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 A circular ring-shaped metamaterial (CRM) absorber was designed to harvest 

radio frequency (RF) energy in the ultra-wideband (UWB) frequency band 

applications. The proposed metamaterial unit cell features a circular shaped 

structure, with rectangular strip lines connected in the form of a cross leaving 

a square shaped slot at center. The unit cell dimensions are 15×15×1.6 mm. 

The absorber was etched on a low cost FR4 substrate having a dielectric 

constant of 4.4. Ansys high frequency structure simulator (HFSS) software 

was used for simulation and the analysis were carried out for unit cell, 2×2, 

3×3, and 4×4 array structures. The absorber parameters plotted are absorption 

characteristics and reflection characteristics. Also, the metamaterial 

parameters (μeff) and (εeff) are also retrieved from the absorber parameters 

and analyzed. From the analysis, the values (μeff) and (εeff) were found to be 

negative, leaving refractive index also negative (n<0), which proved the 

metamaterial property. The proposed CRM absorber showed good absorption 

characteristics of more than 80% and also metamaterial property in the entire 

UWB band (4-13 GHz). Hence the absorber proves to be a good candidate in 

powering low power sensors/microcontrollers for internet of things (IoT) 

applications. 
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1. INTRODUCTION  

Energy harvesting from renewable energy sources have become very vital in recent years. Different 

ways of harvesting energy from natural resources like wind, solar, vibration, thermal attracted a lot of attention 

in recent years. One such freely available energy source is electromagnetic (EM) waves. Due to the rapid 

development of wireless communication systems, EM waves are found everywhere around us starting from 

mobile towers, radio towers, mobile phones, wireless modems, Wi-Fi, Bluetooth devices. Harvesting energy 

from EM waves garnered much attention because of its advantage to power low power electronic devices. 

Several kinds of harvesting methods and techniques have been developed by researchers over the years to 

harvest energy from ubiquitous EM waves. Properly designed energy absorbers can absorb EM energy from 

the most widely used frequency bands like, 1800 MHz, 1900 MHz, 2.4 GHz, 5.8 GHz and ultra-wideband 

(UWB), and can develop sufficient energy to power internet of things (IoT) devices. Metamaterial absorbers 

find their applications in stealth technology, energy harvesters, and cloaking [1], [2]. Metamaterial absorbers 

are usually developed with a single, dual, triple and multi band absorption characteristics [3]–[5]. These 

metamaterial absorbers are designed and tuned based on the lumped parameters [6]–[8]. Different metamaterial 

absorbers have been developed to suit specific applications, for instance, a microwave metamaterial is 

developed with frequency tunability for sensing applications [9], low-cost microwave multiband [10], 
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wideband [11]–[13], polarization insensitive absorbers [14], [15] are developed with ultra-thin absorbers [16] 

for electromagnetic interference (EMI)/electromagnetic compability (EMC) applications and stealth 

technology for military applications [17]. Designing EM absorbers which can harvest in the entire UWB band 

can be very useful for battery less applications. 

In recent times due to the development of wireless communication systems and the massive quantity 

of available information, the data to be processed is high. To cope with this several communication systems 

have incorporated UWB antennas for automotive radar applications [18] and solar cell applications [19]. In the 

proposed work, metamaterial-based circular ring-shaped metamaterial (CRM) absorber was designed for UWB 

applications. The absorber can absorb EM energy in the entire UWB band from 3.1 to 10.6 GHz. An array of 

2x2, 3x3 and 4×4 structures were also considered in the work. The metamaterial unit cell consists of a circular 

ring-shaped structure with four rectangular strip lines arranged in the form of a cross leaving a square shaped 

slot ‘a2’ at its center. The designed metamaterial absorber was also insensitive to the various polarization 

angles, which further improved the absorption characteristics. 

 

 

2. DESIGN OF PROPOSED UNIT CELL ABSORBER 

The proposed UWB-metamaterial absorber unit cell structure is presented in Figure 1. Figure 1(a) 

represents the diagonal view and Figure 1(b) represents the top view of the proposed absorber. The optimal 

dimensions are shown in Table 1. The CRM absorber was printed on a FR4 substrate having thickness of 1.6 

mm. The dielectric constant and loss tangent of the FR4 are 4.4 and 0.02. The unit cell absorber consists of a 

circular ring-shaped resonator with cross shaped strips leaving a square shaped slot at the center, etched on a 

metallic copper ground plane separated by a dielectric FR4 substrate. This arrangement aids to absorb all the 

incident radiations and also helps to tune individually the parameters permeability (µ) and permittivity (Ɛ). 

 

 

Table 1. Optimal measurements of the absorber 

Parameter Values (mm) 

a 15 
a1 1.6 

a2 1.2 

Ro 7 
Rin 5.9 

g 1 

t 1.6 

 

 

  
(a) (b) 

 

Figure 1. Metamaterial unit cell absorber: (a) diagonal view and (b) top view 

 

 

The absorption spectrum A(ω) of a metamaterial absorber can be evaluated with the help of 

transmittance T(ω) and reflectance R(ω) [20]. Transmittance T(ω) and reflectance R(ω) can be calculated using 

scattering parameters S11 and S21 parameters using (1) to (3) [21]. 

 

𝑅(ω) = |𝑆11|2 (1) 

 

𝑇(ω) = |𝑆21|2 (2) 

 

𝐴(ω) = [1 − 𝑅(ω) − 𝑇(ω)] (3) 
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Similarly, to comprehend the absorbers metamaterial characteristics, the values of relative 

permeability (μeff) and permittivity (εeff) can be retrieved from the scattering parameters, which was done in 

two steps.  

Step 1: S parameters [22], [23] can be related to refractive index (n) and impedance (z) values. The S parameters 

can be written as (4) and (5). Solving (4) and (5) we get (6) and (7). 

 

S11 =
R01(1−ei2nk0d)

1−R01
2 ei2nk0d   

(4) 

 

S21 =
(1 − R01

2 )ei2nk0d

1 − R01
2 ei2nk0d

 
(5) 

 

z =  ±√
(1 + S11)2    − S21

2

(1 − S11)2    − S21
2  

(6) 

 

n= 
1

𝑘0𝑑
[{[ln(𝑒𝑖𝑛𝑘0𝑑)]′′ + 2𝑚𝜋} − 𝑖[ln(𝑒𝑖𝑛𝑘0𝑑)]′] (7) 

 

Here R01 is Z-1/Z+1 [18], n represents refractive index, 𝑧 represents impedance, K0 represents wave 

number, 𝑑 represents the maximum length of the unit cell, ‘m’ represents the branch due to the 

periodicity of the sinusoidal function, 𝐸 and 𝐻 represents electric and magnetic field components 

respectively.  

Step 2: The refractive index (𝑛) and impedance (𝑧) consecutively are also related to effective permittivity 

(εeff) and permeability (μeff) by (8) and (9) [24], [25]. 

 

Ɛeff=
n

z
 (8) 

 

µeff=𝑛𝑧 (9) 

 

 

3. PARAMETRIC STUDY 

For the proposed CRM absorber, two geometrical parameters are considered for the parametric study. 

They are the outer radius (Ro) and gap (g) between two neighbouring circular rings while the remaining 

parameters are unchanged as listed in Table 1. After the parametric study, the optimal values of Ro and g are 

considered for further evaluation with different number of unit cells. 

 

3.1.  Circular ring radius (Ro) variation 

The effect of outer circle’s radius (Ro) variation is analysed for the proposed CRM absorber. The 

various values of Ro ranging from Ro=6 mm, 7 mm, 8 mm and 9 mm are considered for the analysis. The 

comparative analysis of absorption vs frequency plots is shown in the Figure 2. As Ro=6 mm, the absorption 

peak reaches unity between 10.5-13 GHz. When Ro=7 mm the absorption peak reaches unity between  

8-10.5 GHz. At Ro=8 mm the absorption peak occurs unity (100%) between 6.5-9 GHz and at Ro=9 mm the 

absorption peak occurs unity at 5.5-7.5 GHz. From the Figure 2 data, it is understood that as the value of outer 

Ro increases, the resonant curves shift towards the lower resonant frequency and the absorption curve width 

decreases from a maximum of 2.5 GHz to a minimum of 2 GHz. For the optimum value of Ro=7 mm, the 

absorber shows good absorption characteristics of more than 85% between 4 GHz to 13 GHz. 

 

3.2.  Gap between the circular rings (g) variation 

Similarly, the effect of absorption due to the variation of gap (g) between two successive circular rings 

has been observed for various values of g=1 mm, 2 mm, and 3 mm. The comparative analysis for g variation 

is presented in the following Figure 3. Figure 3 illustrates that as the value of g increases (g=1 mm, 2 mm,  

and 3 mm) there is a slight frequency shift to the right. For the optimum value of g=1 mm, the proposed 

absorber has good absorption of more than 85% in frequency band between 3.1 GHz to 13 GHz. 

 

3.3.  Variation in number of unit cells (N) 

After the parametric study, the optimum values Ro=7 mm and g=1 mm are considered for the proposed 

unit cell and the remaining dimensions are considered as per Table 1. The absorber analysis was also extended 

for the array structures starting from 2x2, 3x3, 4x4 as shown in Figure 4(a)-(d). The plots representing the 
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comparative analyses for unit cell and array structures (2x2, 3x3, and 4x4) are shown in the Figure 5. Figure 5 

represents that for various array structures, the corresponding absorption vs frequency response plots remain 

the same. The absorption is maintained above 80% throughout the frequency band between 3.1 to 13 GHz. 

 

 

  
 

Figure 2. Absorption vs frequency curve 

comparison for Ro variation 

 

Figure 3. Absorption vs frequency curve 

comparison for g variation 

 

 

 
  (a) (b) (c) (d) 

 

Figure 4. Array structures: (a) unit cell CRM absorber, (b) 2x2 array, (c) 3x3 array, and (d) 4x4 array 

 

 

 
 

Figure 5. Comparative analysis for different number of unit cells 

 

 

4. SIMULATED RESULTS AND DISCUSSION 

In this section, the simulated results of the proposed absorber are discussed. To analyze the proposed 

absorbers performance (unit cell), its absorption characteristics, reflection characteristics, electric field (E) 

distribution, surface current (Jvol) distribution, polarization insensitivity behavior is conversed in detail. 

 

4.1.  Absorption and reflection characteristics 

The unit cell structure shown in Figure 1 is designed using Ansys high frequency structure simulator 

(HFSS) 19.2v. Figure 6 represents the simulation setup for the absorber. The incident wave propagation is 

along the Z-axis which is perpendicular to the metamaterial absorber and the boundaries along the X-axis and 

Y-axis is made perfect electric (PEC) and perfect magnetic (PMC) respectively. Initially a unit cell is 

considered for analysis. The absorption characteristics can be computed from its scattering parameters using 
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equations [1]–[3]. Similarly, the absorption characteristics can be extracted through finite element method 

(FEM) simulations. 

From the Figure 6, it is observed that proposed metamaterial absorber is having absorption above 80% 

in the UWB region, especially from 3.1 to 13 GHz and the absorption is above 90% for the frequencies from 

5.5 to 12 GHz. After simulating the absorption and reflection plots, the effective permeability (εeff) and 

effective permeability (μeff) parameters are analyzed for its metamaterial characteristics. The εeff and μeff 

parameters can be computed using the equations [4]–[9] or can be extracted from the absorption and refection 

plots using matrix laboratory (MATLAB) code. In the proposed work the values are extracted and the extracted 

values of εeff, μeff, n and z are shown in the Figure 7. From Figure 7(a) data, it can be realized that the effective 

permittivity (εeff) and permeability (μeff) lies mostly in the negative region from 4 to 13.5 GHz and from 

Figure 7(b) data, the values of the refractive index (n) are negative (n<0), and the value of impedance (z) is 

almost 1 (z=1) from 4 to 13 GHz. From the above graphs, we can infer on the two cases; as the value of n is 

negative, it proves that the proposed absorber characteristics lies in the fourth quadrant (n<0). As the value of 

n lies in the negative region, this shows that the absorber is a perfect absorber which describes its metamaterial 

property in the region from 4 to 13 GHz representing left-handed materials (LHM). Similarly, the value of 

impedance (z) is equal to unity, which shows that the impedance of the absorber is matched with the free space 

impedance. 

 

 

 
 

Figure 6. Unit cell analysis setup and reflection and absorption vs frequency curve  

 

 

 
(a) (b) 

 

Figure 7. Extracted values on (a) plots of effective permittivity (Ɛeff) and permeability (µeff) and (b) plots of 

refractive index (n) and impedance (z)  

 

 

4.2.  Electric field (E) and surface current distribution (Jsurf) 

The unit cell analysis is extended to realize the electric field and surface current distributions for a 

4x4 array. The electric field (E) and surface current distribution (Jsurf) for a 4x4 CRM absorber is shown in the 

Figure 8. From the Figure 8 represents current distribution simulated at the center frequency of 7.5 GHz. The 

concentration of electric field (E) is mostly at the upper and lower conductive rings. Also, the surface current 

distribution (Jsurf) is more concentrated at the upper conductive circular rings and maintains the same orientation 

in all unit cells. For energy harvesting applications, the concentration of the surface current at a specific section 

is more important than in a distributed manner. This helps to harvest or tap more energy at the outer rings, 

which in turn can improve the DC output voltage at the rectifier side. 
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Figure 8. Simulated E-field and surface current distribution (Jsurf) for CRM absorber 4x4 array at 7.5 GHz 

 

 

4.3.  Polarization insensitivity  

The absorption curves for different values of polarization are illustrated in the Figure 9. From the 

figure, it can be understood, that for the various angles of 00, 300, 450, 900 the absorption characteristics of the 

absorber shows very negligible change. This proves that the angle of incidence has almost no effect on the 

absorption response of the proposed CRM. From the results we can conclude that the designed CRM absorber 

has the advantage of polarization insensitive to different angles of incidence. The performance comparison of 

the present work with previous literature is presented in Table 2. Comparing with the previous works [13]–

[16], the proposed absorber shows wide and good absorption characteristics in the UWB region  

(4 to 13 GHz). Begaud et al. [14] explained that though the absorber has good absorption characteristics 

compared to our work, the limitations is on the thickness (t=5 mm) i.e., the thickness is very high compared to 

our proposed work (t=1.6 mm). 

 

 

 
 

Figure 9. Absorption vs frequency curve comparison when energy is incident with different angles  

(0°, 30°, 45°, 90°) 
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Table 2. Performance comparison of proposed MTM absorber with previous works 
Reference Unit cell 

Size (mm) 

Thickness of 

dielectric 
medium (mm) 

Design structure of 

MTM 

Freq (GHz) MTM 

layers 

Polarisation 

insensitivity 

[11] 16x16 1.5 Concentric circular split rings 4.6, 6.8, 11.3, 13.4 Single No 

[12] 8x8 1 Circular and square split rings 12 to 16 Single No 
[13] 20x20 1.6 Crescent shaped rings 5 Single Yes 

[16] 7.1×7.1 2 Dual spit rings 7.85-12.25 Single No 

[17] 10×10 4 Fractal shape 4.82-12.23 Multilayer Yes 
[18] 8.4×8.4 5 Concentric multi square rings 4.5-25.4 Multilayer Yes 

Proposed 

work 

15×15 1.6 Circular shaped with cross 

shaped strips 

4-13 Single Yes 

 

 

5.  CONCLUSION 

A circular ring-based metamaterial absorber with 15×15 mm size was designed for UWB applications. 

Figure 6 shows that the designed metamaterial has good absorption characteristics of above 80% throughout 

the UWB (4 to 13 GHz) region. Figure 7 illustrates the metamaterial characteristics of the proposed absorber 

which shows negative refractive index (n<0) throughout the UWB frequency range. The field distribution 

curves shown in Figure 8 illustrates, as that the current distribution is maximum concentrated at the upper 

conductive rings, maximum energy can be harvested which improves the maximum output DC voltage. From 

Figure 9 it is evident that the designed metamaterial is insensitive to various polarization angles. The designed 

CRM absorber showed good absorption characteristics of more than 80%, with polarization insensitive 

behavior and hence it is a suitable candidate for harvesting RF energy to power low power 

sensors/microcontrollers for IoT applications. 
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