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 Hyperparameter optimization is one of the main challenges in deep learning 

despite its successful exploration in many areas such as image classification, 

speech recognition, natural language processing, and fraud detections. 
Hyperparameters are critical as they control the learning rate of a model and 

should be tuned to improve performance. Tuning the hyperparameters 

manually with default values is a challenging and time-intensive task. 

Though the time and efforts spent on tuning the hyperparameters are 
decreasing, it is always a burden when it comes to a new dataset or solving a 

new task or improving the existing model. In our paper, we propose a 

custom genetic algorithm to auto-tune the hyperparameters of the deep 

learning sequential model to classify benign and malicious traffic from 
internet of things-23 dataset captured by Czech Technical University, Czech 

Republic. The dataset is a collection of 30.85 million records of malicious 

and benign traffic. The experimental results show a promising outcome of 

98.9% accuracy. 
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1. INTRODUCTION 

A bot is a software program designed to automate tasks/run scripts/imitate human behavior such as 

content crawling, manipulating opinions, targeting and vulnerable machines. Initially, bots were created with 

good intentions to execute automated tasks such as search engine bots (Google/Bing), website monitoring 

bots (Pingdom), Social network bots (Facebook bot), and so on. These bots are naive, and it is easy to detect 

with standard detection strategies based on its executing nature. Now, bots are used in e-commerce, 

telemarketing, educational sectors for coaching, self-guided learning, and large enterprises as intelligent 

personal assistants like Google's Alexa, Apple's Siri, and social networks software development projects. 

They are beneficial to individuals as well as to businesses. As summarized in [1], bots are used for various 

purposes/tasks in GitHub projects. Despite the benefits, they are also used for exploiting information from 

the systems, threatening by hacking private information of the user, false allegations, fake advertisements, 

banking theft, launching distributed denial-of-service (DdoS) attacks, particularly on e-commerce sites, 

affecting the stock markets, and so on. Generally, Botnets, a network of compromised hosts or bots, are 

controlled by a bot-master to do these malicious activities. These bots can be detected using techniques such 

as a system based on social network information, crowdsourcing, or feature based. The network visualization 

of [2] explained the effects of bad bots that created online debate among Twitter users on recent California 

law on vaccination requirements. 

https://creativecommons.org/licenses/by-sa/4.0/
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Due to advancements encountered in information technology [3], increased usage of social 

networks, application programming interfaces (APIs), internet of things (IoT) smart devices, e-commerce, 

and cloud services, the number of cyber-attacks is increasing. Cyber-attacks target the vulnerable systems to 

either destroy the services or destroy valuable information or financial benefit. Various types of new 

cyberattacks are evolving every day on the internet. Cyberattacks are classified as software supply chain 

attacks, phishing attacks, cloud under attacks, and mobile devices [4]. For instance, attackers injected a 

skimming script into the JavaScript libraries used by online stores on PrismWEB, an e-commerce platform 

affecting more than 200 online university campus stores in North America. Personalizing the email contents 

or encoding emails with malicious links are social engineering methods used by the scammers to target 

personal accounts. This year 2020, has encountered many attacks on public cloud environments resulting in 

high data theft incidents across the business's world. Mobile device attacks, especially banking attacks, are 

the most contemporary cyber-attacks faced by individuals. Most of these attacks are triggered using bots. 

As per the statistics, IoT devices are projected to reach 20 billion by 2021. Their usage in the 

information technology (IT) industries is expected to elevate in the coming years. There is a huge risk of bot 

attacks on these devices when the internet world is acclimating to the next stage of innovations. With the 

risks and the rising popularity coupled with broad adoption, versatility and diversity, and monotony 

restrictions, industries require new forms of protection to detect unauthorized internet of things devices in 

their network. Despite the research on existing technologies, it should take a wide-angle on recent 

technologies like IoT as there are more chances of a security breach. IoT devices include systems apart from 

computer systems such as smart speakers, smart lights, and smart lockers that exchange the data over the 

internet without human intervention. Due to minimal manual intervention, they are more vulnerable. It is 

easy to launch a DDoS attack from any controlled IoT device autonomously. After a while, it will behave like 

a regular device. The challenge lies in determining these devices that change their signature dynamically. Our 

work is organized into the following sequence, section 1 presents related work on the IoT device 

vulnerabilities and tuning a deep learning model’s hyper-parameter, section 2 is about the dataset and feature 

selection process, section 3 describes the proposed custom genetic algorithm (CGA) to auto-tune the hyper-

parameters, section 4 discusses the experimental results and Section 5 includes conclusion and future work. 

 

 

2. RELATED WORK 

With rapid technological innovations and adoptions, the cybersecurity situation will be much worse 

considering the current deteriorating situation. The greatest security threat now may be due to internet of 

things devices [5]. The unprecedented risks that IoT devices pose to businesses are explained by many 

security experts. IoT devices are the ideal target of a botnet to launch DDoS attacks.  

Mustapha and Alghamdi [6] explained the common vulnerabilities of IoT devices and provided 

ways to solve them. Insufficient authentication, authorization, modifying default passwords, monitoring 

ports, insecure network services, and lack of transport encryption. are some of the common reasons for 

security breaches in IoT devices [6]. The recent major technological trends in the industries are collaboration, 

automation, fighting the unknown, virtual and shared resources, and the internet of things progress towards 

an autonomous world [7]. So, finding and blocking the bots that control the IoT devices for malicious 

activities is vital. Recently, extensive research is carried out on how intelligent systems can address the 

problem of cybersecurity issues. 

Machine learning and deep learning are the pathways to achieving cognitive intelligence in 

machines. Deep learning is a subset of machine learning, inspired by the artificial neural network, a 

collection of interconnected neurons trained to infer the results. Intelligent systems can detect security 

breaches in the IoT devices or any network devices per se [7]. Ranjit et al. [8] claimed that Bayesian 

optimization results in better hyperparameter space coverage with high validation accuracy in the cloud 

infrastructure. They used a long term convolutional recurrent neural network for tuning the hyperparameters 

in a distributed fashion and validated the results using video activity recognition problem. Neary [9] proposed 

a technique using reinforcement learning and convolutional neural network (CNN) to optimize the 

hyperparameters for object recognition. A multiagent-based method was used, and they reported an accuracy 

of 95% using the Modified National Institute of Standards and Technology dataset, where the optimal 

parameters were obtained in a short period. 

Aich et al. [10] proposed a CNN-based model for extracting valuable information from various web 

content categories that the text mining applications can leverage. They manually tuned the hyperparameters 

of their deep learning model to improve the accuracy. By manually adjusting the hyperparameters, they 

achieved 85 to 92% accuracy in the text classification task. Finding an optimal hyperparameter, a  

time-consuming process, plays a crucial role in improving the model's accuracy. Ugli et al. [11] developed a 

system based on deep learning to detect and classify the source of the distractions while driving a vehicle in 
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real-time to avoid accidents and to improve transport safety. A transfer learning method with pre-trained 

weights and ResNet50 using various optimizers is developed to enhance the model’s learning capabilities. 

Stochastic gradient descent, Adam and RMSprop optimizers are selected after evaluating them manually to 

improve the accuracy. Their transfer learning system with SGD optimizer and ResNet50 model achieved an 

accuracy of 98.4% on the test dataset, “distracted drivers”. 

Chakraborty et al. [12] developed a 3D CNN architecture to learn the intricate patterns in the 

magnetic resonance imaging (MRI) scans to detect Parkinson's disease. The 3T T1-weighted data from MRI 

scans from the Parkinson's progression markers initiative database containing 406 subjects’ information is 

used for the research purpose and the Bayesian optimization technique, Bayesian sequential model-based 

optimization (SMBO) is applied with a fixed penalty value, to tune the hyperparameters using the optimizer, 

"AdaDelta" to determine the optimal hyperparameters. The developed model achieved an overall accuracy of 

95.29 with 0.943 as recall, 0.927 as precision and an F1 score of 0.936. Antonio [13] presented an 

optimization framework of a sequential model to optimize a multi-extremal, black box and a partially defined 

expensive objective function undefined outside the feasible regions. Subject vector machine constrained 

Bayesian optimization (SVM-BO) with two phases, one to approximate the unknown possible region 

boundary using subject vector machine and the other to find the globally optimal solution in the feasible 

region is applied. The Bayesian optimization process that uses a fixed penalty value is compared for analysis. 

The author concluded by showing the significant efficiency and computational efficiency over Bayesian 

optimization with SVM-BO. 

Goel et al. [14] proposed OptCoNet, a CNN architecture for automatic screening of coronavirus 

disease (COVID-19) patients into three categories, normal, pneumonia and COVID-19 positive. The 

proposed architecture consists of optimized extraction of features and classification components. They used 

grey wolf optimizer (GWO) to find the optimal hyperparameters, publicly available X-ray images of normal, 

pneumonia and COVID-19 patients for analysis. They compared the results of the proposed architecture with 

existing optimized CNN methods. They concluded that OptCoNet outperformed other models with an 

accuracy of 97.78% and an F1 score of 95.25%. Abbas et al. [15] proposed a deep learning CNN based 

model called DeTraC that performs activities such as decomposition, transfer, and composition to classify the 

chest X-ray images of COVID-19 patients and deal with data irregularities. A comprehensive dataset of  

80 samples of normal chest X-ray (CXR) images from the Japanese Society of Radiological Technology 

from various hospitals worldwide and 116 CXR images of COVID-19 and severe acute respiratory syndrome 

(SARS) was used for analysis. The hyperparameters of the models were manually selected and compared 

with the pre-trained models. An accuracy of 93.0% (with a sensitivity of 100%) in COVID-19 detection from 

X-ray images was reported. 

Namasudra et al. [16] proposed a nonlinear autoregressive neural network time series (NAR-NNTS) 

model to the COVID-19 cases. Training algorithms such as Levenberg Marquardt for optimization with 

Bayesian regularization and scaled conjugate gradient was used. NAR-NNTS model outperforming others in 

forecasting the COVID-19 cases in two metrics, mean square error (MSE) and root mean square error 

(RMSE). Lin et al. [17] proposed a neural network model named attention segmental recurrent neural 

network (ASRNN) that uses a semi-Markov conditional random field (semi-CRF) model for sequence 

labelling. Using hierarchical structure and attention mechanism, the model differentiates more important and 

less important information while constructing the segments. Mini-batch stochastic gradient descent is used as 

the optimization algorithm with limited static hyperparameters. In CoNLL2000 and Cora dataset, the 

proposed model outperformed existing methods with an F1 score of 93.7 and 80.18%. 

Yi and Bui [18] proposed a framework fusing meta-learning and Bayesian technique to predict 

better highway traffic. They used the Korean highway system dataset for analysis by optimizing the 

hyperparameters. Bui and Yi [19] optimized hyperparameters of deep learning models using meta-learning to 

predict the traffic with data from the vehicle detection system. Hoof et al. [20] proposed a new surrogate 

model based on gradient boosting to find the optimal hyperparameters and regulated the exploration space 

with success on the reasonably sized set's classification problems. However, the proposed model is not built 

and scaled for the real work problems with larger datasets such as network data. Multi-objective simulated 

annealing (MOSA) [21] algorithm that efficiently searches the objective space outperforming the simulated 

annealing (SA) algorithm with a caveat that the computational complexity is as important as the test 

accuracy. Hoopes et al. [22] proposed HyperMorph, a learning-based strategy that eliminates the need to tune 

hyperparameters during training, reducing the computational time but limits the capability to find the optimal 

values. 

Lee et al. [23] applied the genetic algorithm on CNN using both network configuration and 

hyperparameters. They showed that their algorithm outperformed genetic CNN by 11.74% on an amyloid 

brain image dataset used for Alzheimer’s disease diagnosis. Lin et al. [24] proposed a hybrid approach by 

combining a modified hyperband, mode-pursuing sampling in the trust-region, and repeating the selection 

and sampling process until a termination criterion is met for hyperparameter optimization. Shaziya et al. [25] 
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explored the impacts of the various hyperparameters in developing the deep learning model. The proposed 

system aims to classify the intrusion attacks on the cyber defense dataset (CSE-CIC-IDS2018) by applying 

artificial intelligence and achieved an accuracy result as 99.9% and receiver operating characteristic as 

0.999% respectively [26]. Hossain et al. [27] achieved 99.08% accuracy, and a detection rate of 0.93 on 

Intrusion Detection Evaluation Dataset 2017, a labelled dataset to detect DoS attacks by fine-tuning long 

short term memory hyperparameters: learning rates, loss functions, optimizers, and activation functions. 

To reduce DenseNet convolutional networks' training time, Nugroho and Suhartanto [28] have used 

a random search to select the best candidates for batch size and learning rate. Thavasimani and Srinath [29] 

analyzed various optimizers and their impact on a deep learning model's performance and concluded the 

importance of tuning the hyperparameters. Kimura et al. [30] tuned the CASIA algorithm's hyperparameters 

to increase the detection of classification rate, effectively improving the iris liveness detection. Various 

hyperparameters of a random search algorithm were analyzed to achieve the best performance [31]. A 

reinforcement learning mechanism is applied to tune the hyperparameters to control computational resource 

allocation problems [32]. Complete insights into the recent advancements and theories underlying Bayesian 

optimization and explains how it solves the difficult problems were discussed.  

Kiatkarun and Phunchongharn [33] proposed hyper-genetic, a variant for the genetic algorithm to 

obtain the optimal hyperparameters for gradient boosting machine algorithm. They further compared their 

results with grid search, Bayesian optimization, grid search and random searching techniques. They showed 

their results were outperforming the others when they evaluated on four different datasets. Likewise, 

Putatunda and Rama [34] proposed and proved that the randomized-hyperopt outperforms hyperopt, grid and 

random search techniques. Huang et al. [35] solved the capacitated arc routing problem in logistics using 

Bayesian optimization technique. Jamieson et al. [36] applied Bayesian optimization on kernel ridge 

regression machine learning methods to find optimal hyperparameter configuration.  

Cho et al. [37] proposed a modified version of Bayesian optimization: diversified, early termination 

enabled, and parallel Bayesian optimization (DEEP-BO), to select the optimal hyperparameters and 

benchmarked the performance with existing techniques. DEEP-BO mostly outperformed other methods but 

was not optimal in choosing the best hyperparameters. Bayesian optimization dominates the optimization 

techniques in the current scenario. It focuses to optimize the config selection to solve the problem of 

optimizing the function that are high dimension and non-convex with possibly less evaluation noise and 

unknown smoothness. The above papers and current black box techniques motivated us to create a custom 

genetic algorithm (CGA), an optimization technique to return the best hyperparameters of deep learning 

models with higher prediction accuracy. 

 

 

3. DATA PREPROCESSING 

For our investigation, we have used the IoT-23 dataset [38] containing malicious and benign traffic. 

It is a new dataset captured on IoT devices with 20 captures of malware attacks and three captures of benign 

traffic accounting for 21 GB in size. It was first published in the year, January 2020. The dataset contains 

data monitored from 2018 through 2019 in the Stratosphere Laboratory, Artificial Intelligence Center group, 

Faculty of Electrical Engineering, Czech Technical University, the Czech Republic, and funded by Avast and 

Prague. The main goal of capturing this IoT dataset is to provide a platform for the researchers to efficiently 

test their algorithms/models. The IoT devices used in the laboratory are an Amazon Echo home intelligent 

personal assistant, Philips HUE smart LED lamp, and Somfy smart door lock. The official site, 

stratosphere.org contains comprehensive information on the types of malicious attacks and benign traffic 

listed in Table 1 and Table 2, and how they were collected. 

 

 

Table 1. Summary of the benign scenarios 
# Name of Dataset Duration(~hrs) Packets ZeekFlows Pcap Size Device 

1 CTU-Honeypot-Capture-7-1 (somfy-01) 1.4 8,276 139 2,094 KB Somfy Door Lock 

2 CTU-Honeypot-Capture-4-1 24 21,000 461 4,594 KB Philips HUE 

3 CTU-Honeypot-Capture-5-1 5.4 398,000 1,383 381 MB Amazon Echo 

 

 

The dataset contains malicious traffic captured at different protocols such as domain name  

system (DNS), hypertext transfer protocol (HTTP), dynamic host configuration protocol (DHCP), 

telecommunication network (Telnet), and secure socket layer (SSL), We used the labeled connection log file 

that fields such as uid, id.orig_h, id.orig_p, id.resp_h, id.resp_p, proto, service, duration, orig_bytes, 

resp_bytes, conn_state, local_orig, local_resp, missed_bytes, history, orig_pkts, orig_ip_bytes, resp_pkts, 
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resp_ip_bytes, tunnel_parents and target output. All the files are consolidated into a single file for 

preprocessing.  

The file contents are split into thousand rows using threads and the missing values are filled. Empty, 

null, and hyphen values are replaced with zero and non-string values with not available (NA). The strings 

values are converted to numerical values using the one-hot encoding technique and label encoder (categorical 

values). 

 

 

Table 2. Summary of malicious IoT scenarios 
# Name of Dataset Duration (hrs) Packets ZeekFlows Pcap Size Name 

1 CTU-IoT-Malware-Capture-34-1 24 233,000 23,146 121 MB Mirai 

2 CTU-IoT-Malware-Capture-43-1 1 82,000,000 67,321,810 6 GB Mirai 

3 CTU-IoT-Malware-Capture-44-1 2 1,309,000 238 1.7 GB Mirai 

4 CTU-IoT-Malware-Capture-49-1 8 18,000,000 5,410,562 1.3 GB Mirai 

5 CTU-IoT-Malware-Capture-52-1 24 64,000,000 19,781,379 4.6 GB Mirai 

6 CTU-IoT-Malware-Capture-20-1 24 50,000 3,210 3.9 MB Torii 

7 CTU-IoT-Malware-Capture-21-1 24 50,000 3,287 3.9 MB Torii 

8 CTU-IoT-Malware-Capture-42-1 8 24,000 4,427 2.8 MB Trojan 

9 CTU-IoT-Malware-Capture-60-1 24 271,000,000 3,581,029 21 GB Gagfyt 

10 CTU-IoT-Malware-Capture-17-1 24 109,000,000 54,659,864 7.8 GB Kenjiro 

11 CTU-IoT-Malware-Capture-36-1 24 13,000,000 13,645,107 992 MB Okiru 

12 CTU-IoT-Malware-Capture-33-1 24 54,000,000 54,454,592 3.9 GB Kenjiro 

13 CTU-IoT-Malware-Capture-8-1 24 23,000 10,404 2.1 MB Hakai 

14 CTU-IoT-Malware-Capture-35-1 24 46,000,000 10,447,796 3.6G Mirai 

15 CTU-IoT-Malware-Capture-48-1 24 13,000,000 3,394,347 1.2G Mirai 

16 CTU-IoT-Malware-Capture-39-1 7 73,000,000 73,568,982 5.3GB IRCBot 

17 CTU-IoT-Malware-Capture-7-1 24 11,000,000 11,454,723 897 MB Linux.Mirai 

18 CTU-IoT-Malware-Capture-9-1 24 6,437,000 6,378,294 472 MB Linux.Hajime 

19 CTU-IoT-Malware-Capture-3-1 36 496,000 156,104 56 MB Muhstik 

20 CTU-IoT-Malware-Capture-1-1 112 1,686,000 1,008,749 140 MB Hide and Seek 

 

 

We applied Chi-squared technique to determine the important features. Features such as id.orig_h, 

id.orig_p, id.resp_h, id.resp_p, proto, service, duration, orig_bytes, resp_bytes, conn_state, history, 

orig_pkts, orig_ip_bytes, resp_pkts, resp_ip_bytes, and tunnel_parents are marked as important for 

prediction. We added additional column, target output containing the label such as benign or malicious. 

Features such as ts, uid, local_orig, local_resp and missed_bytes are ignored. The final input file is used for 

training and testing the proposed custom genetic algorithm. 

 

 

4. PROPOSED WORK 

We propose a CGA for tuning the deep learning hyperparameters. Our algorithm is inspired by 

Darwin’s theory of natural evolution. Evolutionary algorithms are widely used in search and optimization 

problems. So, we created CGA to address the limitations of the genetic algorithm. CGA aims to converge 

towards global optimum rather than local optima and problems with fitness measures result ing in poor 

convergence. We introduce three modules with simple approaches, bonus-penalty, retain and optimal 

selection, to increase the mutation rate and convergence towards the global optimum.  

In the Bonus-penalty module, the algorithm applies penalties for networks reaching early 

convergence. Otherwise, the bonus is applied. The networks with bonus vales are selected to generate future 

offspring (child neural networks). Messenger ribonucleic acid (mRNA) is a single-stranded molecule of 

ribonucleic acid. In the gene, it corresponds to the genetic sequences. In the process of protein synthesis, they 

are read by ribosomes. In CGA, the bonus and penalty are routed as mRNA values and are read by the neural 

networks while creating new populations. Based on the bonus and penalty values, the population is either 

selected or discarded. In the retain module, the algorithm picks a random set of individuals from the 

discarded list post crossover and mutation to increase the mutation rate.  

As a result, a wide range of hyperparameter values is explored in the search space. In optimal 

selection module, the top 50% of the high performing configurations in terms of less loss, high accuracy and 

high F1 measure are used for creating future off springs. This results in reducing the optimization time to a 

greater extent. 

 

 

5. ALGORITHM DESCRIPTION 

A deep learning sequential model with hyperparameter values from the Table 3 is used to initiate the 

process. The mRNA values, bonus and penalty are manually set to null in the beginning. As the population 
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grows, these values change dynamically. The initial generation of neural network (NN) starts with 

configuration/hyperparameters space created using the module 3. A combination of metrics such as high F1 

measure, high accuracy and low loss is used as a fitness function to select the best neural networks for 

creating child neural networks. NNs with higher metric values and bonus are preferred during the parent's 

selection randomly. So, there is a probability of using identical NNs. We eliminate this scenario by choosing 

random NNs. New child neural networks are created using crossover and mutation. If they converge early, 

the penalty is applied to the NNs. Otherwise, a bonus is applied. This process continues for any number of set 

generations. In our analysis, we used 20 generations. As a result of evolution, we obtain the optimal 

hyperparameter values with the highest metrics values. 

 

5.1.  Module 1 (M1) retain 

To produce fittest off springs of neural networks (NNs), the parents are chosen with high accuracy, 

f1 measure and low loss and the remaining networks are eliminated. This results in early convergence at 

faster pace. To stop the premature convergence, mutation and diversity should be improved. To do so, a part 

of discarded neural networks is added back to the parent population. 

 

5.2.  Module 2 (M2) penalty-bonus 

To maximize the convergence towards the problem’s global optimum, bonuses and penalties are 

used. The NNs that reach the convergence early are penalized and if they do not, bonuses are applied. While 

generating the future off springs, NNs with bonus are preferred. Using mRNA, the bonus and penalty values 

are routed/applied. Thus, mRNA values of bonus are prioritized in population selection. 

 

5.3.  Module 3 (M3) optimal selection 

The initial and future populations of NNs are determined using optimal selection. The process starts 

with default population. The random parameters selected for initial population will significantly impact the 

overall process of finding the optimal hyperparameters. It might be slower, moderate, or faster in finding the 

optimal hyperparameters. One of the biggest challenges of genetic algorithms are the execution that depends 

on the populations to traverse, space to search and available resources. 

 

Module 3 - Population selection 
Input: Limit K, Set s where jr,q denotes the qth loss 

From the rth set, Max size M 

Initialize: 

S0 = [n], N=10 

Finding the optimal set: 

For j  0,1…. c 

Set Sj = [sN-j], mj = [MNj-c] 

Pull each set in Sj for mj times 

Keep the best set in terms of mjth 

observed loss as Sj+1 

Output: Optimal set, Os 

 

The module 3 consists of steps, i) select a random hyperparameter configuration, ii) evaluate the 

performance, iii) use the top 50% and the rest are ignored, and iv) jump to step 2 until the optimal population 

is created (default: 10). In module 3, only 50% of the population is used. It is based on the assumption that 

promising population tend to produce better offspring than the worst ones even early in the process. 

Considering all the neural networks increases the execution time and the time taken to find the optimal 

hyperparameters. The objective is to avoid wasting the training time that will lead us nowhere and focus on 

the top 50% that is likely to yield optimal hyperparameters, thereby allocating resources to a potentially more 

valuable population. In CGA, the initial 50% of top-performing neural network hyperparameters are used to 

explore the hyperparameter space further, and the remaining NNs are ignored. 

The focus is on reduction of training time of the hyperparameters that does not provide concrete 

solution. However, the top performing hyperparameter sets are used for further analysis. The module 3 is 

different from other approaches by i) limiting the configs to converge to reduce the usage of resources and ii) 

faster execution time by using top performing sets. Figure 1 contains the algorithm of the custom genetic 

algorithms with module 1, module 2 and module 3 and how they are invoked. 

Figure 2 shows the workflow of the custom genetic algorithms. Start the process with initialization 

by setting the initial hyperparameters and the algorithm variables to null. Create the ancestors by invoking 

module 3, optimal selection, which returns the default population to start the evolution. They become the first 

generation of population/hyperparameters. 
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Custom Genetic Algorithm 

Initialization 

 Set the hyperparameters such as epochs, layers, and neurons, 

 Set the penalty and bonus to 0 

 Set earlystop with patience to 5 

Create the initial population 

 For I 1 to size_of_the_population 

  Create the network 

  End for 

  Invoke Module 3 to return the optimal 

  Neural Network to begin with 

 Return the network object (population) 

 

For I 1 to number_of_generations 

 Train the networks 

 Evolve the population of networks 

  Score and sort the networks in descending order 

  Select the parents with high score & priority for crossover 

  While len(children) < desired_length: 

   If same networks: 

    Get a random parent network from population 

    Breed and mutate 

Child network is formed 

Don’t grow the children than desired length 

  #Module 2 

  If the network results in early stop: 

   Add penalty 

  If the network doesn’t result in early stop: 

   Add bonus 

 Update the network’s priority list with penalty and bonus 

 Push the unused networks to discarded list 

 

 Invoke Module 3 to generate the optimal population set 

 

 #Module 1 

 For I 1 to retain_length: 

  #Keep some random individuals for future crossover 

  If random_select > random.random(): 

   population.append(individual) 

  

 Select the hyperparameters with highest value 

 (High Accuracy, Low loss and High f1 measure) 

 

Figure 1. Custom genetic algorithm 

 

 

 
 

Figure 2. Workflow of custom genetic algorithm 
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Once the evolution starts, prefer the parents with higher accuracy for crossover and mutation. Select 

a part of discarded individuals for diversity and mutation. Apply penalties to parents resulting in early 

convergence and bonuses to the parents with higher accuracy and diversity to select the optimal population. 

Repeat the process for twenty generations to obtain the optimal child. The final output is the model’s optimal 

hyperparameters of the neural network. 

 

 

6. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, we present the experimental results. We tested our algorithm using Google Colab Pro 

with 25 GB RAM, 147 GB hard disk drive, and NVIDIA TESLA P100 GPU. Table 3 lists the 

hyperparameters, their range, and optimized values of default and CGA model. After iterating through 20 

generations (with 50 populations per generation) on the hyperparameter space, the CGA returned the optimal 

hyperparameter values with 98.9% accuracy. For comparison, we experimented on a deep learning model 

with default hyperparameter values and other optimization techniques. The default hyperparameters resulted 

in an accuracy of 88.22%. The results of the default model will vary depending on the parameters. We 

validated the results on a default input range for our testing purpose using the brute force technique to avoid 

overfitting and underfitting. 

Table 4 compares the default and CGA tuned models on various metrics such as accuracy, loss, 

precision, recall, and F1 score on training, validation, and test datasets. We used cross-validation split, 0.3 to 

ensure that the deep learning models generalize well to produce the best predictive model. We used 70% data 

for training and 30% for testing. CGA tuned model outperformed the default model with an accuracy of 

98.9% on testing data. 

 

 

Table 3. List of hyperparameters initial range settings and optimized values 
Hyperparameters Input range Optimized values 

Without tuning CGA 

Number of epochs [20, 40, 50, 60] 40 20 

Batch size [20, 50, 100, 200, 300, 400] 500 20 

Number of layers [1, 2, 5, 10] 2 4 

Number of neurons [2, 5, 10, 15] 40 40 

Regularizer Dropout [0.1, 0.2, 0.5] 0.2 0.2 

Optimizers [“adam”, “sgd”, “rmsprop”, “Adadelta”, 

“Adamax”, “Nadam”] 

Adam Adam 

Activations [“Relu”, “sigmoid”, “tanh”] Relu Relu 

Last layer activation function Sigmoid Sigmoid Sigmoid 

Losses Binary cross entropy Binary cross entropy Binary cross entropy 

Metrics Test accuracy 0.8822 0.9890 

 

 

Table 4. Model results 

 
Training results Validation results 

Accuracy Loss Precision Recall F1 Accuracy Loss Precision Recall F1 

Default 0.8851 0.2333 0.8274 0.9922 0.9022 0.8836 0.2251 0.8515 0.9483 0.8971 

CGA 0.9675 0.1142 0.9523 0.9939 0.9703 0.9888 0.0535 0.9805 0.9991 0.9892 

 
Test Results 

Accuracy Loss Precision Recall F1 

Default 0.8822 0.2262 0.8489 0.9487 0.8932 

CGA 0.9890 0.0522 0.9807 0.9991 0.9895 

 

 

Figure 3(a)-(d) shows the accuracy and loss graphs of default and CGA tuned model. From the 

graph, it is evident that the   A tuned model’s accuracy increases as the loss decreases. The CGA tuned 

models eliminate overfitting, as well as underfitting, resulted in higher accuracy and lower loss. There is an 

increase of more than 10% in both training and test accuracy than models with default hyperparameter 

values. Figures 4(a)-(d) represents the receiver operating characteristic (ROC) curve of optimization 

techniques such as random, Bayesian, genetic algorithm, and custom genetic algorithm. The area under the 

curve for CGA is 0.99 that outperforms the existing optimization others in identifying the false negatives and 

true positives. Table 5 compares various metrics such as F-measure, accuracy, recall and precision for the 

existing optimization techniques such as random search, genetic algorithm, and Bayesian search. CGA tuned 

model outperformed the existing techniques and methods with an accuracy of 0.9890 and F-measure of 

0.9895. 
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Figure  .  omparing Default model’s (a) accuracy, (b) loss with CGA tuned models, (c) accuracy  

and (d) loss 

 

 

(a) 

 
(b)  

 

(c)  (d) 

 

Figure 4. ROC curve for (a) random search, (b) Bayesian search, (c) genetic algorithm 

 and (d) custom genetic algorithm 
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Table 5. Comparison with existing optimization techniques 
Technique Accuracy F measure Precision Recall 

Random Search 0.9650 0.9694 0.9411 0.9994 

Bayesian Search 0.9535 0.9585 0.9322 0.9863 

TPOT 0.9557 0.9609 0.9247 1.0000 

CGA 0.9890 0.9895 0.9807 0.9991 

 

 

7. CONCLUSION 

In this paper, we discussed IoT devices, their vulnerabilities, the impact of malicious bots, and 

explained how a deep learning model is tuned to classify benign and malicious traffic. One of the biggest 

challenges of deep learning model is finding the optimal hyperparameter values. Thus, we proposed a custom 

genetic algorithm, an optimization technique to obtain the best hyperparameters for a model. The algorithm 

was able to successfully learn with a wide range of hyperparameter values without manual intervention. The 

CGA tuned model outperformed the default model with an accuracy of 98.9% and effective in reaching the 

optimal solution. As future work, we are planning to optimize the algorithm further by experimenting on new 

datasets and comparing it against other optimization techniques. 
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