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 This paper studies the impact of fin width of channel on temperature and 

electrical characteristics of fin field-effect transistor (FinFET). The 

simulation tool multi-gate field effect transistor (MuGFET) has been used to 

examine the FinFET characteristics. Transfer characteristics with various 

temperatures and channel fin width (WF=5, 10, 20, 40, and 80 nm) are at 

first simulated in this study. The results show that the increasing of 

environmental temperature tends to increase threshold voltage, while the 

subthreshold swing (SS) and drain-induced barrier lowering (DIBL) rise 

with rising working temperature. Also, the threshold voltage decreases with 

increasing channel fin width of transistor, while the SS and DIBL increase 

with increasing channel fin width of transistor, at minimum channel fin 

width, the SS is very near to the best and ideal then its value grows and 

going far from the ideal value with increasing channel fin width. So, 

according to these conditions, the minimum value as possible of fin width is 

the preferable one for FinFET with better electrical characteristics. 
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1. INTRODUCTION 

The scaling down of conventional metal oxide semiconductor field effect transistor (MOSFET) has 

become harder because it has serious effects of short channel on the characteristics of transistor when it is 

minimized lower than 32 nm [1], the minimization width and length of channel of MOSFET guide to a bad 

characteristics and increasing average consumed power. The main reason of these bad performances is 

related to the implementing the MOSFET inside the Si wafer, so, the main idea to improve the performances 

of transistor is free the MOSFET and isolate its structure on the surface of Si wafer. Much silicon on 

insulator silicon on insulator (SOI) structure have been invented to isolate transistor from silicon bulk like 

silicon nanowire transistor, carbon nanotube transistor, fin field-effect transistor (FinFET) structure. One of 

those new innovated structures is the FinFET as shown in Figure 1 [2]. The FinFET structure has free from 

many serious defies related with the continual scaling down structure of planer MOSFET [3]-[5]. 

The first FinFET like structure has been fabricated by Hashimoto et al. [6], the research of 

Hashimoto et al. reports a new double-gate SOI structure MOSFET structure [6]. In the last decade, many 

researchers direct their attention to the FinFET because of good performances in Nano-dimensional range 

and to overcome the short channel effect problems of conventional planar MOSFET [7]-[11]. The excellent 

short-channel behavior of FinFET results increase attention from semiconductor industries as well as the 

researchers [12].  

https://creativecommons.org/licenses/by-sa/4.0/
mailto:yasir.hashim@ieee.org


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 12, No. 1, February 2022: 201-207 

202 

The sensor for subsumed electronic applications is the sensor of temperature based on 

semiconductor devices [13]. Temperature sensors based on MOSFET could be designed on the fundamental 

of the effect of working temperature on the I-V characteristics of the MOSFET [14]-[15]. While the bipolar 

junction transistor possible to use as a sensor of temperature by use it as a diode by connecting its base and 

collector together. In a similar way, a MOSFET could be used in diode mode by connecting the drain or 

source with gate to use it as a temperature sensor Figure 2.  

 

 

  
 

Figure 1. FinFET structure [2] 

 

 

Figure 2. Diode mode of MOSFET to use it as a 

sensor of temperature (Vg=Vd=VDD) 

 

 

The Nano-dimensional electronic devices such as diodes, transistors, capacitors, and resistors, have 

newly become marketable in the industry of electronics because of their so tiny applicable circuits. The 

characteristics of these Nano devices, which may correspond to enormous novel applications [16]-[20], will 

likely build on the Nano-dimensional feature of such devices. The new versions of chips with these 

comparatively novel and Nano-dimensional transistors may be further considered when new future research 

findings are achieved. Also, the new designs and structures of MOSFET with Nano-dimensions are included 

in novel technologies and consequently require more investigation and improvements to overcome the 

limitations of normal MOSFET structure when its dimensions going down to Nano range. 

Simulation of nano-devices in nano-electronic has extra importance in understanding those new 

nano-devices' merits. So, simulation tools are used in this research for realization and valuation of the 

FinFET sensitivity with temperature. The simulation tools have an ability to support the research fields for 

more characterization the Nano-dimensional devices [21]. As well, simulation tools can define the nano-

device failure, in addition, retrenchment the costs of fabrication of these nano-devices in the Nano 

dimensions field [22], [23]. 

 

 

2. RESEARCH METHOD 

In this study, multi-gate field effect transistor (MuGFET) is used as the simulation tool to explore 

the fin field-effect transistor (FinFET) characteristics. The Id-Vg characteristics of FinFET under different 

environmental situations and with different parameters are examined. The impact of fin width of the gate on 

the characteristics of temperature has been studied depending on the output characteristics of the FinFET. 

The simulation tool MuGFET [24] has been used in this research. 

MuGFET simulator depends mainly on PADRE or PROPHET for simulation, PADRE or 

PROPHET was invented at Bell Laboratories. The partial differential equation profiler for one, two, or three 

dimension were used in the PROPHET, and PADRE simulation depends on a device-oriented for 3D or 2D 

transistors structure with arbitrary geometry [24]. This simulation tool has an ability to provide adequate 

characteristic curves of FinFET for researcher to aid him completely explain and understand the FinFET 

physics. Furthermore, the simulation tool gives self-consistent solutions to drift-diffusion and Poisson 

equations [25], also this simulation tool, when calculating FinFET characteristics, can be used to simulate the 

movement of transport objects. In this research, the output characteristics (Id–Vg) of FinFET at temperature range 

from 250 K° to 400 K° with steps 25 K° are explored as shown in Figures 3-8 with parameters in Table 1. 
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Table 1. The simulated FinFET dimensions and parameters of used in this study 
Parameter Values 

Length of channel (Lg) 85 nm 

Length of source (Ls) 50 nm 
Length of drain (Ld) 50 nm 

concentration of channel (P-type) 1016 cm−3 

concentration of source (N-type) 1019 cm−3 
concentration of drain (N-type) 1019 cm−3 

Thickness of oxide (Tox) 2.5 nm 

Fin width of gate (WF) 5, 10, 20, 40, and 80 nm 

 

 

3. RESULTS AND DISCUSSION 

Figure 3 shows the effect of working temperature on the FinFET important parameters including 

drain-induced barrier lowering (DIBL), subthreshold swing (SS), and threshold voltage (VT) at fin width  

WF=5 nm, all measurements done with working temperature range from 250 to 400 K°. It is clear that the 

increasing working temperature tends to decrease VT linearly, at 250 K° the VT=0.65 V which the higher 

value and at 400 K° the VT=0.62 V which is the lower. The slope of curve which represents the threshold 

voltage sensitivity with working temperature of transistor is -0.16 mV/K°. While, the best SS (at  

49.7 mV/dec) and the near value to ideal SS (49.6 mV/dec) happen at lower temperature at 250 K° and then 

increases linearly with increasing temperature until reaching (80.09 mV/dec) at 400 K°, which is also near to 

the ideal SS at 79.4 mV/dec at 400 K°, so for all the range of T the SS is very close to the ideal values. The 

SS sensitivity to the working temperature is 0.196 mV/dec.K°. DIBL increases linearly with increasing 

working temperature, the minimum value is 26.9 mV/V and the maximum is 79.4 mV/V.  

Figure 4 presents the impact of working temperature at WF=10 nm on the DIBL, SS, and VT of 

FinFET, the working temperature T range from 250 K° to 400 K°. This figure illustrates that the increasing 

working temperature results decreasing VT linearly, the VT decreases linearly from 0.59 V at 250 K° to  

0.55 V at 400 K°. The slope of curve which represents the threshold voltage sensitivity with working 

temperature of transistor is -0.31 mV/K°. While, at 250 K working temperature the SS value is 49.6 mV/dec 

which represent the nearest value to the ideal SS at 49.6 mV/dec at 250 K°, and then with increasing working 

temperature up to 400 K the SS increased up to 80.99 mV/dec, this SS represents the farthest value from the 

ideal SS at 79.4 mV/dec at 400 K°. Also, the SS here is very close to the ideal values with all range of T. The 

SS sensitivity to the working temperature is 0.21 mV/dec.K°. The DIBL increases as working temperature 

increased but at lower values than WF=5 nm. 

 

 

  
Figure 3. Temperature characteristics of VT, SS and 

DIBL of the FinFET at WF=5 nm 

Figure 4. Temperature characteristics of VT, SS and 

DIBL of the FinFET at WF=10 nm 

 

 

Figure 5 presents the impact of working temperature on the FinFET important parameters including 

VT, DIBL and SS at fin width WF=20 nm, all measurements done with working temperature range from 250 

up to 400 K°. It is clear that VT decreasing linearly with increasing working temperature, at 250 K° the 

VT=0.54 V which the higher value and at 400 K° the VT=0.49 V which is the lower. The slope of curve 

which represents the threshold voltage sensitivity with working temperature of transistor is -0.44 mV/K°. 

While, the best SS (at 51.7 mV/dec) and the near value to ideal SS (49.6 mV/dec) happen at lower 
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temperature at 250 K° and then increases linearly with increasing temperature until reaching (84.93 mV/dec) 

at 400 K°, which is far from ideal SS at 79.4 mV/dec at 400 K°, so at lower T the SS is very close to the ideal 

values. The SS sensitivity to the working temperature is 0.22 mV/dec.K°. DIBL increases linearly with 

increasing working temperature until 350 K° then decreases with increasing working temperature. 

 

 

 
Figure 5. Temperature characteristics of VT, SS and DIBL of the FinFET at WF=20 nm 

 

 

Figure 6 presents the impact of working temperature at WF=40 nm on the DIBL, SS, and VT of 

FinFET, the working temperature T range from 250 K° to 400 K°. This figure illustrates that the increasing 

of working temperature results decreasing VT linearly, the VT decreases linearly from 0.49 at 250 K° to  

0.45 V at 400 K°. The slope of curve which represents the threshold voltage sensitivity with working 

temperature of transistor is -0.47 mV/K°. While, at T=250 K° the SS is at 61.99 mV/dec, this value is the 

nearest to the ideal SS at 49.6 mV/dec and then working temperature increases the SS increased up to  

106.49 mV/dec at 400 K°, this SS value is the farthest value from the ideal SS at 79.4 mV/dec at 400 K°. 

Also, all values of SS here is very far from the ideal values with all range of T. The SS sensitivity to the 

working temperature is 0.27 mV/dec.K. The DIBL increases as working temperature increasing, DIBL 

increases from 26.54 up to 52.07 mV/V with the same range of T. 

 

 

 
Figure 6. Temperature characteristics of VT, SS and DIBL of the FinFET at WF=40 nm 

 

 

Figure 7 shows the effect of increasing working temperature from 250 K° to 400 K° on VT, SS and 

DIBL at WF=80 nm. It is clear that with increasing working temperature the values of VT decreases. The 

slope of curve which represents the threshold voltage sensitivity with working temperature of transistor is  

-0.6 mV/K°. While SS and DIBL increased with increasing working temperature. This figure illustrates that 

for the range of temperature the values of change of the VT from 0.38 to 0.29 V, SS from 130.66 to  
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253.20 mV/dec and DIBL from 230.37 to 295.89 mV/V, respectively. SS values increases with increasing 

temperature while the nearest value to the ideal happens at lower temperature. The SS sensitivity to the 

working temperature is 0.8 mV/dec.K. 

Figure 8 shows the effect of fin width of FinFET on the VT, SS, and DIBL, the FinFET channel 

width from 5-80 nm at 20 nm steps at working temperature T=300 K°. When the width of the channel 

increased, it is notice that there is a decrease in VT and it is also notice an increase in DIBL with the WF 

greater than 40 nm, the SS increases with increasing WF, when the WF increases from 5 nm, to 20 nm, the SS 

approaches the very ideal value and when the WF increases more than 20 nm, the SS increased away the ideal 

value as shown in Figure 8. So, this research shows the best range for WF is 5 to 20 nm. Figure 9 illustrates 

the temperature sensitivity of VT (ΔVT/ΔT) and SS (SS/ΔT) with FinFET channel fin width (WF). According 

to this figure, the lower sensitivity for both threshold voltage and subthreshold swing with better stability 

with working temperature happen at lower WF. 

 

 

  
Figure 7. Temperature characteristics of VT, SS and 

DIBL of the FinFET at WF=80 nm 

Figure 8. The VT, SS, and DIBL with the increase of 

the FinFET channel fin width (WF) 

 

 

 
Figure 9. The temperature sensitivity of VT and SS, with FinFET channel fin width (WF) 

 

 

4. CONCLUSION 

The impact of environmental temperatures with range of 250 to 400 K° on the FinFET electrical 

parameters has been studied different channel fin widths (WF=5, 10, 20, 40, and 80 nm). The results show 

that the VT lowering with rising working temperature, while the increasing of working temperature tends to 

increase SS and DIBL. Also, the threshold voltage decreases with increasing channel fin width of transistor, 

while SS and DIBL increase with increasing channel fin width of transistor. The (SS is very near to the ideal 

value at 5 nm channel fin width then diverges and increases with increasing channel fin width. So, based on 

the SS and VT temperature sensitivity, the FinFET with lower channel fin width is the best for stability with 

the temperatures range of 250 to 400 K°. 
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