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 This paper announces a new three-dimensional chaotic jerk system with two 

saddle-focus equilibrium points and gives a dynamic analysis of the 

properties of the jerk system such as Lyapunov exponents, phase portraits, 

Kaplan-Yorke dimension and equilibrium points. By modifying the Genesio-

Tesi jerk dynamics (1992), a new jerk system is derived in this research 

study. The new jerk model is equipped with multistability and dissipative 

chaos with two saddle-foci equilibrium points. By invoking backstepping 

technique, new results for synchronizing chaos between the proposed jerk 

models are successfully yielded. MultiSim software is used to implement a 

circuit model for the new jerk dynamics. A good qualitative agreement has 

been shown between the MATLAB simulations of the theoretical chaotic 

jerk model and the MultiSIM results. 
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1. INTRODUCTION  

Chaotic systems are applicable in a wide range of research classifications such as jerk systems [1, 2], 

robotics [3, 4], neuron models [5, 6], oscillators [7, 8], circuits [9-11], biological systems [12, 13], chemical 

systems [14, 15], and memristors [16, 17]. In view of their attractive triangular structure, considerable 

numbers of papers have been published on the chaos jerk models [18-20]. A general form of the autonomous 

jerk models can be exhibited by a system model as (1). 
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By modifying the Genesio-Tesi jerk dynamics (1992) with the introduction of a quadratic nonlinear 

term, a new jerk system is derived in this research study. The modelling is detailed in section 2. The new jerk 

model is equipped with multistability and dissipative chaos with two saddle-foci equilibrium points as 

described in section 3. By invoking backstepping technique, new results for synchronizing chaos between the 

proposed jerk models are successfully yielded. Section 3 comprises the new backstepping based control 

results. In section 4, MultiSim software is used to implement a circuit model for the new dynamics. 

 

 

2. A NEW CHAOTIC JERK SYSTEM 

In 1992, Genesio and Tesi [20] proposed the mechanical model. 
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In the dynamical model (2),  1 2 3, ,    stands for the three-dimensional phase vector, while

( , , )a b c represents the vector of system parameters. Genesio and Tesi [20] established by applying 

Lyapunov exponent analysis [21] for the jerk model (2). The model (2) has chaos nature if we take 

( , , ) (1.0,1.1,0.44)a b c  and the initial phase vector (0) (0.3,0.1,0.2)  as the Lyapunov exponents 

spectrum can be calculated using [21] as (3). 

 

1 0.1052,  2 0,  3 0.5452    (3) 

 

The presence of 1 0  in the LE spectrum (3) establishes the chaos nature of the jerk model (2). 

By adding a quadratic nonlinearity to the Genesio-Tesi chaotic model (2), a new three-dimensional 

dynamical model is derived as (4). 
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In the dynamical model (4),  1 2 3, ,    stands for the three-dimensional phase vector, while

( , , , )a b c d represents the vector of system parameters. The new dynamical model (4) has chaos nature if we 

take ( , , , ) (1.3,1.3,0.5,0.1)a b c d   and the initial phase vector (0) (0.3,0.1,0.2)  as the Lyapunov 

exponents spectrum can be calculated using [21] as (5). 

 

1 0.1080,  2 0,  3 0.6080    (5) 

 

The presence of 1 0  in the LE spectrum (5) establishes the chaos nature of the jerk model (2). A 

comparison of the Genesio-Tesi jerk model (2) and the modified jerk model (4) can be encapsulated as 

follows. The Genesio-Tesi jerk model (2) has five linear terms and a single quadratic nonlinearity, while the 

modified model (4) has five linear terms and 2 quadratic nonlinearities. The maximal values of the Lyapunov 

exponents of the models (2) and (4) are easily seen as 𝑝1 = 0.1052 and 𝑝1 = 0.1080 respectively. 

Furthermore, the model (4) has complex behavior such as multi-stability with coexistence of chaos attractors. 

For finding the balance points of the model (4), we seek the roots of the system given as (6a), (6b), (6c): 

 

2 0   (6a) 
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3 0   (6b) 

 
2

1 2 3 1 2 1 0a b c d                (6c) 

 

By finding the roots of the system (6), we arrive at two balance points of the model (4) as (7). 

 

0 (0,0,0)  and 1 ( ,0,0).a   (7) 

 

In the chaos situation, ( , , , ) (1.3,1.3,0.5,0.1).a b c d   Thus, the balance points for the jerk model 

(4) are derived as 0 (0,0,0)  and 1 (1.3,0,0).   Calculating the spectral values of the linearization 

matrix of the jerk model (4) at 0 , we get: 

 

1 2,30.8275, 0.1637 1.2427      (8) 

 

Calculating the spectral values of the linearization matrix of the jerk model (4) at 1, we get: 

 

1 2,30.6671, 0.5836 1.2681i      (9) 

 

This shows that 0 (0,0,0)   and 1 (1.3,0,0)   are saddle-foci, unstable balance points of the 

modified model (4). Figure 1 represents various signal plots of the jerk model (4) in the 2-D planes. 

 

 

  
(a) (b) 

 
(c) 

 

Figure 1. Two-dimensional signal plots of the jerk model (4) in the coordinate planes 

 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 4, August 2021 :  2941 - 2952 

2944 

It is worthwhile to observe that the jerk model (4) exhibits multistability phenomenon, which is the 

coexistence of chaos attractors when choosing different initial phase vectors [22, 23]. The parameter vector is 

fixed as in the chaos situation, i.e. ( , , , ) (1.3,1.3,0.5,0.1).a b c d   Two initial phase vectors are selected as 

0 (0.3,0.1,0.2)  and 0 ( 0.5,0, 0.5),     and the corresponding signal plots of the jerk model (4) are 

depicted in blue and red colors, respectively. Figure 2 illustrates the multistability of the jerk model (4).   

 

 

 
(a) 

 
(b) 

 

Figure 2. Multistability of the jerk model (4) with ( , , , ) (1.3,1.3,0.5,0.1)a b c d  and initial phase vectors

0 (0.3,0.1,0.2)   (blue color orbit) and 
0 ( 0.5,0, 0.5)     (red color orbit) 

 

 

3. BIFURCATION ANALYSIS OF THE NEW JERK SYSTEM 

For the modified jerk model (4), we consider general positive values for a, b, c, d. The linear 

stability of each balance point in (9) is determined from the eigenvalues of the associated characteristic 

equation. For the trivial balance point 0 ,  we have 

 
3 2 0.c b a       (10) 

 

A steady state bifurcation  0  can occur only when 0.a   For a Hopf bifurcation, we set 

i  in (10), which yields: 

 
3 2( ) ( ) ( ) 0.i c i b iw a      (11) 

 

Simplififying (11) and rearranging terms, it is deduced that: 

 
2 2( ) ( ) 0.a c i b       (12) 

 

By equating the imaginary and real parts of both sides of (12), it is seen that: 

 

2 20,   0R I

a
b

c
      (13) 

 

such that .
a

b
c
   

 

For the nontrivial balance point 1,T  where ξ1 = a, the characteristic equation becomes: 
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3 2 ( ) 0.c b da a        (14) 

 

A steady state bifurcation occurs when 0.a   Thus, we have an exchange of stabilities beween 0

and 1.  However, for a Hopf bifurcation, we set i  in (14), which yields: 

 
3 2( ) ( ) ( )( ) 0.i c i b da i a         (15) 

 

Simplifying (15) and rearranging terms, it is deduced that: 

 
2 2( ) ( ) 0.a c i b da         (16) 

 

By equating the imaginary and real parts of both sides of (12), we deduce as (17): 

 

2 20,   0R I

a
b da

c
         (17) 

 

provided .
a

b da
c

   

Since all four parameters are required to be positive, the first condition in (17) cannot be met. Thus, 

a Hopf bifurcation for 1 is not possible. We can verify these results by constructing bifurcation transition 

diagrams. We choose a as the bifurcation parameter, fixing the remaining parameters at their prescribed 

values. The blue dots show the bifurcation plot as a decreases from 1.3a   using ξ0 = (0.1 0.1 0.1) as the 

starting value. There is a period-doubling bifurcation to a period-2 cycle at 1.11a  and another period-

doubling bifurcation to a period-4 cycle at 1.186.a   The periodic solution loses stability to a Hopf 

bifurcation at 6.5,a   which is precisely the Hopf bifurcation condition of ,a bc when 1.3b  and 

0.5.c  When we varied a beyond 1.3,a   we were able to increase a up to 1.338,a   before the system 

variables became unbounded. Figure 3 displays the bifurcation diagram plot of the maximum values of ξ1 

over each cycle as a  varies between 0.6a   and  1.338a   for the initial condition ξ0 = (0.1 0.1 0.1). 

Figure 4 demonstrates a comparison of the bifurcation transition plots as a  is decreased, starting 

from two different starting values ξ0 = (0.1 0.1 0.1) (blue dots) and ξ0 = (-0.5 0 -0.5) (red dots). There are 

periodic windows within the chaotic regimes in each case, but some are only visible with one of the initial 

conditions, such as the periodic window in 1.31 1.314a  for the first set of initial conditions. 

 

 

  
 

Figure 3. Bifurcation transition simulation diagram 

of the maximum values of ξ1 over each cycle as 

a varies between 0.6a   and 1.338a   for  

ξ0=(0.1 0.1 0.1). Note (X1max=ξ1max)  

 

Figure 4. Bifurcation transition simulation diagram of 

the maximum values of ξ1 over each cycle as a  

 decreases for ξ0 = (0.1 0.1 0.1) (blue dots) and   

ξ0=(-0.5 0 -0.5) (red dots). Note (X1max=ξ1max) 
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4. GLOBAL CHAOS SYNCHRONIZATION OF THE NEW JERK SYSTEMS VIA ACTIVE 

BACKSTEPPING CONTROL 

With the use of backstepping technique, new results are encapsulated in this section for the 

synchronising design of the new chaos models envisioned as leader and follower systems. The leader system 

is specified by the new chaos model dynamics given in (18). 
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Furthermore, the follower system is specified by the controlled chaos model dynamics given in (19). 
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In the systems (18) and (19), 1 2 3( , , )    and 1 2 3( , , )    are the states. Also, u is a 

backstepping controller that is to be determined in this section. The action of u is to enable synchronization 

of the respective phases of the jerk models (18) and (19). For this purpose, we shall define synchronizing 

error between the respective phases of the jerk models (18) and (19) as being (20). 
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The error phases satisfy the system of differential equations as given in (21). 
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 (21) 

 

Next, we shall outline a main backstepping control result providing a compact formula for the 

feedback control u which will achieve the desired synchronization between the leader and follower models 

(18) and (19). 

Theorem 1. The backstepping feedback control law mentioned by 

 
2 2

1 2 3 1 2 1 2 1 1 3(3 ) (5 ) (3 ) ( )u a b c d L                      (22) 

 

where 0L  is a controller gain and 3 1 2 32 2 ,      renders global asymptotic synchronization 

between the states of the leader and follower chaos models (18) and (19). 

Proof. The assertion of Theorem 1 shall be established with an application of Lyapunov stability 

theory [24-27]. We start the proof by defining a scalar Lyapunov function as (23): 

 
2

1 1 1( ) 0.5W    (23) 

 

where 1 1.   

The time-derivative of 1W along the error dynamics (21) can be easily found as being (24): 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

A simple multi-stable chaotic jerk system with two saddle-foci equilibrium.... (Aceng Sambas) 

2947 

2

1 1 1 1 2 1 1 1 2( )V e e e e          (24) 

 

Next, we define 

 

2 1 2     (25) 

 

We can express (24) using (25) as (26): 

 
2

1 1 1 2W       (26) 

 

Next, we propose the Lyapunov function 

 
2 2 2

2 1 2 1 1 2 1 2( , ) ( ) 0.5 0.5 ( )W W          (27) 

 

The time-derivative of 2W along the error dynamics (21) can be found as (28): 

 
2 2

2 1 2 2 1 2 3(2 2 )W             (28) 

 

Next, we define 

 

3 1 2 32 2       (29) 

 

We can express (28) using (29) as (30): 

 
2 2

2 1 2 2 3W         (30) 

 

Finally, we propose the Lyapunov function  

 
2 2 2

1 2 3 1 2 3( , , ) 0.5( )W          (31) 

 

It is a straightforward calculation to verify that W is a positive definite function on 
3.R The time-

derivative of W along the error dynamics (21) can be found as (32): 

 
2 2 2 2 2 2

1 2 3 3 3 2 3 1 2 3 3( ) ( )W R                       (32) 

 

where 

 

3 2 3 3 2 1 2 3(2 2 )R                 (33) 

 

A simple calculation yields the result (34): 

 
2 2

1 2 3 1 2 1 2 1 1(3 ) (5 ) (3 ) ( )R a b c d u                    (34) 

 

When we substitute the active feedback law (22) into (34), we arrive at (35): 

 

3R L   (35) 

 

Substituting the value of R from (35) into (32), we derive as (36): 

 
2 2 2

1 2 3(1 )W L        (36) 
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Since W  is a quadratic and negative definite function on 
3,R we conclude that the error variables 

1( ),t 2 ( )t and 3( )t tend to zero as t  for all values of (0)i R  for 1,2,3.i   

For the computer simulations in MATLAB, the parameters of the jerk models (18) and (19) are set 

as in the chaotic case, viz.  ( , , , ) (1.3,1.3,0.5,0.1).a b c d   For fast convergence, we choose 20.L    

The initial state of the leader model (18) is picked as α (0)=(1.6 0.4 -1.3).  

The initial state of the follower system (19) is picked as β(0)=(2.8 -0.7 1.2).  

Figure 5 pinpoints the complete synchronization of the new jerk models represented by (18) and 

(19). Furthermore, Figure 6 depicts the time-history of the synchronization error between the new chaos jerk 

models (18) and (19). 

 

 

 
 

Figure 5. Backstepping-based asymptotic synchronization of the chaos models (18) and (19) 

 

 

 
 

Figure 6. Time-plot of the backstepping-based synchronization error between the chaos models (18) and (19) 

 

 

5. MULTISIM CIRCUIT SIMULATION OF THE NEW CHAOTIC JERK MODEL 

A MultiSim circuit model of the new chaos jerk model (4) is implemented by using off-the-shelf 

components such as operational amplifiers, capacitors, resistors, and analog multipliers. The MultiSim circuit 

in Figure 7 has been designed by applying the general approach with operational amplifiers. Thus, the 

variables 1,  2 ,  3  of the jerk model (4) are the voltages across the capacitor C1, C2 and C3, respectively. 

Note: ξ1=X1, ξ2=X2 and ξ3=X3. By applying Kirchhoff’s circuit laws, the corresponding circuital equations of 

the designed circuit can be expressed as given (37). 
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   (37) 

 

The power supplies of all active devices are ±15 VDC and the TL082CD operational amplifiers are 

used in this work. The values of components in Figure 8 are chosen to match the parameters of system (37) 

as: R1=R2=R6=R7=R8=R9=R10=R11=R12=R13=100 kΩ, R3=R4=76.92 kΩ, R5=200 kΩ, R7=10 kΩ and 

C1=C2=C3=1nF. The designed circuit has been examined by MultiSim software and results are described in 

Figure 7. It is easy to see a good agreement between the MultiSim simulation as shown in Figure 8 and 

MATLAB simulation as shown in Figure 1. 

 

 

 

 

 
 

Figure 7. The schematic diagram of the MultiSim circuit of new jerk model (37) 
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(a) (b) 

 

 
(c) 

 

Figure 8. Phase potraits of the MultiSim simulation of the jerk model (37) in the (a)  1 2,  -plane,  

(b)  2 3,  -plane and (c)  1 3,  -plane 

 

 

6. CONCLUSION  

In this paper, by modifying the Genesio-Tesi jerk dynamics (1992), a new jerk system model was 

derived and its dynamical properties were analyzed in detail. It was shown that the new jerk model has with 

multistability and dissipative chaos with two saddle-foci balance points. By invoking backstepping technique, 

new results for synchronizing chaos between the proposed jerk models were successfully yielded and proved 

using Lyapunov stability theory. Furthermore, MultiSim software was used in order to implement a circuit 

model for the new jerk dynamics. The control application and circuit implementation of the new jerk model 

have useful applications in engineering such as secure communications, and crypto-devices. 
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