel topology-1 (NT-1) circuit 

 
 

Figure 2. NT-1 overall theoretical waveform 
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The FCB cell unit produces three levels (1 positive, 1 negative and one zero level) using two 

capacitors, four diodes and 3 power switches. Similar to the series-parallel switching in the SC cell, the FCB 

cell also produces levels 0, Vdc and -Vdc. The backward load current would be undertaken with the power 

diodes.  That current is due to inductive loads, which could cause voltage blocking. The modulation index 

was chosen as 0.95. As the proposed method would generate a 19-level output voltage, using 18 carrier 

waveforms would enlarge the system complexity. Switching loss value could be decreased with HPWM 

methodology, which has the fundamental and high switching frequencies in the hybridized MLVSIs. The 

circuit has been simulated in MATLAB and the output voltage waveform has been presented in Figure 3. 

The circuit uses series-parallel switching of capacitors using power semiconductor switches and diodes to 

produce multilevel stepped waveform. Zero voltage level can be achieved using either of the redundant states 

by turning ON the switches T1, S and T2 or T1′, S and T2’. Also, Sp1 is turned ON to charge the capacitor 

C1 to 2 Vdc. The working of the SC cell is described as follows: The first output voltage-positive and 

negative - levels (±2 Vdc) determined by using only the DC source 2 Vdc without any of the capacitors in 

the load path. Also, Sp1 is kept ON facilitating charging of the capacitor C1, while C2 remains disconnected. 

For the second output voltage -positive and negative- levels (±4 Vdc), the voltage across of the DC source is 

added to the voltage of C1 that has been previously charged to Vdc. By turning OFF Sp1 and turning ON 

Ss1, C1 is now discharging. The net voltage across the load is now the addition of DC source Vdc and voltage 

2 Vdc accumulated in C1, i.e., 4 Vdc. Also, in this interval, by turning ON Sp3, power diode D2 becomes 

forward biased and C2 now gets charged to 4 Vdc. The third output voltage - positive and negative -levels  

(±6 Vdc) are created by series connection of the stored voltage in C2 and the DC voltage source value 

through the series switch Ss2. This is achieved by turning ON the switch Ss2. Also, Sp1 is turned ON to 

charge C1 again to 2 Vdc. 

 

 

 
 

Figure 3. Overall output voltage of design proposed in base paper 

 

 

Eventually, in the fourth output voltage levels - positive and negative -(±8 Vdc), the capacitors must 

be series with the supply via Ss1 and Ss2. This is done by turning ON the switches Ss1 and Ss2, discharging 

both the capacitors and the required voltage level is attained. The FCB cell produces 3 level waveform of 

amplitude Vdc, which when superimposed with the output of the SC cell output waveform using suitable 

modulation technique, a 19-level waveform is finally obtained. Figure 1 shows the introduced topology 

circuit, which has two distinct switched capacitor-based cells, floating capacitor (FC) and switched capacitor 

(SC) cells, which produce the required 19-level output waveform. A DC voltage sourcealong with two 

capacitors are employed in each cell and would be switched properly to generate the 9-level and 3-level 

waveforms. The FC cell operates at higher switching frequency while SC cell is at low one. FC cell generates 

a three-level waveform (a positive level, a negative level and a zero level), but SC cell generates a nine-level 

waveform (4 positive levels, 4 negative levels and a zero level). If both types are connected in series, that 

would allow a stepped sine wave to be generated by the inverter, with a peak amplitude of nine times the DC 

voltage source. That could be conducted using 10 MOSFET switches, 3 diodes, and 4 capacitors. Voltage 

boosting would be guaranteed by the diodes and the capacitor of the network. Series-parallel switching of the 

capacitor network through the semiconductor switches would balance the capacitors voltage, allowing 

uniform charging and discharging cycles. The circuit could operate with minimized switching frequency and 

small switching losses when using phase disposition PWM (PDPWM) technique. 

A schematic of the SC circuit is shown in Figure 4. When turning ON the switches H1 and H2 or 

H3 and H4, a level of zero voltage could be gained. D1 would be forward biased and charge C1 to 2 Vdc. 
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The first positive and negative voltage levels (±2 Vdc) is obtained by using only the DC source 2 Vdc without 

any of the capacitors in the load path. C1 keeps its voltage at 2 Vdc by the connection to the voltage source. 

When S1 is ON, the voltage of the source added with C1 voltage give the second positive and negative 

voltage levels (±4 Vdc). When S3 turns ON, D3 would be forward biased and charge C2 to 4 Vdc. When S2 

is ON, the voltage of the source added with C2 voltage give the third positive and negative voltage levels  

(±6 Vdc). C1 charges to 2 Vdc as D1 becomes forward biased. When S1 and S2 are both turned ON, the 

voltage of the source added with C1 and C2 voltages give the fourth positive and negative voltage levels  

(±8 Vdc). 

 

 

 
 

 

Figure 4. SC cell of NT-1 circuit and output waveform 

 

 

The floating capacitor circuit is shown in Figure 5. Switch S, diodes D4, D5, D6 and D7, ease 

bidirectional current flow. C3 and C4 have been located to ease their charging to voltage Vdc 

simultaneously, with opposing polarity.Capacitors get discharged to the load when either of the switches SL 

or SR are closed, contributing to the output waveform. Capacitors do not add to the upper cell when switch S 

is ON. Hence, the voltage source is never directly connected to the load and is used only to charge the two 

capacitors. During the positive half cycle, only capacitor C3 is used and during the negative cycle, only 

capacitor C4 is used. Without any external circuitry, voltage balancing of capacitors is obtained using 

switches SL and SR in tandem with S.  

 

 

  
 

Figure 5. FC cell of NT-1circuit and output waveform 

 

 

The converter circuit consists of 9 switches, 3 diodes, 2 capacitors and 2 DC voltage sources. This 

work discusses a symmetric configuration, where both voltage sources have the same magnitude of voltages. 

The 2 capacitors act as storage elements and are charged and discharged multiple times within the same cycle. 

Each switch is switched ON and OFF to yield different output voltage at each stage, producing multilevel 

voltage waveform. This multilevel waveform, when fed to an H-Bridge produces multilevel AC voltage of 

reduced THD. Each charging stage consists from 2 modes; Switch S4 is ON and Switch S5 is O F F and  

Switch S5 is ON and Switch S4 is OFF.  

In mode 1, only voltage source is present in the charging circuit. In mode 2, both the voltage sources 

are present in the charging circuit. It is assumed that each voltage source is of magnitude 100 V. Hence, 
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capacitor C1 gets charged to a voltage of 100 V and 200 V, while capacitor C2 gets charged to voltage of 

200 V and 400 V during the operation of the circuit. Thus, at each stage, different output voltages are 

obtained by series-parallel switching of the voltage sources with the capacitors facilitated by the power 

semiconductor diodes and switches. Figure 6 shows a schematic of the proposed power circuit. 

Both capacitors are self-charge balanced during each cycle without the need for external circuits to 

discharge the charges during each cycle. This is achieved by series-parallel switching of capacitor network 

realized using phase disposition pulse width modulation (PDPWM). This facilitates complex gate signals 

which can switch ON and OFF the switches multiple times during a cycle, giving rise to charging and 

discharging paths and redundancies. 

The circuit works by alternatively switching ON and OFF switches S4 and S5 complementary to 

each other. Turning ON the switches H1 and H2 or H3 and H4, zero voltage level could be obtained. D1 

would be forward biased and charges C1 to Vdc. The first positive and negative voltage levels (± Vdc) are 

determined by using only one DC source Vdc without any of the capacitors in the load path. That could be 

done by switching ON S4. Then, by turning ON S5 and turning OFF S4, D3 gets forward biased and C1 gets 

charged to 2 Vdc by being connected to the voltage sources in series to each other and the second positive and 

negative voltages (±2 Vdc) are maintained. 

When S1 is ON, the voltage of the source added with C1 voltage give the third positive and negative 

voltage levels (±3 Vdc). The fourth levels - positive and negative - (±4 Vdc) are determined by switching ON 

S5 and adding the second voltage source. When S3 turns ON, D2 would be forward biased and charge C2 to 

2Vdc. If S2 is ON, the voltage of the source added with C2 voltage give the fifth and sixth positive and 

negative voltage levels (±5 Vdc) and (±6 Vdc). C1 charges to Vdc as D1 would be forward biased and C2 

keeps voltage of 2Vdc. When S1 and S2 are ON, the voltage of the source, added to C1 and C2 voltages give 

the seventh and eighth positive and negative voltage levels (±7 Vdc) and (±8 Vdc). Figure 7 illustrates the  

17-level stepped waveform. 

 

 

  
 

Figure 6. Proposed novel topology-2 (NT-2) circuit 

 

Figure 7. NT-2 overall theoretical waveform 

 

 

3. PROPOSED PWM STRATEGY 

The switching pulses for the switches in both of the above proposed topologies are obtained by 

comparison of reference sine waveform which resembles the desired output voltage with carriers. The 

technique used here is called phase disposition PWM (PDPWM), wherein, the absolute function of a 

reference sine waveform is compared to 9 level shifted triangle carrier waveforms in the first novel topology 

and 8 level shifted triangular carrier waveforms in the second novel topology. The reference sine wave is 

chosen to have an amplitude of 9 or 8 and each of the triangle carrier waves have an amplitude of 1 each. 

The reference sine wave is defined as 

 

𝑉𝑟𝑒𝑓  = 𝐴𝑟𝑠𝑖𝑛𝑤𝑡   (1) 
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The next equation is to compute the modulation index: 

 

𝑚 =
𝐴𝑟

𝑛.𝐴𝑐
  (2) 

 

Where Ac is the amplitude of each carrier wave, n is the number of triangular carrier waves and Ar is the 

amplitude of the reference sine wave. Ar is chosen as 9 and 8 in the first topology and second topology 

respectively and Ac is chosen as 1. Thus, the modulation index is calculated as 1. This allows the maximum 

number of levels to be obtained and the THD to be minimized in this particular case. Also, a commander 

coefficient (CM) is defined to be used to select positive or negative halves of the reference wave over a single 

cycle. 
 

𝐶𝑀 =
1+𝑠𝑔𝑛(𝑉𝑟𝑒𝑓)

2
    (3) 

 

If CM is selected to be 1, the comparison between Vref and each carrier waveform will be done in 

the first half-cycle of the reference waveform; hence the positive output voltage levels are made, whereas by 

setting CM on zero, the second half-cycle of the reference waveform is involved in the comparative process 

and as a result the negative steps of the output voltage are built. In the novel topology 1, the number of 

switches in the SC cell have been reduced and the switching mechanism in the FCB cell has been changed 

such that only two of the switches operate at high frequency at a given time, hence reducing both switching 

and conduction losses. In the novel topology 2, the FC cell has been removed and two new switches have 

been added to the SC cell to enable selection of either of the two voltage sources. These selecting switches 

work at high frequency complementary to each other while the other switches operate at low switching 

frequency. 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Simulation of novel topology 1 

The proposed 19-level SCMLI was simulated using MATLAB/Simulink. The Simscape Power 

Systems toolbox was used for simulation. The Tustin/Backward Euler solver was utilized. The objective of 

this work is to minimize THD for a 200 ohm purely resistive load foe both the topologies. The FFT Analyzer 

was used to compute the output current and voltage waveforms THD. The output parameters, and circuit 

design parameters of the inverter are shown in Tables 1 and 2. FFT analysis was performed on the load 

current and the result obtained is shown in Figure 8. THD of the load current was found to be 5.80 %. The 

third harmonic component of the output current was found to be 0.47%. 

 

4.2.  Simulation of novel topology 2 

The proposed 17-level SCMLI was simulated using MATLAB/Simulink r2018a. The SIMSCAPE 

Power Systems toolbox was used for simulation. The Tustin/Backward Euler solver was utilized. The 

objective of this work is to minimize THD for a 200 ohm purely resistive load foe both the topologies. The 

FFT Analyzer was used to compute output current and voltage waveforms THD. The output parameters and 

circuit design parameters of the inverter are shown in Tables 3 and 4. 

 

 

Table 1. Output parameters of NT1 
Parameter Value 

Vrms 302.9 V 

Irms 1.59 A 
Output Power 481.6 W 

 

 

Table 2. Design parameters of NT1 
Parameter Value 

Input DC Voltage Source in FC Cell 100 V 
Input DC Voltage Source in SC Cell 100 V 

Design Power 500 W 

C1 2000 µF 
C2 3000 µF 

C3 1000 µF 

C4 1000 µF 
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Figure 8. THD characteristics of output current of NT-1 

 

 

Table 3. Output parameters of NT2 
Parameter Value 

Vrms 527.0 V 
Irms 2.635 A 

Output Power 1388.6 W 

 

 

Table 4. Design parameters of NT2 
Parameter Value 

Input DC Voltage Source in FC Cell 100 V 

Input DC Voltage Source in SC Cell 100 V 

Design Power 1400 W 

C1 2000 µF 

C2 3000 µF 

 

 

Figure 9 illustrates FFT analysis results, which applied on the load current. Load current 

THD=6.41% and the output current third harmonic component=1.71%. The modulation index of both the 

above topologies can be changed according to the needs of the load. As discussed earlier, PDPWM strategy 

is used for modulation of the above topologies with 9 and 8 carriers respectively. 

 

 

 
 

Figure 9. THD characteristics of outpu current of NT-2 

 

 

 

5. CONCLUSION 

In this work, a switched capacitor based single phase multi-level inverter with reduced number of 

devices is first simulated. Then, two novel designs based on the simulated model is proposed, wherein the 

models focus on reducing losses and costs while increasing reliability. A literature survey of the different 

topologies of multi-level inverters and new PWM techniques was presented. The carrier based PDPWM 
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technique was used for generating switching pulses. The output waveforms for voltage and current were 

recorded for a resistive load. Simulation was done in MATLAB/Simulink environment using the SIMSCAPE 

power systems toolbox. FFT analysis for output voltage and current was done and the THD was noted. 
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