
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 12, No. 4, August 2022, pp. 4031~4041

ISSN: 2088-8708, DOI: 10.11591/ijece.v12i4.pp4031-4041  4031

Journal homepage: http://ijece.iaescore.com

Hyperparameter optimization using custom genetic algorithm

for classification of benign and malicious traffic on internet of

things–23 dataset

Karthikayini Thavasimani, Nuggehalli Kasturirangan Srinath
Computer Science and Engineering, Rashtreeya Vidyalaya College of Engineering, Bengaluru, India

Article Info ABSTRACT

Article history:

Received Jan 15, 2021

Revised Mar 21, 2022

Accepted Apr 5, 2022

 Hyperparameter optimization is one of the main challenges in deep learning

despite its successful exploration in many areas such as image classification,

speech recognition, natural language processing, and fraud detections.
Hyperparameters are critical as they control the learning rate of a model and

should be tuned to improve performance. Tuning the hyperparameters

manually with default values is a challenging and time-intensive task.

Though the time and efforts spent on tuning the hyperparameters are
decreasing, it is always a burden when it comes to a new dataset or solving a

new task or improving the existing model. In our paper, we propose a

custom genetic algorithm to auto-tune the hyperparameters of the deep

learning sequential model to classify benign and malicious traffic from
internet of things-23 dataset captured by Czech Technical University, Czech

Republic. The dataset is a collection of 30.85 million records of malicious

and benign traffic. The experimental results show a promising outcome of

98.9% accuracy.

Keywords:

Auto tuning hyperparameters

Bots

Custom genetic algorithm

Cyber-attacks

Hyperparameters

Neural networks

Optimization
This is an open access article under the CC BY-SA license.

Corresponding Author:

Karthikayini Thavasimani

Computer Science and Engineering, Rashtreeya Vidyalaya College of Engineering

Mysore Rd, RV Vidyaniketan, Post, Bengaluru, Karnataka 560059, India

Email: karthikayini@outlook.com

1. INTRODUCTION

A bot is a software program designed to automate tasks/run scripts/imitate human behavior such as

content crawling, manipulating opinions, targeting and vulnerable machines. Initially, bots were created with

good intentions to execute automated tasks such as search engine bots (Google/Bing), website monitoring

bots (Pingdom), Social network bots (Facebook bot), and so on. These bots are naive, and it is easy to detect

with standard detection strategies based on its executing nature. Now, bots are used in e-commerce,

telemarketing, educational sectors for coaching, self-guided learning, and large enterprises as intelligent

personal assistants like Google's Alexa, Apple's Siri, and social networks software development projects.

They are beneficial to individuals as well as to businesses. As summarized in [1], bots are used for various

purposes/tasks in GitHub projects. Despite the benefits, they are also used for exploiting information from

the systems, threatening by hacking private information of the user, false allegations, fake advertisements,

banking theft, launching distributed denial-of-service (DdoS) attacks, particularly on e-commerce sites,

affecting the stock markets, and so on. Generally, Botnets, a network of compromised hosts or bots, are

controlled by a bot-master to do these malicious activities. These bots can be detected using techniques such

as a system based on social network information, crowdsourcing, or feature based. The network visualization

of [2] explained the effects of bad bots that created online debate among Twitter users on recent California

law on vaccination requirements.

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 4, August 2022: 4031-4041

4032

Due to advancements encountered in information technology [3], increased usage of social

networks, application programming interfaces (APIs), internet of things (IoT) smart devices, e-commerce,

and cloud services, the number of cyber-attacks is increasing. Cyber-attacks target the vulnerable systems to

either destroy the services or destroy valuable information or financial benefit. Various types of new

cyberattacks are evolving every day on the internet. Cyberattacks are classified as software supply chain

attacks, phishing attacks, cloud under attacks, and mobile devices [4]. For instance, attackers injected a

skimming script into the JavaScript libraries used by online stores on PrismWEB, an e-commerce platform

affecting more than 200 online university campus stores in North America. Personalizing the email contents

or encoding emails with malicious links are social engineering methods used by the scammers to target

personal accounts. This year 2020, has encountered many attacks on public cloud environments resulting in

high data theft incidents across the business's world. Mobile device attacks, especially banking attacks, are

the most contemporary cyber-attacks faced by individuals. Most of these attacks are triggered using bots.

As per the statistics, IoT devices are projected to reach 20 billion by 2021. Their usage in the

information technology (IT) industries is expected to elevate in the coming years. There is a huge risk of bot

attacks on these devices when the internet world is acclimating to the next stage of innovations. With the

risks and the rising popularity coupled with broad adoption, versatility and diversity, and monotony

restrictions, industries require new forms of protection to detect unauthorized internet of things devices in

their network. Despite the research on existing technologies, it should take a wide-angle on recent

technologies like IoT as there are more chances of a security breach. IoT devices include systems apart from

computer systems such as smart speakers, smart lights, and smart lockers that exchange the data over the

internet without human intervention. Due to minimal manual intervention, they are more vulnerable. It is

easy to launch a DDoS attack from any controlled IoT device autonomously. After a while, it will behave like

a regular device. The challenge lies in determining these devices that change their signature dynamically. Our

work is organized into the following sequence, section 1 presents related work on the IoT device

vulnerabilities and tuning a deep learning model’s hyper-parameter, section 2 is about the dataset and feature

selection process, section 3 describes the proposed custom genetic algorithm (CGA) to auto-tune the hyper-

parameters, section 4 discusses the experimental results and Section 5 includes conclusion and future work.

2. RELATED WORK

With rapid technological innovations and adoptions, the cybersecurity situation will be much worse

considering the current deteriorating situation. The greatest security threat now may be due to internet of

things devices [5]. The unprecedented risks that IoT devices pose to businesses are explained by many

security experts. IoT devices are the ideal target of a botnet to launch DDoS attacks.

Mustapha and Alghamdi [6] explained the common vulnerabilities of IoT devices and provided

ways to solve them. Insufficient authentication, authorization, modifying default passwords, monitoring

ports, insecure network services, and lack of transport encryption. are some of the common reasons for

security breaches in IoT devices [6]. The recent major technological trends in the industries are collaboration,

automation, fighting the unknown, virtual and shared resources, and the internet of things progress towards

an autonomous world [7]. So, finding and blocking the bots that control the IoT devices for malicious

activities is vital. Recently, extensive research is carried out on how intelligent systems can address the

problem of cybersecurity issues.

Machine learning and deep learning are the pathways to achieving cognitive intelligence in

machines. Deep learning is a subset of machine learning, inspired by the artificial neural network, a

collection of interconnected neurons trained to infer the results. Intelligent systems can detect security

breaches in the IoT devices or any network devices per se [7]. Ranjit et al. [8] claimed that Bayesian

optimization results in better hyperparameter space coverage with high validation accuracy in the cloud

infrastructure. They used a long term convolutional recurrent neural network for tuning the hyperparameters

in a distributed fashion and validated the results using video activity recognition problem. Neary [9] proposed

a technique using reinforcement learning and convolutional neural network (CNN) to optimize the

hyperparameters for object recognition. A multiagent-based method was used, and they reported an accuracy

of 95% using the Modified National Institute of Standards and Technology dataset, where the optimal

parameters were obtained in a short period.

Aich et al. [10] proposed a CNN-based model for extracting valuable information from various web

content categories that the text mining applications can leverage. They manually tuned the hyperparameters

of their deep learning model to improve the accuracy. By manually adjusting the hyperparameters, they

achieved 85 to 92% accuracy in the text classification task. Finding an optimal hyperparameter, a

time-consuming process, plays a crucial role in improving the model's accuracy. Ugli et al. [11] developed a

system based on deep learning to detect and classify the source of the distractions while driving a vehicle in

Int J Elec & Comp Eng ISSN: 2088-8708 

 Hyperparameter optimization using custom genetic algorithm for … (Karthikayini Thavasimani)

4033

real-time to avoid accidents and to improve transport safety. A transfer learning method with pre-trained

weights and ResNet50 using various optimizers is developed to enhance the model’s learning capabilities.

Stochastic gradient descent, Adam and RMSprop optimizers are selected after evaluating them manually to

improve the accuracy. Their transfer learning system with SGD optimizer and ResNet50 model achieved an

accuracy of 98.4% on the test dataset, “distracted drivers”.

Chakraborty et al. [12] developed a 3D CNN architecture to learn the intricate patterns in the

magnetic resonance imaging (MRI) scans to detect Parkinson's disease. The 3T T1-weighted data from MRI

scans from the Parkinson's progression markers initiative database containing 406 subjects’ information is

used for the research purpose and the Bayesian optimization technique, Bayesian sequential model-based

optimization (SMBO) is applied with a fixed penalty value, to tune the hyperparameters using the optimizer,

"AdaDelta" to determine the optimal hyperparameters. The developed model achieved an overall accuracy of

95.29 with 0.943 as recall, 0.927 as precision and an F1 score of 0.936. Antonio [13] presented an

optimization framework of a sequential model to optimize a multi-extremal, black box and a partially defined

expensive objective function undefined outside the feasible regions. Subject vector machine constrained

Bayesian optimization (SVM-BO) with two phases, one to approximate the unknown possible region

boundary using subject vector machine and the other to find the globally optimal solution in the feasible

region is applied. The Bayesian optimization process that uses a fixed penalty value is compared for analysis.

The author concluded by showing the significant efficiency and computational efficiency over Bayesian

optimization with SVM-BO.

Goel et al. [14] proposed OptCoNet, a CNN architecture for automatic screening of coronavirus

disease (COVID-19) patients into three categories, normal, pneumonia and COVID-19 positive. The

proposed architecture consists of optimized extraction of features and classification components. They used

grey wolf optimizer (GWO) to find the optimal hyperparameters, publicly available X-ray images of normal,

pneumonia and COVID-19 patients for analysis. They compared the results of the proposed architecture with

existing optimized CNN methods. They concluded that OptCoNet outperformed other models with an

accuracy of 97.78% and an F1 score of 95.25%. Abbas et al. [15] proposed a deep learning CNN based

model called DeTraC that performs activities such as decomposition, transfer, and composition to classify the

chest X-ray images of COVID-19 patients and deal with data irregularities. A comprehensive dataset of

80 samples of normal chest X-ray (CXR) images from the Japanese Society of Radiological Technology

from various hospitals worldwide and 116 CXR images of COVID-19 and severe acute respiratory syndrome

(SARS) was used for analysis. The hyperparameters of the models were manually selected and compared

with the pre-trained models. An accuracy of 93.0% (with a sensitivity of 100%) in COVID-19 detection from

X-ray images was reported.

Namasudra et al. [16] proposed a nonlinear autoregressive neural network time series (NAR-NNTS)

model to the COVID-19 cases. Training algorithms such as Levenberg Marquardt for optimization with

Bayesian regularization and scaled conjugate gradient was used. NAR-NNTS model outperforming others in

forecasting the COVID-19 cases in two metrics, mean square error (MSE) and root mean square error

(RMSE). Lin et al. [17] proposed a neural network model named attention segmental recurrent neural

network (ASRNN) that uses a semi-Markov conditional random field (semi-CRF) model for sequence

labelling. Using hierarchical structure and attention mechanism, the model differentiates more important and

less important information while constructing the segments. Mini-batch stochastic gradient descent is used as

the optimization algorithm with limited static hyperparameters. In CoNLL2000 and Cora dataset, the

proposed model outperformed existing methods with an F1 score of 93.7 and 80.18%.

Yi and Bui [18] proposed a framework fusing meta-learning and Bayesian technique to predict

better highway traffic. They used the Korean highway system dataset for analysis by optimizing the

hyperparameters. Bui and Yi [19] optimized hyperparameters of deep learning models using meta-learning to

predict the traffic with data from the vehicle detection system. Hoof et al. [20] proposed a new surrogate

model based on gradient boosting to find the optimal hyperparameters and regulated the exploration space

with success on the reasonably sized set's classification problems. However, the proposed model is not built

and scaled for the real work problems with larger datasets such as network data. Multi-objective simulated

annealing (MOSA) [21] algorithm that efficiently searches the objective space outperforming the simulated

annealing (SA) algorithm with a caveat that the computational complexity is as important as the test

accuracy. Hoopes et al. [22] proposed HyperMorph, a learning-based strategy that eliminates the need to tune

hyperparameters during training, reducing the computational time but limits the capability to find the optimal

values.

Lee et al. [23] applied the genetic algorithm on CNN using both network configuration and

hyperparameters. They showed that their algorithm outperformed genetic CNN by 11.74% on an amyloid

brain image dataset used for Alzheimer’s disease diagnosis. Lin et al. [24] proposed a hybrid approach by

combining a modified hyperband, mode-pursuing sampling in the trust-region, and repeating the selection

and sampling process until a termination criterion is met for hyperparameter optimization. Shaziya et al. [25]

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 4, August 2022: 4031-4041

4034

explored the impacts of the various hyperparameters in developing the deep learning model. The proposed

system aims to classify the intrusion attacks on the cyber defense dataset (CSE-CIC-IDS2018) by applying

artificial intelligence and achieved an accuracy result as 99.9% and receiver operating characteristic as

0.999% respectively [26]. Hossain et al. [27] achieved 99.08% accuracy, and a detection rate of 0.93 on

Intrusion Detection Evaluation Dataset 2017, a labelled dataset to detect DoS attacks by fine-tuning long

short term memory hyperparameters: learning rates, loss functions, optimizers, and activation functions.

To reduce DenseNet convolutional networks' training time, Nugroho and Suhartanto [28] have used

a random search to select the best candidates for batch size and learning rate. Thavasimani and Srinath [29]

analyzed various optimizers and their impact on a deep learning model's performance and concluded the

importance of tuning the hyperparameters. Kimura et al. [30] tuned the CASIA algorithm's hyperparameters

to increase the detection of classification rate, effectively improving the iris liveness detection. Various

hyperparameters of a random search algorithm were analyzed to achieve the best performance [31]. A

reinforcement learning mechanism is applied to tune the hyperparameters to control computational resource

allocation problems [32]. Complete insights into the recent advancements and theories underlying Bayesian

optimization and explains how it solves the difficult problems were discussed.

Kiatkarun and Phunchongharn [33] proposed hyper-genetic, a variant for the genetic algorithm to

obtain the optimal hyperparameters for gradient boosting machine algorithm. They further compared their

results with grid search, Bayesian optimization, grid search and random searching techniques. They showed

their results were outperforming the others when they evaluated on four different datasets. Likewise,

Putatunda and Rama [34] proposed and proved that the randomized-hyperopt outperforms hyperopt, grid and

random search techniques. Huang et al. [35] solved the capacitated arc routing problem in logistics using

Bayesian optimization technique. Jamieson et al. [36] applied Bayesian optimization on kernel ridge

regression machine learning methods to find optimal hyperparameter configuration.

Cho et al. [37] proposed a modified version of Bayesian optimization: diversified, early termination

enabled, and parallel Bayesian optimization (DEEP-BO), to select the optimal hyperparameters and

benchmarked the performance with existing techniques. DEEP-BO mostly outperformed other methods but

was not optimal in choosing the best hyperparameters. Bayesian optimization dominates the optimization

techniques in the current scenario. It focuses to optimize the config selection to solve the problem of

optimizing the function that are high dimension and non-convex with possibly less evaluation noise and

unknown smoothness. The above papers and current black box techniques motivated us to create a custom

genetic algorithm (CGA), an optimization technique to return the best hyperparameters of deep learning

models with higher prediction accuracy.

3. DATA PREPROCESSING

For our investigation, we have used the IoT-23 dataset [38] containing malicious and benign traffic.

It is a new dataset captured on IoT devices with 20 captures of malware attacks and three captures of benign

traffic accounting for 21 GB in size. It was first published in the year, January 2020. The dataset contains

data monitored from 2018 through 2019 in the Stratosphere Laboratory, Artificial Intelligence Center group,

Faculty of Electrical Engineering, Czech Technical University, the Czech Republic, and funded by Avast and

Prague. The main goal of capturing this IoT dataset is to provide a platform for the researchers to efficiently

test their algorithms/models. The IoT devices used in the laboratory are an Amazon Echo home intelligent

personal assistant, Philips HUE smart LED lamp, and Somfy smart door lock. The official site,

stratosphere.org contains comprehensive information on the types of malicious attacks and benign traffic

listed in Table 1 and Table 2, and how they were collected.

Table 1. Summary of the benign scenarios
Name of Dataset Duration(~hrs) Packets ZeekFlows Pcap Size Device

1 CTU-Honeypot-Capture-7-1 (somfy-01) 1.4 8,276 139 2,094 KB Somfy Door Lock

2 CTU-Honeypot-Capture-4-1 24 21,000 461 4,594 KB Philips HUE

3 CTU-Honeypot-Capture-5-1 5.4 398,000 1,383 381 MB Amazon Echo

The dataset contains malicious traffic captured at different protocols such as domain name

system (DNS), hypertext transfer protocol (HTTP), dynamic host configuration protocol (DHCP),

telecommunication network (Telnet), and secure socket layer (SSL), We used the labeled connection log file

that fields such as uid, id.orig_h, id.orig_p, id.resp_h, id.resp_p, proto, service, duration, orig_bytes,

resp_bytes, conn_state, local_orig, local_resp, missed_bytes, history, orig_pkts, orig_ip_bytes, resp_pkts,

Int J Elec & Comp Eng ISSN: 2088-8708 

 Hyperparameter optimization using custom genetic algorithm for … (Karthikayini Thavasimani)

4035

resp_ip_bytes, tunnel_parents and target output. All the files are consolidated into a single file for

preprocessing.

The file contents are split into thousand rows using threads and the missing values are filled. Empty,

null, and hyphen values are replaced with zero and non-string values with not available (NA). The strings

values are converted to numerical values using the one-hot encoding technique and label encoder (categorical

values).

Table 2. Summary of malicious IoT scenarios
Name of Dataset Duration (hrs) Packets ZeekFlows Pcap Size Name

1 CTU-IoT-Malware-Capture-34-1 24 233,000 23,146 121 MB Mirai

2 CTU-IoT-Malware-Capture-43-1 1 82,000,000 67,321,810 6 GB Mirai

3 CTU-IoT-Malware-Capture-44-1 2 1,309,000 238 1.7 GB Mirai

4 CTU-IoT-Malware-Capture-49-1 8 18,000,000 5,410,562 1.3 GB Mirai

5 CTU-IoT-Malware-Capture-52-1 24 64,000,000 19,781,379 4.6 GB Mirai

6 CTU-IoT-Malware-Capture-20-1 24 50,000 3,210 3.9 MB Torii

7 CTU-IoT-Malware-Capture-21-1 24 50,000 3,287 3.9 MB Torii

8 CTU-IoT-Malware-Capture-42-1 8 24,000 4,427 2.8 MB Trojan

9 CTU-IoT-Malware-Capture-60-1 24 271,000,000 3,581,029 21 GB Gagfyt

10 CTU-IoT-Malware-Capture-17-1 24 109,000,000 54,659,864 7.8 GB Kenjiro

11 CTU-IoT-Malware-Capture-36-1 24 13,000,000 13,645,107 992 MB Okiru

12 CTU-IoT-Malware-Capture-33-1 24 54,000,000 54,454,592 3.9 GB Kenjiro

13 CTU-IoT-Malware-Capture-8-1 24 23,000 10,404 2.1 MB Hakai

14 CTU-IoT-Malware-Capture-35-1 24 46,000,000 10,447,796 3.6G Mirai

15 CTU-IoT-Malware-Capture-48-1 24 13,000,000 3,394,347 1.2G Mirai

16 CTU-IoT-Malware-Capture-39-1 7 73,000,000 73,568,982 5.3GB IRCBot

17 CTU-IoT-Malware-Capture-7-1 24 11,000,000 11,454,723 897 MB Linux.Mirai

18 CTU-IoT-Malware-Capture-9-1 24 6,437,000 6,378,294 472 MB Linux.Hajime

19 CTU-IoT-Malware-Capture-3-1 36 496,000 156,104 56 MB Muhstik

20 CTU-IoT-Malware-Capture-1-1 112 1,686,000 1,008,749 140 MB Hide and Seek

We applied Chi-squared technique to determine the important features. Features such as id.orig_h,

id.orig_p, id.resp_h, id.resp_p, proto, service, duration, orig_bytes, resp_bytes, conn_state, history,

orig_pkts, orig_ip_bytes, resp_pkts, resp_ip_bytes, and tunnel_parents are marked as important for

prediction. We added additional column, target output containing the label such as benign or malicious.

Features such as ts, uid, local_orig, local_resp and missed_bytes are ignored. The final input file is used for

training and testing the proposed custom genetic algorithm.

4. PROPOSED WORK

We propose a CGA for tuning the deep learning hyperparameters. Our algorithm is inspired by

Darwin’s theory of natural evolution. Evolutionary algorithms are widely used in search and optimization

problems. So, we created CGA to address the limitations of the genetic algorithm. CGA aims to converge

towards global optimum rather than local optima and problems with fitness measures result ing in poor

convergence. We introduce three modules with simple approaches, bonus-penalty, retain and optimal

selection, to increase the mutation rate and convergence towards the global optimum.

In the Bonus-penalty module, the algorithm applies penalties for networks reaching early

convergence. Otherwise, the bonus is applied. The networks with bonus vales are selected to generate future

offspring (child neural networks). Messenger ribonucleic acid (mRNA) is a single-stranded molecule of

ribonucleic acid. In the gene, it corresponds to the genetic sequences. In the process of protein synthesis, they

are read by ribosomes. In CGA, the bonus and penalty are routed as mRNA values and are read by the neural

networks while creating new populations. Based on the bonus and penalty values, the population is either

selected or discarded. In the retain module, the algorithm picks a random set of individuals from the

discarded list post crossover and mutation to increase the mutation rate.

As a result, a wide range of hyperparameter values is explored in the search space. In optimal

selection module, the top 50% of the high performing configurations in terms of less loss, high accuracy and

high F1 measure are used for creating future off springs. This results in reducing the optimization time to a

greater extent.

5. ALGORITHM DESCRIPTION

A deep learning sequential model with hyperparameter values from the Table 3 is used to initiate the

process. The mRNA values, bonus and penalty are manually set to null in the beginning. As the population

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 4, August 2022: 4031-4041

4036

grows, these values change dynamically. The initial generation of neural network (NN) starts with

configuration/hyperparameters space created using the module 3. A combination of metrics such as high F1

measure, high accuracy and low loss is used as a fitness function to select the best neural networks for

creating child neural networks. NNs with higher metric values and bonus are preferred during the parent's

selection randomly. So, there is a probability of using identical NNs. We eliminate this scenario by choosing

random NNs. New child neural networks are created using crossover and mutation. If they converge early,

the penalty is applied to the NNs. Otherwise, a bonus is applied. This process continues for any number of set

generations. In our analysis, we used 20 generations. As a result of evolution, we obtain the optimal

hyperparameter values with the highest metrics values.

5.1. Module 1 (M1) retain

To produce fittest off springs of neural networks (NNs), the parents are chosen with high accuracy,

f1 measure and low loss and the remaining networks are eliminated. This results in early convergence at

faster pace. To stop the premature convergence, mutation and diversity should be improved. To do so, a part

of discarded neural networks is added back to the parent population.

5.2. Module 2 (M2) penalty-bonus

To maximize the convergence towards the problem’s global optimum, bonuses and penalties are

used. The NNs that reach the convergence early are penalized and if they do not, bonuses are applied. While

generating the future off springs, NNs with bonus are preferred. Using mRNA, the bonus and penalty values

are routed/applied. Thus, mRNA values of bonus are prioritized in population selection.

5.3. Module 3 (M3) optimal selection

The initial and future populations of NNs are determined using optimal selection. The process starts

with default population. The random parameters selected for initial population will significantly impact the

overall process of finding the optimal hyperparameters. It might be slower, moderate, or faster in finding the

optimal hyperparameters. One of the biggest challenges of genetic algorithms are the execution that depends

on the populations to traverse, space to search and available resources.

Module 3 - Population selection
Input: Limit K, Set s where jr,q denotes the qth loss

From the rth set, Max size M

Initialize:

S0 = [n], N=10

Finding the optimal set:

For j  0,1…. c

Set Sj = [sN-j], mj = [MNj-c]

Pull each set in Sj for mj times

Keep the best set in terms of mjth

observed loss as Sj+1

Output: Optimal set, Os

The module 3 consists of steps, i) select a random hyperparameter configuration, ii) evaluate the

performance, iii) use the top 50% and the rest are ignored, and iv) jump to step 2 until the optimal population

is created (default: 10). In module 3, only 50% of the population is used. It is based on the assumption that

promising population tend to produce better offspring than the worst ones even early in the process.

Considering all the neural networks increases the execution time and the time taken to find the optimal

hyperparameters. The objective is to avoid wasting the training time that will lead us nowhere and focus on

the top 50% that is likely to yield optimal hyperparameters, thereby allocating resources to a potentially more

valuable population. In CGA, the initial 50% of top-performing neural network hyperparameters are used to

explore the hyperparameter space further, and the remaining NNs are ignored.

The focus is on reduction of training time of the hyperparameters that does not provide concrete

solution. However, the top performing hyperparameter sets are used for further analysis. The module 3 is

different from other approaches by i) limiting the configs to converge to reduce the usage of resources and ii)

faster execution time by using top performing sets. Figure 1 contains the algorithm of the custom genetic

algorithms with module 1, module 2 and module 3 and how they are invoked.

Figure 2 shows the workflow of the custom genetic algorithms. Start the process with initialization

by setting the initial hyperparameters and the algorithm variables to null. Create the ancestors by invoking

module 3, optimal selection, which returns the default population to start the evolution. They become the first

generation of population/hyperparameters.

Int J Elec & Comp Eng ISSN: 2088-8708 

 Hyperparameter optimization using custom genetic algorithm for … (Karthikayini Thavasimani)

4037

Custom Genetic Algorithm

Initialization

 Set the hyperparameters such as epochs, layers, and neurons,

 Set the penalty and bonus to 0

 Set earlystop with patience to 5

Create the initial population

 For I 1 to size_of_the_population

 Create the network

 End for

 Invoke Module 3 to return the optimal

 Neural Network to begin with

 Return the network object (population)

For I 1 to number_of_generations

 Train the networks

 Evolve the population of networks

 Score and sort the networks in descending order

 Select the parents with high score & priority for crossover

 While len(children) < desired_length:

 If same networks:

 Get a random parent network from population

 Breed and mutate

Child network is formed

Don’t grow the children than desired length

 #Module 2

 If the network results in early stop:

 Add penalty

 If the network doesn’t result in early stop:

 Add bonus

 Update the network’s priority list with penalty and bonus

 Push the unused networks to discarded list

 Invoke Module 3 to generate the optimal population set

 #Module 1

 For I 1 to retain_length:

 #Keep some random individuals for future crossover

 If random_select > random.random():

 population.append(individual)

 Select the hyperparameters with highest value

 (High Accuracy, Low loss and High f1 measure)

Figure 1. Custom genetic algorithm

Figure 2. Workflow of custom genetic algorithm

Next

 enerations

 nitialize the

 yperparameters

and the ariables

 reate Ancestors using

to start the evolution of

hyperparameters

N

 0

 ptimal yperparameters

Evolution tarts

 enalty onus

 Retain

 ptimal election

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 4, August 2022: 4031-4041

4038

Once the evolution starts, prefer the parents with higher accuracy for crossover and mutation. Select

a part of discarded individuals for diversity and mutation. Apply penalties to parents resulting in early

convergence and bonuses to the parents with higher accuracy and diversity to select the optimal population.

Repeat the process for twenty generations to obtain the optimal child. The final output is the model’s optimal

hyperparameters of the neural network.

6. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present the experimental results. We tested our algorithm using Google Colab Pro

with 25 GB RAM, 147 GB hard disk drive, and NVIDIA TESLA P100 GPU. Table 3 lists the

hyperparameters, their range, and optimized values of default and CGA model. After iterating through 20

generations (with 50 populations per generation) on the hyperparameter space, the CGA returned the optimal

hyperparameter values with 98.9% accuracy. For comparison, we experimented on a deep learning model

with default hyperparameter values and other optimization techniques. The default hyperparameters resulted

in an accuracy of 88.22%. The results of the default model will vary depending on the parameters. We

validated the results on a default input range for our testing purpose using the brute force technique to avoid

overfitting and underfitting.

Table 4 compares the default and CGA tuned models on various metrics such as accuracy, loss,

precision, recall, and F1 score on training, validation, and test datasets. We used cross-validation split, 0.3 to

ensure that the deep learning models generalize well to produce the best predictive model. We used 70% data

for training and 30% for testing. CGA tuned model outperformed the default model with an accuracy of

98.9% on testing data.

Table 3. List of hyperparameters initial range settings and optimized values
Hyperparameters Input range Optimized values

Without tuning CGA

Number of epochs [20, 40, 50, 60] 40 20

Batch size [20, 50, 100, 200, 300, 400] 500 20

Number of layers [1, 2, 5, 10] 2 4

Number of neurons [2, 5, 10, 15] 40 40

Regularizer Dropout [0.1, 0.2, 0.5] 0.2 0.2

Optimizers [“adam”, “sgd”, “rmsprop”, “Adadelta”,

“Adamax”, “Nadam”]

Adam Adam

Activations [“Relu”, “sigmoid”, “tanh”] Relu Relu

Last layer activation function Sigmoid Sigmoid Sigmoid

Losses Binary cross entropy Binary cross entropy Binary cross entropy

Metrics Test accuracy 0.8822 0.9890

Table 4. Model results

Training results Validation results

Accuracy Loss Precision Recall F1 Accuracy Loss Precision Recall F1

Default 0.8851 0.2333 0.8274 0.9922 0.9022 0.8836 0.2251 0.8515 0.9483 0.8971

CGA 0.9675 0.1142 0.9523 0.9939 0.9703 0.9888 0.0535 0.9805 0.9991 0.9892

Test Results

Accuracy Loss Precision Recall F1

Default 0.8822 0.2262 0.8489 0.9487 0.8932

CGA 0.9890 0.0522 0.9807 0.9991 0.9895

Figure 3(a)-(d) shows the accuracy and loss graphs of default and CGA tuned model. From the

graph, it is evident that the A tuned model’s accuracy increases as the loss decreases. The CGA tuned

models eliminate overfitting, as well as underfitting, resulted in higher accuracy and lower loss. There is an

increase of more than 10% in both training and test accuracy than models with default hyperparameter

values. Figures 4(a)-(d) represents the receiver operating characteristic (ROC) curve of optimization

techniques such as random, Bayesian, genetic algorithm, and custom genetic algorithm. The area under the

curve for CGA is 0.99 that outperforms the existing optimization others in identifying the false negatives and

true positives. Table 5 compares various metrics such as F-measure, accuracy, recall and precision for the

existing optimization techniques such as random search, genetic algorithm, and Bayesian search. CGA tuned

model outperformed the existing techniques and methods with an accuracy of 0.9890 and F-measure of

0.9895.

Int J Elec & Comp Eng ISSN: 2088-8708 

 Hyperparameter optimization using custom genetic algorithm for … (Karthikayini Thavasimani)

4039

(a)

(b)

(c)

(d)

Figure . omparing Default model’s (a) accuracy, (b) loss with CGA tuned models, (c) accuracy

and (d) loss

(a)

(b)

(c) (d)

Figure 4. ROC curve for (a) random search, (b) Bayesian search, (c) genetic algorithm

 and (d) custom genetic algorithm

Random

Chances

Random

Chances

Random

Chances

Random
Chances

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 4, August 2022: 4031-4041

4040

Table 5. Comparison with existing optimization techniques
Technique Accuracy F measure Precision Recall

Random Search 0.9650 0.9694 0.9411 0.9994

Bayesian Search 0.9535 0.9585 0.9322 0.9863

TPOT 0.9557 0.9609 0.9247 1.0000

CGA 0.9890 0.9895 0.9807 0.9991

7. CONCLUSION

In this paper, we discussed IoT devices, their vulnerabilities, the impact of malicious bots, and

explained how a deep learning model is tuned to classify benign and malicious traffic. One of the biggest

challenges of deep learning model is finding the optimal hyperparameter values. Thus, we proposed a custom

genetic algorithm, an optimization technique to obtain the best hyperparameters for a model. The algorithm

was able to successfully learn with a wide range of hyperparameter values without manual intervention. The

CGA tuned model outperformed the default model with an accuracy of 98.9% and effective in reaching the

optimal solution. As future work, we are planning to optimize the algorithm further by experimenting on new

datasets and comparing it against other optimization techniques.

REFERENCES
[1] M. Wessel et al., “The power of bots,” Proceedings of the ACM on Human-Computer Interaction, vol. 2, pp. 1–19, Nov. 2018,

doi: 10.1145/3274451.

[2] E. Ferrara, . arol, . Davis, F. enczer, and A. Flammini, “The rise of social bots,” Communications of the ACM, vol. 59,

no. 7, pp. 96–104, Jun. 2016, doi: 10.1145/2818717.

[3] D. K. aini, “ ense the future,” Campus, vol. 1, no. 11, pp. 14–17, 2011.

[4] . Rokka hhetri and . A. Al Faruque, “Data-driven kinetic cyber-attack detection,” ham: pringer nternational ublishing,

2020, pp. 91–109.

[5] T. J. OConnor, W. Enck, and . Reaves, “ linded and confused,” in Proceedings of the 12th Conference on Security and Privacy

in Wireless and Mobile Networks, May 2019, pp. 140–150, doi: 10.1145/3317549.3319724.

[6] . ustapha and A. . Alghamdi, “DDo attacks on the internet of things and their prevention methods,” in Proceedings of the

2nd International Conference on Future Networks and Distributed Systems, Jun. 2018, pp. 1–5, doi: 10.1145/3231053.3231057.

[7] Y. arel, . en al, and Y. Elovici, “ yber security and the role of intelligent systems in addressing its challenges,” ACM

Transactions on Intelligent Systems and Technology, vol. 8, no. 4, pp. 1–12, Jul. 2017, doi: 10.1145/3057729.

[8] . . Ranjit, . anapathy, K. ridhar, and . Arumugham, “Efficient deep learning hyperparameter tuning using cloud

infrastructure: intelligent distributed hyperparameter tuning with bayesian optimization in the cloud,” in 2019 IEEE 12th

International Conference on Cloud Computing (CLOUD), Jul. 2019, vol. 2019-July, pp. 520–522, doi:

10.1109/CLOUD.2019.00097.

[9] . Neary, “Automatic hyperparameter tuning in deep convolutional neural networks using asynchronous reinforcement learning,”

in 2018 IEEE International Conference on Cognitive Computing (ICCC), Jul. 2018, pp. 73–77, doi: 10.1109/ICCC.2018.00017.

[10] S. Aich, S. Chakraborty, and H.- . Kim, “ onvolutional neural network-based model for web-based text classification,”

International Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 6, pp. 5191–5785, Dec. 2019, doi:

10.11591/ijece.v9i6.pp5785-5191.

[11] I. K. K. Ugli, S. Aich, H. Ryu, M.-I. Joo, and H.- . Kim, “Detection of distracted driving using deep learning,” in International

Conference on Future Information and Communication Engineering, vol. 12, no. 1, pp. 29–32.

[12] S. Chakraborty, S. Aich, and H.- . Kim, “Detection of arkinson’s disease from T T weighted R scans using D

convolutional neural network,” Diagnostics, vol. 10, no. 6, Jun. 2020, doi: 10.3390/diagnostics10060402.

[13] . Antonio, “ equential model based optimization of partially defined functions under unknown constraints,” Journal of Global

Optimization, vol. 79, no. 2, pp. 281–303, Feb. 2021, doi: 10.1007/s10898-019-00860-4.

[14] T. oel, R. urugan, . irjalili, and D. K. hakrabartty, “ ptCoNet: an optimized convolutional neural network for an

automatic diagnosis of COVID- 9,” Applied Intelligence, vol. 51, no. 3, pp. 1351–1366, Mar. 2021, doi: 10.1007/s10489-020-

01904-z.

[15] A. Abbas, . . Abdelsamea, and . . aber, “ lassification of D-19 in chest X-ray images using DeTraC deep

convolutional neural network,” Applied Intelligence, vol. 51, no. 2, pp. 854–864, Feb. 2021, doi: 10.1007/s10489-020-01829-7.

[16] S. Namasudra, . Dhamodharavadhani, and R. Rathipriya, “Nonlinear neural network based forecasting model for predicting

COVID- 9 cases,” Neural Processing Letters, Apr. 2021, doi: 10.1007/s11063-021-10495-w.

[17] J. C.-W. Lin, Y. hao, Y. Djenouri, and U. Yun, “A RNN: a recurrent neural network with an attention model for sequence

labeling,” Knowledge-Based Systems, vol. 212, Jan. 2021, doi: 10.1016/j.knosys.2020.106548.

[18] H. Yi and K.- . N. ui, “An automated hyperparameter search-based deep learning model for highway traffic prediction,” IEEE

Transactions on Intelligent Transportation Systems, vol. 22, no. 9, pp. 5486–5495, Sep. 2021, doi: 10.1109/TITS.2020.2987614.

[19] K.- . N. ui and . Yi, “ ptimal hyperparameter tuning using meta-learning for big traffic datasets,” in 2020 IEEE International

Conference on Big Data and Smart Computing (BigComp), Feb. 2020, pp. 48–54, doi: 10.1109/BigComp48618.2020.0-100.

[20] J. van Hoof and J. anschoren, “ yperboost: hyperparameter optimization by gradient boosting surrogate models,”

arxiv.org/abs/2101.02289, 2021.

[21] A. ülcü and Z. Kuş, “ ulti-objective simulated annealing for hyper-parameter optimization in convolutional neural networks,”

PeerJ Computer Science, vol. 7, Jan. 2021, doi: 10.7717/peerj-cs.338.

[22] A. oopes, . offmann, . Fischl, J. uttag, and A. Dalca, “ yper orph: amortized hyperparameter learning for image

registration,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), vol. 12729, Springer International Publishing, 2021, pp. 3–17.

[23] S. Lee, J. Kim, H. Kang, D.-Y. Kang, and J. ark, “ enetic algorithm based deep learning neural network structure and

hyperparameter optimization,” Applied Sciences, vol. 11, no. 2, Jan. 2021, doi: 10.3390/app11020744.

Int J Elec & Comp Eng ISSN: 2088-8708 

 Hyperparameter optimization using custom genetic algorithm for … (Karthikayini Thavasimani)

4041

[24] J. Lin, . Li, Y. uang, J. hen, . uang, and Z. uang, “An efficient modified hyperband and trust-region-based mode-

pursuing sampling hybrid method for hyperparameter optimization,” Engineering Optimization, vol. 54, no. 2, pp. 252–268, Feb.

2022, doi: 10.1080/0305215X.2020.1862823.

[25] . haziya and R. Zaheer, “ mpact of hyperparameters on model development in deep learning,” in Lecture Notes on Data

Engineering and Communications Technologies, vol. 56, Springer Singapore, 2021, pp. 57–67.

[26] . Kanimozhi and T. . Jacob, “Artificial intelligence based network intrusion detection with hyper-parameter optimization

tuning on the realistic cyber dataset CSE-CIC- D 0 8 using cloud computing,” in International Conference on Communication

and Signal Processing (ICCSP), Apr. 2019, pp. 33–36, doi: 10.1109/ICCSP.2019.8698029.

[27] M. D. Hossain, H. Ochiai, D. Fall, and Y. Kadobayashi, “L T -based network attack detection: performance comparison by

hyper-parameter values tuning,” in 2020 7th IEEE International Conference on Cyber Security and Cloud Computing

(CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), Aug. 2020, pp. 62–69,

doi: 10.1109/CSCloud-EdgeCom49738.2020.00020.

[28] A. Nugroho and . uhartanto, “ yper-parameter tuning based on random search for DenseNet optimization,” in 2020 7th

International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Sep. 2020, pp. 96–99,

doi: 10.1109/ICITACEE50144.2020.9239164.

[29] K. Thavasimani and N. K. rinath, “Deep learning techniques: a case study on comparative analysis of various optimizers to

detect bots from CRESCI- 0 7 dataset,” International Journal of Advanced Science and Technology, vol. 29, no. 4, pp. 10040–

10053, 2020.

[30] . Kimura, D. Lucio, A. ritto Jr., and D. enotti, “ NN hyperparameter tuning applied to iris liveness detection,” in

Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and

Applications, 2020, vol. 5, pp. 428–434, doi: 10.5220/0008983904280434.

[31] K. . Kelkar and J. W. akal, “ yper parameter tuning of random forest algorithm for affective learning system,” in 2020 Third

International Conference on Smart Systems and Inventive Technology (ICSSIT), Aug. 2020, pp. 1192–1195, doi:

10.1109/ICSSIT48917.2020.9214213.

[32] . Zhang, J. un, and Z. Xu, “Adaptive structural hyper-parameter configuration by Q-learning,” in 2020 IEEE Congress on

Evolutionary Computation (CEC), Jul. 2020, pp. 1–8, doi: 10.1109/CEC48606.2020.9185665.

[33] K. Kiatkarun and . hunchongharn, “Automatic hyper-parameter tuning for gradient boosting machine,” in 2020 1st

International Conference on Big Data Analytics and Practices (IBDAP), Sep. 2020, pp. 1–6, doi:

10.1109/IBDAP50342.2020.9245609.

[34] . utatunda and K. Rama, “A modified bayesian optimization based hyper-parameter tuning approach for extreme gradient

boosting,” in 2019 Fifteenth International Conference on Information Processing (ICINPRO), Dec. 2019, pp. 1–6, doi:

10.1109/ICInPro47689.2019.9092025.

[35] . uang, . Yuan, Y. Li, and X. Yao, “Automatic parameter tuning using bayesian optimization method,” in 2019 IEEE

Congress on Evolutionary Computation (CEC), Jun. 2019, pp. 2090–2097, doi: 10.1109/CEC.2019.8789891.

[36] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “ yperband: a novel bandit-based approach to

hyperparameter optimization,” Journal of Machine Learning Research, vol. 18, pp. 1–52, 2018.

[37] . ho, Y. Kim, E. Lee, D. hoi, Y. Lee, and W. Rhee, “ asic enhancement strategies when using bayesian optimization for

hyperparameter tuning of deep neural networks,” IEEE Access, vol. 8, pp. 52588–52608, 2020, doi:

10.1109/ACCESS.2020.2981072.

[38] . arcia, A. armisano, and . J. Erquiaga, “ oT-23: a labeled dataset with malicious and benign oT network traffic,”

Stratosphere Laboratory, 2020. https://www.stratosphereips.org/datasets-iot23 (accessed Feb. 11, 2022).

BIOGRAPHIES OF AUTHORS

Karthikayini Thavasimani received B.Eng. in Computer Science and

Engineering from Avinashilingam University for Women, ndia and her aster’s degree,

M.Eng. (Gold Medalist) in Computer Science and Engineering from K.S. Rangasamy College

of Engineering, Tiruchengode, Tamil Nadu, India. She is currently working as Data Science
Consultant at Capgemini, Bangalore, India and pursuing her part-time Ph.D. in machine

learning and big data at RV College of Engineering, Bangalore, Karnataka, India. She has

over five years of Academic teaching experience in Computer Science and 1 year of industrial

experience in information technology. Her research interests include artificial intelligence, big
data, natural language processing, statistical analysis, and optimization techniques. She can be

reached at karthikayini@outlook.com.

Nuggehalli Kasturirangan Srinath received his B.E. (Electrical) degree from

Bangalore University in 1982, M.Tech (SE and OR) degree from Roorkee University, India in
1986, and Ph.D. from Avinashilingam University, India. He has more than thirty years of

teaching experience. He worked as Professor and Dean (Academics) in the Department of

Computer Science and Engineering at RV College of Engineering, Bangalore, Karnataka,

India. He has authored 7 books, reviewed 4 and published more than 62 journals. He received
numerous awards such as “ est Faculty Award” by Cognizant Technologies and Leadership

in Academia by Intel. He is subject matter expert in VTU-EDUSAT, Microprocessors and

Microcontrollers. He is an expert committee member of the University Grants Commission,

India, as Chairman. He can be reached at email: srinathnk@rvce.edu.in.

mailto:karthikayini@outlook.com
mailto:srinathnk@rvce.edu.in
https://orcid.org/0000-0002-9106-9155
https://scholar.google.com/citations?user=8An84I4AAAAJ
https://publons.com/researcher/4863379/karthikayini-thavasimani/
https://orcid.org/0000-0003-4314-9529
https://scholar.google.com/citations?user=vi3LKGkAAAAJ&hl=en&oi=ao

